
Advances in AerodynamicsYuan et al. Advances in Aerodynamics            (2022) 4:16 
https://doi.org/10.1186/s42774-022-00107-z

RESEARCH Open Access

Dynamic nonlinear algebraic models
with scale-similarity dynamic procedure for
large-eddy simulation of turbulence
Zelong Yuan1,2,3, Yunpeng Wang1,2,3, Chenyue Xie1,2,3,4 and Jianchun Wang1,2,3*

*Correspondence:
wangjc@sustech.edu.cn
1Department of Mechanics and
Aerospace Engineering, Southern
University of Science and
Technology, Shenzhen 518055
China
2Southern Marine Science and
Engineering Guangdong
Laboratory (Guangzhou),
Guangzhou 511458 China
Full list of author information is
available at the end of the article

Abstract

A dynamic nonlinear algebraic model with scale-similarity dynamic procedure (DNAM-
SSD) is proposed for subgrid-scale (SGS) stress in large-eddy simulation of turbulence.
The model coefficients of the DNAM-SSD model are adaptively calculated through the
scale-similarity relation, which greatly simplifies the conventional Germano-identity
based dynamic procedure (GID). The a priori study shows that the DNAM-SSD model
predicts the SGS stress considerably better than the conventional velocity gradient
model (VGM), dynamic Smagorinsky model (DSM), dynamic mixed model (DMM) and
DNAM-GID model at a variety of filter widths ranging from inertial to viscous ranges.
The correlation coefficients of the SGS stress predicted by the DNAM-SSD model can
be larger than 95% with the relative errors lower than 30%. In the a posteriori testings of
LES, the DNAM-SSD model outperforms the implicit LES (ILES), DSM, DMM and
DNAM-GID models without increasing computational costs, which only takes up half
the time of the DNAM-GID model. The DNAM-SSD model accurately predicts plenty of
turbulent statistics and instantaneous spatial structures in reasonable agreement with
the filtered DNS data. These results indicate that the current DNAM-SSD model is
attractive for the development of highly accurate SGS models for LES of turbulence.

Keywords: Subgrid-scale model, Nonlinear algebraic model, Large-eddy simulation,
Incompressible turbulence

1 Introduction
Turbulent flows involve a wide range of length scales across several orders of magnitude,
therefore the direct numerical simulation (DNS) of turbulence at high Reynolds num-
ber is impractical to solve all flow scales ranging from inertial to viscous ranges [1–3].
Large-eddy simulation (LES) is an effective approach which adopts the coarse mesh to
only resolve the large flow scales and model the effect of residual subgrid scales (SGS) on
the resolved large scales [4–7]. Extensive SGS models have been proposed to reconstruct
the unclosed SGS stress in previous works, including the Smagorinsky model [8–10],
the velocity-gradient model (VGM) [11], the scale-similarity model [12, 13], the implicit
LES (ILES) [14–16], the Reynolds-stress-constrained LES model [17], the data-driven
models [18–25], etc. The Smagorinsky model is one of the commonly-used SGS models
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whose model coefficient for the original version is statically adjusted by the experimen-
tal and DNS data in the early stage. Germano et al. [26] and Lilly [27] pioneered the
development of a dynamical procedure based on the Germano identity through the least-
squares algorithm, whichmakes the parameter of the dynamic Smagorinskymodel (DSM)
dynamically determined as the flow changes. Subsequently, the dynamical versions of
some conventional SGS models with the Germano-identity based dynamic procedure
(GID) were proposed [4–7], including the dynamic mixed model (DMM) [28–31], the
dynamic Clark model [32], the dynamic localization model [33], etc.
The Smagorinsky model [8, 9, 26, 27] constructs the SGS stress with the linear constitu-

tive relation based on the Boussinesq hypothesis, which requires the alignment between
the SGS stress and the filtered strain-rate tensor. Pope [34] derived the general expres-
sion between the Reynolds stress and the averaged strain-rate and rotation-rate tensors
with eleven integrity basis tensors based on the theory of invariants. Due to the expen-
sive calculations of the high-order basis tensors in the general expression, the numerical
verification of Pope’s general viscous hypothesis was only limited to the two-dimensional
turbulence [34]. Lund and Novikov [35] showed that the sixth invariant can be expressed
as the ratio of the other five invariants, and reduced the original eleven polynomial basis
tensors to five, which greatly simplified the computational complexity of the nonlin-
ear algebraic SGS model in LES calculations. Especially, the anisotropic part of the SGS
stress can be expressed as the general expression of the resolved strain-rate and rotation-
rate tensors with five model coefficients [35]. Speziale et al. [36, 37] further simplified
Lund’s general expression to a quadratic constitutive relation for the Reynolds stress.
The model coefficients of the nonlinear algebraic model were mostly determined by the
DNS data in the early research work. Wong [38] proposed a two-parameter dynamic
nonlinear algebraic model (DNAM) using the quadratic constitutive relation with the
Germano-identity based dynamic procedure. Kosović [39] applied the nonlinear consti-
tutive relation to the shear-driven boundary layers at high Reynolds number. Wang et al.
[40, 41] proposed a dynamic SGS model based on the quadratic nonlinear constitutive
expression with local stability. Marstorp et al. [42] proposed an explicit algebraic SGS
stress model with the equilibrium assumptions made on the partial-differential equations
of SGS stress, and successfully applied to the rotational channel flow. Recently, a stochas-
tic extension of the explicit algebraic SGS models has been developed by Rasam et al. [43]
In our previous research work, a nonlinear algebraic model based on the artificial neu-

