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Abstract

We propose criteria of tracking vortex surfaces in complex flows based on the
vortex-surface field (VSF). The criteria characterize the accuracy and Lagrangian tracking
performance of the numerical VSF solution, and determine the time period when the
vortex surface tracking is satisfactory. Moreover, we develop a turbulent-like flow
combining large-scale coherent structures in the Taylor–Green flow and small-scale
turbulent structures in homogeneous isotropic turbulence (HIT). From tracking of
vortex surfaces during the effective tracking period, we find that the imposed HIT
disturbance significantly wrinkles vortex surfaces. Subsequently, the wrinkled vortex
tube with large vorticity magnitude tends to be further twisted, contributing to energy
cascade, while the wrinkling is mitigated in the region with small vorticity magnitude.
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1 Introduction
The vortex-surface field (VSF) is a Lagrangian-based method to identify and characterize
coherent vortical structures [1, 2]. The VSF isosurface is a vortex surface consisting of
vortex lines. From the extended Helmholtz theorem [3], the VSF isosurfaces of the same
threshold at different times can have strong coherence, facilitating the tracking of vortex
surfaces.
As a general flow diagnostic tool, the numerical VSF solution is calculated from a given

flow field by solving a pseudo-transport equation driven by the frozen, instantaneous
vorticity [4, 5]. From an initial VSF, the two-time method [6] is applied to calculate the
temporal evolution of VSFs. By post-processing of a time series of numerical solutions,
the VSF can elucidate mechanisms in various aerodynamic flows with essential vortex
dynamics, such as turbulence [7] and transition [8]. For example, the VSF reveals the con-
tinuous rolling-up and twisting of vortex tubes in Taylor–Green (TG) flows [6], and the
complex network of tangling vortex tubes in homogeneous isotropic turbulence (HIT) [5],
instead of the visual “breakdown” of worm-like structures identified by Eulerian vortex
criteria [9, 10].
Although the evolution of vortex surfaces has been reported in relatively simple tran-

sitional flows, such as the TG flow [6, 11] and canonical wall-bounded transitional flows
[12, 13], the tracking of vortex surfaces in fully developed turbulence, such as HIT,
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remains an open problem. As illustrated in Fig. 15 in Ref. [5], the successful vortex sur-
face tracking can be valuable to study the physical picture of energy cascade [7, 14, 15]
and vortex-based models [16, 17] in turbulence.
The challenges of tracking vortex surfaces in turbulent-like complex flows are rooted in

the breakdown of the Helmholtz theorem in real flows, which can cause the non-existence
and non-uniqueness of VSF solutions. The former issue has been partially resolved using
the two-time method. The error of numerical VSF solutions can be controlled under 5%
in various applications. On the other hand, the latter issue can hinder an effective tracking
of vortex surfaces [3] due to the correction substep in the two-time method, and there
lacks a criterion to quantify this issue. In particular, the numerical dissipation in VSF
calculation has two sides. It can regularize the numerical solution to avoid the formation
of nearly-singular structures, while it can also artificially distort vortex surfaces to reduce
time coherence in the surface tracking.
In the present study, we address the issue on the comprehensive assessment of vor-

tex surface tracking by proposing new criteria in the VSF calculation, and develop a
turbulent-like flow combing the large-scale coherent structures and small-scale turbulent
structures to assess VSF solutions with moderate computational resources. The tracking
criteria determine the effective tracking period. The evolution of VSF isosurfaces dur-
ing this period demonstrates timewise evolution process of coherence structures, and
reveals physically interesting vortex dynamics on the mechanism of transition and energy
cascade.
The outline of this paper is as follows. In Section 2, we present the numerical method

for the direct numerical simulation (DNS) and the construction of the turbulent-like flow.
In Section 3, we review the theory and numerical method of VSF calculation. In Section 4,
we propose criteria of tracking vortex surfaces based on the numerical VSF solution. The
criteria are applied to the VSF evolution in the turbulent-like flow to investigate vortex
dynamics in scale cascade in Section 5. Some conclusions are drawn in Section 6.

2 Simulation overview
2.1 DNS

The vortex surface tracking is applicable to general flows [6, 11]. Without loss of gener-
ality, we restrict our discussion to constant-density, incompressible viscous flows in the
present study. The velocity field u(x, t) is governed by the Navier–Stokes (NS) equations

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u, (1)

∇ · u = 0, (2)

where x denotes spatial coordinates, t the time, ρ the density, p the pressure, and ν the
kinematic viscosity.
We carried out the DNS with the standard pseudo-spectral method [18, 19]. The spatial

domain � of the flow field is a cube of side L = 2π , and it is discretized on uniform grid
points N3. The two-thirds truncation method with the maximum wavenumber kmax ≈
N/3 is applied to remove aliasing errors. The Adams–Bashforth method is used for time
advancement. The time step satisfies that the Courant–Friedrichs–Lewy (CFL) number
is less than 0.2 to ensure the numerical stability and accuracy.
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2.2 Construction of the turbulent-like flow