ral network (ANN-NAM) was proposed [44], whose model coefficients are predicted by
the invariant-input ANN with embedded invariance. The ANN-NAM model [44] recon-
structs the SGS stress and statistics of velocity with high accuracy both in the a priori and
a posteriori analyses of LES. Wang et al. [45] proposed an ANN-based semi-explicit spa-
tial gradient model with embedded invariance. A dynamic version of the spatial gradient
model (DSGM) [46] was proposed for the parameter determination strategy. Yuan et al.
developed deconvolutional artificial neural network (DANN) [21] and dynamic iterative
approximate deconvolution (DIAD) models [22] to recover the local unfiltered veloc-
ity with the neighboring spatial stencils of the filtered velocity. A scale-similarity-based
dynamic procedure (SSD) was proposed to adaptively calculate the weights of the spatial
stencil [22]. The DIAD model with the SSD procedure is superior to the other conven-
tional dynamic SGSmodels in the reconstruction of the statistics of velocity and transient
coherent structures of turbulence [22].
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The SSD procedure is inspired by the scale-similarity hypothesis [12], assuming that the
original unfiltered velocity shares the consistent constitutive relation with the resolved
filtered velocity in the inertial region. Bardina et al. [12] developed the scale-similarity
model which is formally consistent with the Leonard stress derived by the Germano
decomposition [26]. Liu et al. [13] extended the scale-similarity model by introducing
the test-level filter. He et al. [47] developed a universal form of Lagrangian velocity cor-
relations at different space separations based on the scale-similarity hypothesis. Stallcup
et al. [48, 49] proposed an adaptive scale-similar closure using the generalized represen-
tations of the SGS terms by solving a local system identification problem at the test-filter
scale. The adaptive scale-similar model can accurately represent the SGS terms near the
smallest resolved scales with the minimal tensor representation [48, 49].
In the current research, a novel dynamic nonlinear algebraic model with scale-similarity

dynamic procedure (DNAM-SSD) is developed for reconstructing the unclosed SGS
stress in LES of incompressible turbulence. The performance of the DNAM-SSDmodel is
examined by comparing with those of some classical SGS models both in the a priori and
a posteriori testings of LES at two filter widths 16hDNS and 32hDNS with the corre-
sponding grid resolutions of N 1283 and 643. The computational accuracy and costs
of the newly-proposed scale-similarity based dynamic (SSD) procedure are compared to
the conventional Germano-identity based dynamic (GID) procedure. The remainder of
the paper is organized as follows. The governing equations of LES will be described in
Section 2. The introductions of the conventional SGS models and DNAM models are
respectively illustrated in Sections 3 and 4. Section 5 will conduct the numerical simu-
lation of incompressible isotropic turbulence. The a priori and a posteriori studies are
correspondingly provided in Sections 6 and 7. Conclusions are drawn in Section 8.

2 Governing equations of large-eddy simulation
The incompressible turbulence is governed by theNavier-Stokes equations, whose dimen-
sionless conservation form is written as [1]

ui
xi

0, (1)

ui
t

uiuj
xj

p
xi

1
Re

2ui
xj xj

i, (2)

where ui denotes the i-th velocity component (i 1, 2, 3 represents the three directions of
the Cartesian coordinate system, respectively.), p is the pressure, Re is the Reynolds num-
ber, and i is the i-th large-scale force component. [21, 50, 51] For brevity and simplicity,
we adopt the summation convection for the repeated indices by default in this paper.
Besides, the governing dimensionless parameter for the incompressible turbulence,

namely, the Taylor microscale Reynolds number Re is given by [1]

Re
urms

3
, (3)

where denotes the kinematic viscosity and urms uiui is the root-mean-square
(rms) value of the velocity magnitude. Here, “ ” represents a spatial average over the
entire computational domain. In addition, the Taylor microscale is expressed as [1]

urms 5 , (4)
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where 2 SijSij denotes the dissipation rate and Sij 1
2 ui xj uj xi is the

strain-rate tensor.
For the large-eddy simulation, the resolved large scales are separated from the subgrid

small scales by the spatial filtering operation, which is introduced as [1, 2]

f x f x r G r; dr, (5)

where f x represents the arbitrary physical variable, and an overbar stands for the
low-pass spatial filtering. Here, denotes the entire physical domain, with G and
respectively being the spatial filter function and filter width. The governing equations
for the LES can be obtained by applying the spatial filtering on the Eqs. (1) and (2),
correspondingly, which can be derived as [1, 2]

ui
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0, (6)
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Here, the unclosed SGS stress ij in the Eq. (7) is defined by [4–6]

ij uiuj uiuj. (8)

The SGS stress involves the nonlinear interactions between the resolved large scales
and under-solved small scales, therefore additional SGS stress modeling is required to
close the governing equations of LES. In the following two sections, the conventional
SGS models and the proposed dynamic nonlinear algebraic models with scale-similarity
dynamic procedure (SSD) are respectively described for the LES computations.

3 Conventional SGSmodels
The explicit modeling for the unclosed SGS stress can be divided into the functional mod-
eling and structural modeling. The functional models mimic the forward energy transfer
from the resolved large scales to the residual small scales by constructing the explicit
eddy-viscosity forms, while the structural modeling is established by the truncated series
expansions or the hypothesis of scale similarity to correctly recover the SGS stress with
high accuracy. A typical functional model is the dynamic Smagorinsky model (DSM),
whose constitutive relation for the deviatoric SGS stress is given by [26, 27]

A
ij ij

ij

3 kk 2C2
S

2 S Sij, (9)

where S 2SijSij 1 2 is the characteristic filtered strain rate, and Sij
1
2 ui xj uj xi is the filtered strain-rate tensor. The superscript “A” represents the
trace-free part of the arbitrary variables, namely, A

ij ij kk ij 3. Here, the
isotropic SGS stress kk is absorbed into the pressure term. C2

S is the Smagorinsky coeffi-
cient, which can be determined by the Germano identity dynamic procedure (GID). The
test-filter level SGS stress with the double-filtering scale 2 is expressed as [26, 27]

ij uiuj uiuj, (10)
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where a tilde stands for the test filtering operation at the filter scale . The deviatoric part
of ij can be modeled based on the scale-invariance hypothesis, defined by [26, 27]

A
ij ij

ij

3 kk 2C2
S

2 S Sij. (11)

These two SGS stresses with different filter scales, namely, ij and ij satisfy the
Germano identity, expressed as [26]

ij ij ij uiuj uiuj, (12)

where the Leonard stress ij can be calculated using the resolved filtered field for LES cal-
culations. Therefore, the optimal Smagorinsky coefficient C2

S can be further determined
by the least-squares algorithm, namely [27]

C2
S

A
ij ij

kl kl
, (13)

where A
ij ij

1
3 ij kk , and ij ij ij. Here ij 2 2 S Sij, ij 2 2 S Sij.

A typical structural model is the velocity gradient model (VGM) based on the truncated
Taylor series expansions, given by [11]

ij
2

12
ui
xk

uj
xk

. (14)

The dynamic mixed model (DMM) combines the scale-similarity model with the dis-
sipative Smagorinsky term, which can overcome the deficiency of numerical instability
in the structural modeling of the SGS stress. The SGS stresses constructed by the DMM
model at scales and are expressed, respectively, as [12, 28, 52]

ij C1h1,ij C2h2,ij, (15)

ij C1H1,ij C2H2,ij, (16)

where h1,ij 2 2 S Sij, h2,ij uiuj uiuj,H1,ij 2 2 S Sij, andH2,ij uiuj uiuj.
Here, the hat stands for the test filtering at scale 4 . Similar to the DSM model, the
model coefficients C1 and C2 are calculated by the Germano identity dynamic procedure,
namely [21, 22]

C1
N2
ij ijMij MijNij ijNij

N2
ij M2

ij MijNij
2 , (17)

C2
M2

ij ijNij MijNij ijMij

N2
ij M2

ij MijNij
2 , (18)

whereMij H1,ij h1,ij, and Nij H2,ij h2,ij.

4 Dynamic nonlinear algebraic models (DNAM)
In the SGS stress modeling, the constitutive relation of the unclosed SGS stress can be
regarded as the function of the local filtered quantities, i.e., the filtered strain-rate tensor
Sij and filtered rotation-rate tensor ij, namely [34, 35]

ij f Sij, ij; ij, , (19)
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where the filtered rotation-rate tensor ij
1
2 ui xj uj xi . For brevity and sim-

plicity of the tensorial polynomials, the matrix multiplications for the tensor contractions
are expressed as [34, 35, 40]

S2 SikSkj, S Sik kj, tr S 2 Sij jk ki. (20)

A general expression of the modeled SGS stress [Eq. (19)] can be expanded to the sum
of an infinite number of tensorial polynomials with the form Sm1 n1Sm2 n2 , where
mi and ni are positive integers. The infinite tensorial polynomials can be reduced to a
finite number by the Cayley-Hamilton theorem [34, 35, 40], thus the modeled SGS stress
can be expressed as the linear combination of the basis tensors formed by the product of
S and , namely [34]

ij

11

n 1
gn 1, 2, , 6 T n

ij , (21)

where T n
ij is the n-th basis tensor and the model coefficients gn are functions of the

six integrity invariants m (m 1, 2, , 6). Here, the eleven basis tensors T n
ij and six

independent invariants m are respectively expressed as [34]

T 1 S, T 2 S2,
T 3 2, T 4 S S,
T 5 S2 S2, T 6 I,
T 7 S 2 2S, T 8 S 2 2S ,
T 9 S S2 S2 S, T 10 S2 2 2S2,
T 11 S2 2 2S2 ,

(22)

1 tr S2 , 2 tr 2 ,
3 tr S3 , 4 tr S 2 ,
5 tr S2 2 , 6 tr S2 2S .

(23)

If the model coefficients gn are relaxed as the ratios of polynomials of these integrity
invariants, the number of the above basis tensors can be reduced from eleven to five. In
accordance with the dimensional consistency, the anisotropic part of the modeled SGS
stress can be given by [35]

A
ij

2
5

n 1
Cn

n ,A
ij

2 C1 S S C2 S2 A C3
2 A C4 S S

C5

S
S2 S2 ,

(24)

where the characteristic filtered strain rate S 2SijSij 1 2, and Cn are five dimension-
less model coefficients. The corresponding basis tensors n

ij that satisfy the consistent
dimension with the square of the velocity gradient are defined by

1
ij S S, 2

ij S2, 3
ij

2, 4
ij S S, 5

ij
1
S

S2 S2 .

(25)

In the paper, two dynamic procedures are adopted to determine the model coefficients
Cn of the dynamic nonlinear algebraic models (DNAM). One is the Germano identity
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dynamic (GID) procedure based on the scale-invariance assumption, and the other is
the newly proposed scale-similarity dynamic (SSD) procedure in accordance with the
scale-similarity relation. The rest of this section will be divided into two subsections to
respectively introduce these two different modeling approaches.

4.1 DNAMmodels with Germano identity dynamic procedure (DNAM-GID)

Similar to the conventional dynamic SGS models (e.g. DSM and DMM models), the
DNAM model with Germano identity dynamic procedure, abbreviated as DNAM-GID,
introduces the test-filter level SGS stress ij at the double-filtering scale 2 ,
modeled by

A
ij

2 5

n 1
Cn

n ,A
ij

2
C1 S S C2 S

2 A
C3

2 A
C4 S S

C5

S
S
2

S
2

.

(26)

Here, n
ij is the n-th basis tensor at the test filter scale 2 , expressed as

1
ij S S, 2

ij S
2
, 3

ij
2, 4

ij S S, 5
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2

S
2

.