We propose a turbulent-like flow in which the vortex tracking criteria can be effectively
assessed. This turbulent-like flow is a TG flow imposed by a HIT perturbation before
transition. It consists of deterministic large-scale structures of the TG flow and stochastic
small-scale structures of HIT.
The initial velocity is

u(t = 0) = uTG
(
tTG = t∗TG

) + ηMuHIT
(
tHIT = t∗HIT

)
, (3)

where uTG and uHIT denote the TG and HIT velocity fields, respectively, and ηM ≥ 0
denotes the strength of the HIT perturbation. Both uTG and uHIT are calculated by inde-
pendent DNS cases with the time tTG for the TG flow and tHIT for the HIT starting from
their own initial velocity fields uTG(tTG = 0) and uHIT(tHIT = 0), respectively. The hybrid
velocity in Eq. (3) consists of uTG at a particular time t∗TG and uHIT at another particular
time t∗HIT.
For the DNS of the TG flow, we set uTG(tTG = 0) = (sinxcosycosz,−cosxsinycosz, 0)

[20, 21], and add the HIT disturbance at t∗TG = 4.5 around the beginning of TG transition
when the vortex reconnection occurs [6]. The Reynolds number is set as Re ≡ 1/ν = 400.
The imposed HIT perturbation can trigger the emergence of convoluted vortex surfaces
in the transition.
For the DNS of HIT, uHIT evolves from an initial random velocity field uHIT(tHIT = 0)

satisfying a prescribed energy spectrum E(k, t = 0) ∼ k4e−(k/kp)2 [22, 23] with the
wavenumber magnitude k and the peak wavenumber kp = 4 [5]. The initial total energy
E0 ≡ 〈|uHIT(tHIT = 0)|2 /2

〉
is set to be unity, where 〈·〉 denotes the volume average

over the computational domain �. We choose t∗HIT = 1.3 when the HIT becomes fully
developed with the maximum mean dissipation rate in the temporal evolution and the
Taylor-scale Reynolds number 54 [5]. The disturbance strength is chosen as ηM = 0.05
and 0.1 so that the flow is featured by both large-scale evolving TG structures and
small-scale turbulent-like structures.

2.3 DNS statistics

We set up three cases with the same Re = 400 and three ηM = 0, 0.05, 0.1 listed in Table 1.
Note that case M0 with ηM = 0 is equivalent to the regular TG flow. Figure 1 plots the
temporal evolution of the total energy Etot ≡ ∫

E(k)dk, and the mean dissipation rate
ε ≡ ∫

2νk2E(k)dk. We observe that E0 increases with ηM and Etot decays with time in
all cases. Meanwhile, ε first generally grows, then reaches a plateau around t = 1.5, and
gradually decays at late times. The growth of ε implies a transition process with the vortex
reconnection and the emergence of small-scale vortical structures [5, 6]. The notable dip
for case M2 in the early stage appears to be due to a transient process for reconciling the
TG base flow and the imposed HIT disturbance.

Table 1 DNS parameters

Case ηM N

M0 0 512

M1 0.05 512

M2 0.1 1024
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Fig. 1 Temporal evolution of flow statistics in cases with different ηM

Figure 2 plots the energy spectra for u(t = 0) and uHIT(tHIT = t∗HIT). The imposed HIT
disturbance enhances E(k) in cases M1 and M2. In particular, the small-scale random
turbulence structures smooth E(k) at moderate and large wavenumbers. The temporal
evolution of E(k) in cases M1 and M2 in Fig. 3 indicates the emergence of turbulent-like
structures at moderate wavenumbers, and E(k) in M2 is slightly larger than that in M1 at
moderate k. At t = 2 when ε peaks, E(k) at a small range of k satisfies the −5/3 scaling
for low Re = 400, and this range is expected to be broadened with increasing Re.

Fig. 2 Spectra of the HIT disturbance and the initial flow fields in cases M0, M1, and M2
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Fig. 3 Temporal evolution of spectra in cases M1 and M2

3 VSF
3.1 VSF theory

The VSF φv, a global smooth scalar field, is defined to satisfy the constraint

ω · ∇φv = 0, (4)

where ω ≡ ∇ × u denotes the vorticity. The uniqueness and existence of the solution to
Eq. (4) have been extensively discussed [1]. An exact VSF solution can be obtained for a
flow field with vanishing helicity density [24], and an approximate VSF solution can be
calculated from an arbitrary flow field [5].
From the Lagrangian view, the surface tracking in the narrow sense is described by the

flow map of a specified surface. By the Helmholtz and Ertel theorems, the tracking of
vortex surfaces is well defined in an ideal flow which is inviscid, barotropic, and with con-
servative body forces. It is equivalent to track a specified isosurface of the VSF governed
by the Lagrangian advection equation

∂φv(x, t)
∂t

+ u(x, t) · ∇φv(x, t) = 0, t � 0. (5)

On the other hand, the vortex surface tracking is generally ill-defined in non-ideal flows
due to the breakdown of the Helmholtz theorem. One attempt to resolve this issue intro-
duced a virtual velocity [3], instead of the physical one, to advect the VSF in Eq. (5), but it is
only applicable to very special flows. Therefore, a precise definition of tracking of a vortex
surface is still an open theoretical problem, but this issue can be reasonably approximated
and regularized using numerical methods for practical interests.