(27)

Consistent with Eq. (12), the modeled SGS stresses ij and ij at different filter scales
satisfy the Germano identity, namely

A
ij

A
ij

A
ij

5

n 1
Cn

n
ij , (28)

where n
ij

2 n ,A
ij

2 n ,A
ij . The model coefficients Cn can be further calculated

by the least-squares algorithm, derived by

5

m 1
Cm

m
ij

n
ij

A
ij

n
ij , n 1, 2, , 5 . (29)

For the DNAM-GID model, the optimal model coefficients Cn can be obtained by
solving the system of five linear equations in Eq. (29).

4.2 DNAMmodels with scale-similarity dynamic procedure (DNAM-SSD)

In this paper, we propose a novel scale-similarity dynamic procedure for the DNAM
model to determine the optimal model coefficients dynamically. The real SGS stress can
be regarded as the nonlinear function of the velocity ui and the filter kernel at scale ,
whereas the SGS stress modeled by the DNAMmodel has the nonlinear constitutive rela-
tion with the local filtered physical quantities (e.g. the filtered strain-rate and rotation-rate
tensors S and ),
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A
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S
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(30)

Based on the scale-similarity hypothesis, the modeled SGS stress at the filter scale
shares the consistent model coefficients Cn with that at the filter scale , namely

A
ij ui; uiuj uiuj

A
5

n 1
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n ,A
ij S,

2 C1 S S C2 S2
A
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2 A

C4 S S
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S
S2 S2 .

(31)

The constitutive equation of the SGS stress is assumed to be invariant to the physical
field, therefore we can replace the unfiltered velocity ui with the filtered velocity ui in
Eq. (31) and obtain

A
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A
ij ui; uiuj uiuj

A 5
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2 C1 S S C2 S
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(32)

A
ij is the anisotropic part of the resolved Leonard stress. For simplicity, we let n

ij

n ,A
ij S, and Eq. (32) is abbreviated as A

ij
5

n 1
Cn

n
ij . Since A

ij and
n
ij are both

resolved in the filtered field, the model coefficients Cn can be determined by the least-
squares method,

5

m 1
Cm

m
ij

n
ij

A
ij

n
ij , n 1, 2, , 5 . (33)

It is worth noting that the DNAM-SSD model only calculates n ,A
ij S, and

n ,A
ij S, rather than n ,A

ij S, , n ,A
ij S, and n ,A

ij S, in the DNAM-
GID model, therefore the scale-similarity dynamic procedure simplifies the conventional
dynamic procedure based on the Germano identity. Besides, in the following sections, we
can show that the DNAM model with the proposed scale-similarity dynamic procedure
performs better than that with the conventional GID procedure both in the a priori and
the a posteriori testings of incompressible turbulence.

5 Numerical simulation of incompressible isotropic turbulence
In order to validate the performance of the proposed DNAM-SSD model, the numer-
ical simulation of incompressible isotropic turbulence is performed in a cubic box of
2 3 with periodic boundary conditions at the Taylor Reynolds number Re 250.
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The pseudo-spectral approach with the two-thirds dealiasing rule is adopted for the spa-
tial discretization of the governing equation. A second-order explicit Adams-Bashforth
scheme [53] is applied to the time advancement. The large-scale forcing is implemented
on the two lowest wavenumber shells [21, 50, 51] to keep the turbulence in equilibrium.
In the paper, we use N 10243 uniform grids in the DNS calculation with the grid spac-
ing hDNS 2 1024. The kinematic viscosity is set to 1 Re 0.001. The detailed
one-point statistics of DNS calculation are summarized in Table 1. Here, kmax

2
3hDNS

represents the largest effective wavenumber after the fully two-thirds dealiasing, and
rms i i stands for the root-mean-square value of the vorticity magnitude , where

u represents the vorticity which is the curl of the velocity field. The Kolmogorov
length scale and the integral length scale LI represent the smallest resolved scale and
the largest characteristic scale, which are defined, respectively, by

3 1 4
, (34)

LI
3

2 urms 2 0

E k
k

dk, (35)

where 2 SijSij is the dissipation rate. The total turbulent kinetic energy Ek
1
2 uiui 0 E k dk, and E k stands for the velocity spectrum. The resolution
parameter kmax 2.1 is found to be sufficient enough for the convergence of turbulent
kinetic energy at all scales [54, 55].
In the paper, the filtered physical quantities and the real SGS stress ij are calculated

using a Gaussian filter, which is expressed as [1, 2]

G r;
6

2

1 2
exp

6r2
2 . (36)

We select two filter scales ( 16hDNS and 32hDNS) for model verification, and the
corresponding cutoff wavenumbers are kc 32 and 16, respectively. Figure 1
shows the velocity spectra of the DNS and filtered DNS at both filter widths ( 16hDNS
and 32hDNS). The filtered velocity spectra almost overlap with the DNS data at the low-
wavenumber region satisfying the Kolmogorov k 5 3 scaling, while generally diminish
with the increasing of wavenumbers, and drop rapidly at the region larger than the trun-
cated wavenumber kc. More kinetic energy is filtered out at a larger filter scale, therefore
the filtered velocity spectrum at 32hDNS is lower than that at 16hDNS. Overall
95% and 88% of the turbulent kinetic energy is retained in the filtered velocity field at the
filter widths 16hDNS and 32hDNS, respectively.

6 A priori study of the DNAMmodels
In the a priori analysis, twenty snapshots of DNS data at equal temporal intervals during
two large-eddy turnover periods ( LI urms) are adopted to examine the model accu-
racy of the DNAM-GID and DNAM-SSD models with several filter scales ranging from

Table 1 One-point statistics for the DNS with grid resolution of 10243

Re Ek kmax hDNS LI urms rms

252 2.63 2.11 1.01 235.2 31.2 2.30 26.90 0.73
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Fig. 1 Velocity spectra of DNS and filtered DNS for incompressible isotropic turbulence (N 10243)

4hDNS to 64hDNS. Two evaluation metrics are used to quantify the distinc-
tion between the real value (Qreal) and the modeled value (Qmodel) for targeted variableQ,
namely the correlation coefficient C Q and the relative error Er Q , respectively defined
by [21, 22]

C Q
Qreal Qreal Qmodel Qmodel

Qreal Qreal 2 1 2
Qmodel Qmodel 2 1 2 , (37)

Er Q
Qreal Qmodel 2 1 2

Qreal 2 1 2 , (38)

where represents the ensemble average of total samples. In the a priori study, we first
investigate the impact of integrity basis tensors n ,A

ij on the SGS stress ij by calculating
the correlation coefficients at different filter widths, shown in Table 2. The normal com-
ponents of the basis tensors n ,A

11 share the similar correlation coefficients C n ,A
ij , A

ij

with those of shear components n ,A
12 . The fourth term 4 ,A

ij S S contributes
the highest correlation coefficients about 80% with the SGS stress, while the first term

1 ,A
ij S S gives the worst predictions with correlation coefficients lower than 30%

among these five basis tensors. It is worth noting that the terms 3 ,A
ij

2 A and

Table 2 Correlation coefficients C n ,A
ij , A

ij with the increasing of the filter scales

hDNS
1
11

2
11

3
11

4
11

5
11

1
12

2
12

3
12

4
12

5
12

2 0.227 0.44 0.518 0.824 0.549 0.219 0.429 0.513 0.819 0.545

4 0.227 0.425 0.519 0.821 0.534 0.221 0.415 0.514 0.816 0.529

8 0.233 0.401 0.513 0.808 0.509 0.228 0.394 0.509 0.804 0.5

16 0.256 0.384 0.498 0.789 0.488 0.253 0.38 0.498 0.781 0.468

32 0.3 0.385 0.487 0.777 0.491 0.306 0.389 0.493 0.755 0.448

64 0.334 0.398 0.498 0.788 0.535 0.384 0.431 0.508 0.737 0.464
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Fig. 2 Correlation coefficients of normal and shear SGS stresses in the a priori study

5 ,A
ij S2 S2 S have higher correlation coefficients with the SGS stress com-

pared to the second term 2 ,A
ij S2 A, therefore we keep all five basis tensors without

any simplification in the paper. With the increasing of the filter widths, the correlation
coefficients between the first basis tensor 1 ,A

ij and the SGS stress constantly increase,
while those of the other four terms gradually drop but are still higher than those of the
first term. These results indicate that the classical Smagorinsky model (linear relation
with only the first basis tensor 1 ,A

ij ) cannot fully reconstruct the SGS stress.
Figures 2 and 3 respectively illustrate the correlation coefficients and relative errors

of the normal and shear components of the SGS stress for different SGS models at
a number of filter scales ranging from the inertial region to the dissipation range.
Here, the VGM model is the velocity gradient model (see Eq. (14)) which has a high
a priori accuracy among the classical SGS models. The DNAM-LS model is a DNAM
model with a priori knowledge of DNS data, whose model coefficients are calculated

by the least-squares method using the real SGS stress, namely
5

m 1
Cm

m ,A
ij

n ,A
ij

A
ij

n ,A
ij , n 1, 2, , 5 . Here, n

ij represents the basis tensors displayed in
Eq. (25). The model coefficients of the DNAM-GID model and DNAM-SSD model
are calculated by the dynamic procedure based on conventional Germano identity (cf.
Eq. (29)) and the newly proposed scale-similarity dynamic procedure (cf. Eq. (33)),
respectively.

Fig. 3 Relative errors of normal and shear SGS stresses in the a priori study
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Table 3 Correlation coefficients and relative errors of the SGS stress at filter scale 16hDNS in the
a priori study

A
11

A
22

A
33

A
12

A
23

A
13

Model \C( A
ij )

DSM 0.256 0.255 0.24 0.26 0.279 0.253
DMM 0.628 0.617 0.605 0.608 0.624 0.615
VGM 0.952 0.949 0.949 0.947 0.95 0.95
ANNSGM-7-49 0.981 0.980 0.982 0.981 0.981 0.982
DNAM-LS 0.953 0.951 0.951 0.949 0.952 0.952
DNAM-GID 0.942 0.939 0.938 0.936 0.94 0.939
DNAM-SSD 0.952 0.95 0.95 0.948 0.951 0.951

Model \Er ( A
ij )

DSM 0.986 0.99 0.999 0.991 0.979 0.993
DMM 0.779 0.788 0.798 0.796 0.784 0.791
VGM 0.32 0.327 0.327 0.332 0.324 0.323
ANNSGM-7-49 0.199 0.201 0.202 0.197 0.194 0.192
DNAM-LS 0.302 0.309 0.31 0.314 0.307 0.306
DNAM-GID 0.432 0.438 0.442 0.446 0.44 0.439
DNAM-SSD 0.305 0.312 0.313 0.318 0.31 0.309

The DNAM-LS model has the highest correlation coefficients and the lowest rela-
tive errors with the SGS stress, since the DNS data are used to determine the model
coefficients. The correlation coefficients and relative errors predicted by the proposed
DNAM-SSD model are very close to the DNAM-LS model at all filter scales, which are
much better than the DNAM-GID and VGM models. The DNAM-SSD model predicts
the SGS stress accurately with the correlation coefficients overall higher than 92% and
the relative errors less than 40% ranging from the viscous region to the inertial region.
In contrast, the DNAM-GID model gives the worst prediction among these SGS models
with the relative errors approximately over 40%. It is worth noting that the DNAM-SSD
model performs better than the conventional VGM model at all filter widths, indicating
that the basis tensors of the DNAM model are more complete than the velocity gradient
in reconstructing the SGS stress.
In order to further quantify the model accuracy of different SGS models in the a priori

analysis, we compare the correlation coefficients and relative errors of the SGS stress at

Table 4 Correlation coefficients and relative errors of the SGS stress at filter scale 32hDNS in the
a priori study

A
11

A
22

A
33

A
12

A
23

A
13

Model \C( A
ij )

DSM 0.294 0.29 0.295 0.325 0.308 0.32
DMM 0.6 0.597 0.596 0.61 0.602 0.609
VGM 0.922 0.921 0.92 0.922 0.921 0.922
ANNSGM-7-49 0.944 0.945 0.944 0.944 0.943 0.942
DNAM-LS 0.927 0.926 0.925 0.927 0.926 0.927
DNAM-GID 0.913 0.913 0.912 0.913 0.913 0.914
DNAM-SSD 0.926 0.925 0.925 0.926 0.925 0.927

Model \Er ( A
ij )

DSM 0.975 0.978 0.977 0.963 0.971 0.964
DMM 0.802 0.804 0.806 0.797 0.803 0.797
VGM 0.405 0.407 0.409 0.405 0.407 0.404
ANNSGM-7-49 0.341 0.342 0.340 0.329 0.335 0.338
DNAM-LS 0.376 0.377 0.379 0.375 0.378 0.374
DNAM-GID 0.479 0.479 0.482 0.483 0.483 0.48
DNAM-SSD 0.38 0.381 0.383 0.379 0.382 0.378
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filter widths 16hDNS and 32hDNS listed in Tables 3 and 4, respectively. The DSM and
DMMmodels use the Germano-identity dynamic procedure (see Eqs. (13), (17) and (18))
to dynamically determine model coefficients. The DNAM-SSD and DNAM-LS models
give the best prediction of the SGS stress with correlation coefficients higher than 95%
and 92% as well as relative errors lower than 30% and 38% at corresponding filter widths

16hDNS and 32hDNS among these SGSmodels. In contrast, the DSMmodel performs
the worst compared to other SGS models at both filter scales, whose correlation coeffi-
cients are lower than 30% and relative errors are nearly 100%. The DNAM-GID model
predicts the SGS stress tangibly worse than the DNAM-SSD and DNAM-LS models, but
is still much better than the classical DMMmodel with the consistent GID dynamic pro-
cedure. Besides, the performance of the VGM model in the a priori study is between
the DNAM-GID model and DNAM-SSD model at both filter widths. We also compare
the DNAM-SSD model with the artificial neural network-based spatial gradient mod-
els (ANN-SGM) proposed by Wang et al. [45] The ANNSGM-7-49 model consists of
four fully-connected layers of neurons (4:20:20:49) and takes the integrity invariants as
input to learn the model coefficients of the velocity gradient products for the neighbor-
ing seven-point stencil [45]. The DNAM-SSD model can accurately reconstruct the SGS
stress with the similar accuracy to the ANN-based SGS model (ANNSGM-7-49) in the
a priori analysis. These results demonstrate that the basis tensors of the DNAM model
are more complete in modeling the SGS stress compared to those of the DMM model
and VGM model. In the a priori analysis, the proposed scale-similarity dynamic proce-
dure (SSD) shows distinct advantages over the conventional Germano-identity dynamic
procedure (GID) in determining the model coefficients of SGS models.
Finally, we evaluate the SGS energy transfer for different SGS models by comparing the

normalized SGS energy flux DNS shown in Fig. 4, where ijSij represents the
SGS energy flux and DNS denotes the dissipation rate calculated using the DNS data. The
PDFs of the SGS energy flux reconstructed by the DNAM-SSD and DNAM-LS models
coincide with the filtered DNS data at both filter scales 16hDNS and 32hDNS, which
are obviously better than the VGM and DNAM-GIDmodels. In comparison, the DNAM-
GID model fails to predict the SGS energy transfer, indicating that the model-coefficient
determination by the proposed SSD procedure is superior to that of the conventional GID
procedure, and is well approximated to the DNAM-LS model in the a priori study.

Fig. 4 PDFs of normalized SGS energy flux DNS in the a priori study
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7 A posteriori study of the DNAMmodels
The a posteriori testing of LES is important to illustrate the practical performance of the
SGS models. In LES computations, the kinematic viscosity 0.001 is consistent with
that of DNS. It is worth noting that an explicit filtering operation at the test-level filter
scale is only introduced to determine the model coefficients, and no additional explicit
filtering at the filter width is performed on the primary variables ui in the computa-
tions of LES. Two filter scales 16hDNS and 32hDNS are selected to study the impact of
filter widths on the SGS modeling. The newly proposed DNAM-SSD model is compared
to the classical SGS models, including the implicit LES (ILES), the dynamic Smagorin-
sky model (DSM), the dynamic mixed model (DMM), the dynamic nonlinear algebraic
model with conventional Germano-identity dynamic procedure (DNAM-GID) and the
ANN-based SGS model (ANNSGM-7-49) [45]. It has been found that the filter-to-grid
ratio FGR hLES 2 can effectively reduce the influence of the spatial discretiza-
tion errors on the SGS stress modeling [56–58]. Therefore, we fix the FGR value to 2
and the corresponding grid points of LES are N 1283 and 643 for the selected filter
widths 16hDNS and 32hDNS. It is worth noting that both filter scales lie in the inertial
range (cf. Fig. 1) and the scale-invariance assumption still holds, which are essential for
the conventional dynamic models based on the Germano identity. The time step of LES is
selected as tLES 10 tDNS for all SGS models. The coarse-grained LES computations
without any SGS models suffer from the numerical instability due to the nonlinear inter-
actions between resolved large scales and residual scales. Implicit LES methods adopt
the artificial dissipation to mimic the forward kinetic energy transfer from large scales to
small scales. In this paper, we use the six-order compact-difference filtering scheme to
provide necessary artificial dissipation for the numerical stability of coarse-grained LES
computations, expressed as [59, 60]

f fi 1 fi f fi 1

3

n 0

an
2

fi n fi n , (39)

where a check “ ” represents the dissipative filtering operation applied to the velocity field
after each calculation of ILES, the parameter 0 f 0.5, and four coefficients an are
determined by the Taylor-series expansion, namely [59, 60]

a0
11
16

5
8 f , a1

15
32

17
16 f , a2

3
16

3
8 f , a3

1
32

1
16 f . (40)

In the paper, the control parameter f 0.495 is chosen for a commonly-used six-
order low-dissipation filtering scheme [59, 60]. The pure scale-similarity type SGS model
(DNAM-SSD) is numerically unstable due to lack of sufficient dissipation. Therefore, we
couple the consistent compact-difference dissipative filtering scheme with the DNAM-
SSD model to ensure the numerical stability of the LES calculations. For the ANNSGM-
7-49 model, an artificial dissipation with the fourth-order hyperviscosity is introduced
to maintain the numerical stability of the LES calculations [45]. The same instantaneous
snapshot of the filtered DNS data is used as the initialization of the LES calculations for
different SGS models. Table 5 summarizes the average computational time for the SGS
stress modeling at both filter scales 16hDNS and 32hDNS. Compared to the classical
DSM and DMM models, the DNAM model would not particularly increase too much
computational cost: the modeling time of the DNAM-GID model is about 1.1 times that
of the DMMmodel. The proposed SSD procedure simplifies the calculation process of the



Yuan et al. Advances in Aerodynamics            (2022) 4:16 Page 15 of 23

Table 5 The computational cost of SGS stress modeling ij for LES computations with the filter scales
16hDNS and 32hDNS

DSM DMM DNAM-GID DNAM-SSD

Model( 16hDNS)
t(CPU s) 5.9 9.941 10.996 5.989
t/tDMM 0.593 1 1.106 0.603

Model( 32hDNS)
t(CPU s) 0.875 1.438 1.64 0.837
t/tDMM 0.609 1 1.141 0.582

conventional GID method, which greatly reduces the computation costs and only takes
about half the time of the DNAM-GID model (0.6 times that of the DMMmodel) at both
filter widths 16hDNS and 32hDNS.
In the a posteriori testings of LES computations, we first compare the velocity spectra

of different SGSmodels with those of the DNS and filtered DNS (fDNS) data at both filter
scales 16hDNS and 32hDNS shown in Figs. 5 and 6. LES of the incompressible turbu-
lence is governed by the filtered Navier-Stokes equations (Eqs. (6) and (7)), therefore, the
statistics of an ideal LES would be close to that of the fDNS data. The velocity spectra pre-
dicted by the ILES model are insufficiently dissipated and obviously higher than the fDNS
data, while those modeled by the DSM and DMM models exhibit the tilde distribution
due to excessive dissipation. The ILES generally reconstructs the inter-scale interactions
and subgrid-scale effects by the artificial dissipation or dissipative spatial discretization
schemes. Therefore, the ILES results are generally obtained without any explicit filtering
operations [1–3]. Moreover, there is no filter width in ILES, and ILES results are very sen-
sitive to the change of grid number. Statistics of ILES could converge to those of DNS
when the grid is refined to the DNS level. For the DSM and DMMmodels, velocity spec-
tra near the truncated wavenumbers are diminished by the model dissipation, resulting
in the blockage of the kinetic energy cascade from large scales to small scales. Therefore
the kinetic energy accumulates in the region of medium wavenumbers. The predicted
velocity spectra of the DNAM-GIDmodel are very similar to the DMMmodel, which has
a significant deviation from the fDNS data. In contrast, the DNAM-SSD model outper-
forms the other SGS models and accurately reconstructs the velocity spectra at both filter
scales 16hDNS and 32hDNS, which is very close to the ANNSGM-7-49 model. It is

Fig. 5 Velocity spectra in a posteriori study at filter scale 16hDNS
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Fig. 6 Velocity spectra in a posteriori study at filter scale 32hDNS

worth noting that the DNAM-SSD model does not require additional model training on
the DNS data with a priori knowledge, compared to the ANN-based SGS models.
The SGS energy flux characterizes the kinetic energy transfer between the resolved

large scales and the unclosed subgrid scales. The positive SGS energy flux stands for
the forward energy cascade, while the negative SGS energy flux represents the energy
backscatters. The PDFs of the normalized SGS energy flux DNS at filter scales
16hDNS and 32hDNS are plotted in Fig. 7. In order to guarantee the numerical stability of
the LES with the DSM model, the model coefficient CS is restricted to be non-negative.
The DSMmodel only reconstructs the forward SGS energy transfer whose modeled SGS
energy flux is always non-negative. The PDFs of the SGS energy flux for the DMM and
DNAM-GID models are obviously narrower than the fDNS data. In comparison, the
DNAM-SSD model can accurately mimic both the forward SGS energy transfer and the
energy backscatter, which is very similar to the ANN-based model (ANNSGM-7-49).
We further compare the normalized strain-rate tensor reconstructed by different SGS

models, whose PDFs of the normal and shear components at both filter widths
16hDNS and 32hDNS are illustrated in Figs. 8 and 9, respectively. In the figures, Srms

ij,fDNS

SfDNS
ij

2
represents the root-mean-square value of the strain-rate tensor calculated

using the filtered DNS data shown in Table 6. The strain-rate tensor represents the local

Fig. 7 PDFs of the normalized SGS energy flux DNS in a posteriori study
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Fig. 8 PDFs of the normalized strain-rate tensor in a posteriori study at filter scale 16hDNS

straining of the turbulence flow. ILES overestimates the strain-rate tensor and the pre-
dicted PDFs of the strain rate are obviously wider than the fDNS data, while those PDFs
predicted by the DSM, DMM and DNAM-GID models are apparently narrower due to
the excessive model dissipation. In contrast, the DNAM-SSD model can recover more
small scales and performs well on the predictions of the strain-rate tensor.
Figures 10 exhibits the PDFs of the normalized characteristic strain rate for different

SGS models at filter scales 16hDNS and 32hDNS, where S rms
fDNS S fDNS 2

stands for the root-mean-square value of the characteristic strain rate given from the fil-
tered DNS data (see Table 6). ILES obviously fails to predict the characteristic strain rate,
while the DSM, DMM and DNAM-GIDmodels cannot well capture the peak of the PDFs
in reconstructing the characteristic strain rate. In comparison, the PDFs of the character-
istic strain rate predicted by the DNAM-SSD model are very close to the fDNS data.
We finally examine the reconstruction ability of the turbulent coherent structure by

comparing the transient contours of the normalized vorticity, shown in Fig. 11. Here, the
vorticity magnitude is normalized by the root-mean-square values calculated using the
filtered DNS data: rms

fDNS
fDNS
i

fDNS
i (see Table 6), where u denotes the

resolved vorticity which is the curl of the resolved velocity field. The snapshots of LES cal-
culations for different SGS models are selected on an arbitrary XY slice at the consistent

Fig. 9 PDFs of the normalized strain-rate tensor in a posteriori study at filter scale 32hDNS
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Table 6 The physical variables calculated using the filtered DNS data used for the variable
normalization at the filter scales 16hDNS and 32hDNS

hDNS DNS Srms
11,fDNS Srms

12,fDNS S
rms

fDNS
rms
fDNS

16 0.73 3.96 3.45 10.89 15.39

32 0.73 2.51 2.21 6.93 9.8

time with approximately two large-eddy turnover periods. For the DSM and DNAM-
GID models, some small-scale flow structures are excessively dissipated and only large
scales are maintained. Compared to the other SGS models, the vortex structures recon-
structed by the DNAM-SSD model exhibit more similar spatial distribution to the fDNS
data, and more multiple-scale flow structures are accurately recovered by the proposed
DNAM-SSD model.
In order to test the impact of the explicit filters on the accuracy of the DNAM models,

we choose two different types of explicit filters (the top-hat and differential Helmholtz
filters). The top-hat filter in one dimension is expressed as [57, 61, 62]

fi
1
2n

fi n 2 2
i n 2 1

j i n 2 1
fj fi n 2 , (41)

where n hDNS. The explicit form of differential Helmholtz filter is expressed as [63]

ui 1 2 2 1ui 1 2
2

xk xk

1
ui, (42)

where 2 2 24 [63]. The velocity spectra for different SGS models (ILES, DSM,
DMM, DNAM-GID and DNAM-SSD) at the filter width 16hDNS with the top-hat
and Helmholtz filters are displayed in Figs. 12 and 13, respectively. The LES results using
both the top-hat and Helmholtz filters are very similar to those with the Gaussian filter
(see Fig. 5). The ILES model exhibits insufficient dissipation, while the DSM, DMM and
DNAM-GID models show bump distributions with excessive dissipation. In comparison,
the DNAM-SSD model accurately predicts the velocity spectrum, which is almost coin-
cident with the fDNS data. These results demonstrate that the accuracy of the DNAM
models is not significantly affected by the type of the explicit filters.

Fig. 10 PDFs of the normalized characteristic strain rate in a posteriori study
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Fig. 11 Contours of the normalized vorticity magnitude at filter scale 32hDNS

Fig. 12 Velocity spectra with the top-hat filter in a posteriori study at filter scale 16hDNS
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Fig. 13 Velocity spectra with the Helmholtz filter in a posteriori study at filter scale 16hDNS

8 Conclusions
In the current work, we develop a dynamic nonlinear algebraic model with the newly pro-
posed scale-similarity dynamic procedure (DNAM-SSD) for the large-eddy simulation of
turbulence. In the DNAM-SSDmodel, the model coefficients are dynamically determined
based on the scale-similarity relation, which greatly simplifies the conventional dynamic
procedure based on the Germano identity (GID). The a priori analysis demonstrates that
the proposed DNAM-SSD model outperforms the conventional velocity gradient model
(VGM) and DNAM-GID model at a number of filter scales ranging from the inertial to
dissipation ranges. The DNAM-SSD model gives the best prediction of the SGS stress
with correlation coefficients higher than 95% and 92% as well as relative errors lower than
30% and 38% at corresponding filter scales 16hDNS and 32hDNS in comparison with
the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), VGM model
and the DNAM-GIDmodel, respectively. The proposed SSD procedure shows significant
advantages over the conventional GID approach in determining the model coefficients of
SGS models.
In the a posteriori testings of LES, the performance of the proposed DNAM-SSDmodel

is examined at both filter widths 16hDNS and 32hDNS. The classical implicit-LES
(ILES), DSM, DMM and DNAM-GIDmodels are used for comparisons of the a posteriori
model accuracy. ILES fails to predict the statistics of turbulence with insufficient dissipa-
tion, while the DSM and DMMmodels are over-dissipative, leading to the fact that small
scales are diminished by the excessive dissipation. The results predicted by the DNAM-
GIDmodel are very similar to those of the DMMmodel and have obvious deviations from
the filtered DNS data. In contrast, the predictions of the DNAM-SSDmodel are very close
to the filtered DNS data in the velocity spectra, the statistics of SGS energy flux and strain
rate, as well as the instantaneous spatial structures of the vorticity magnitude at both filter
scales without increasing the computational cost. The modeling time of the DNAM-SSD
model is only half the time of the DNAM-GID model (0.6 times that of the DMMmodel)
at both filter widths. These results demonstrate that the current DNAM-SSD model is an
effective framework for enhancing the advanced SGS stress modeling of LES.
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