3.2 VSF calculation

In non-ideal flows, the temporal evolution of the VSF can be numerically solved by the
two-time method [6]. This numerical regularization method has been demonstrated to
be effective to evolve the VSF and reveal the Lagrangian-like evolution of vortex surfaces
in a range of non-ideal flows, e.g., incompressible and compressible viscous TG flows [6,
11], reacting flows [25], and magnetohydrodynamic (MHD) flows [3].
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Each time step of the two-time method consists of two substeps. In the prediction sub-
step, the temporal VSF φ∗

v is advected by the physical velocity as a Lagrangian scalar as

∂φ∗
v (x, t)
∂t

+ u(x, t) · ∇φ∗
v (x, t) = 0, t � 0. (6)

Then in the correction substep, φ∗
v is transported by the frozen vorticity with a pseudo

time τ as
∂φ∗

v (x, t; τ)

∂τ
+ ω(x, t) · ∇φ∗

v (x, t; τ) = 0, 0 � τ � Tτ , (7)

where Tτ is the maximum value of pseudo-time. The theoretical analysis and numerical
experiment showed that φ∗

v converges to an approximate VSF solution at large Tτ [6]. The
initial condition φv(x, t; τ = 0) for Eq. (7) is obtained from the result in the prediction
substep. At the end of each time step, φv(x, t) = φ∗

v (x, t; τ = Tτ ) is updated.
Both Eqs. (6) and (7) have no diffusion terms, so in principle nearly singular structures

can form in φ∗
v at large times or pseudo times. A dissipative numerical scheme such as the

weighted essentially non-oscillatory (WENO) scheme [26, 27] was used for regulariza-
tion. However, the smoothing of the nearly singular structures can also make φ∗

v deviate
from an accurate one. Thus, we need to carefully choose Tτ to balance the convergence
and the numerical dissipation of φ∗

v in Eq. (7), and we typically set 10�t ≤ Tτ ≤ 50�t.
In the numerical implementation of solving Eqs. (6) and (7), we use the second-order

TVD Runge–Kutta method for time advancement and the fifth-order WENO for spa-
tial discretization of the convection terms. Moreover, the choice of spatial discretization
schemes is discussed in Appendix A. The time and pseudo time steps are selected by the
CFL numbers based on the velocity and vorticity magnitudes [6] less than 0.2, respec-
tively. In general, the computational cost of VSF calculation is higher than that for solving
the NS equations, and it depends on the desired solution quality, maximum value of
vorticity magnitude, and complexity of vortex lines in flow fields [4].
In case M0, the initial VSF φ0 at t = 0 is obtained as φ0 = φTG(tTG = t∗TG) from the

evolution of the VSF φTG in the TG flow with the exact VSF φTG(tTG = 0) = (cos 2x −
cos 2y) cos z. In cases M1 and M2, φ0 is calculated using the pseudo-transport in Eq. (7)
with the local optimization [5] and Tτ = 2400�t. The initial guess of Eq. (7) is φTG(tTG =
t∗TG), and the local optimization is applied to each pseudo-time step. This hybrid method
balances the accuracy and smoothness of the converged VSF solution.

4 Criteria of VSF tracking
4.1 VSF deviation

As discussed in Section 3.1, the tracking of vortex surfaces is perfect using Eq. (5) in ideal
flows, whereas the assessment of the tracking becomes complex in non-ideal flows. On
the accuracy of the VSF solution, Yang and Pullin [6] proposed a metric

εφ ≡ 〈|λω|〉 (8)

to quantify the averaged deviation of a numerical VSF solution from an exact one with
0 ≤ εφ ≤ 1, where

λω ≡ ω · ∇φv
|ω| |∇φv| , (9)
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the cosine of an angle between the VSF gradient and the vorticity, characterizes the local
VSF deviation. Former VSF studies [5, 6] suggested that a satisfactory VSF solution should
have εφ ≤ 5% ∼ 10%.
On the other hand, it is not sufficient to conclude that a temporally evolving VSF solu-

tion with a small εφ must be a good candidate for tracking vortex surfaces due to the
nonuniqueness of the VSF solution [1]. An extreme example provided in aMHD flow (see
in Fig. 8 in Ref. [3]) shows that the vortex surface should be time invariant, but the VSF
isosurface evolves among nonunique VSF solutions with εφ = 0.
We sketch this issue in Fig. 4. Two typical vortex surfaces represented by circular dashed

lines at a time t evolve into the two represented by elliptical dashed lines at a later time
t + �t. An ideal vortex surface tracking should show the one-to-one map between the
two inner loops or the two outer loops at the two times in a Lagrangian manner. There
are two types of discrepancies in the tracking. For the inner vortex surface at t (thick
solid line), two isosurfaces of numerical VSF solutions are sketched at t + �t. The upper
one is attached across the inner and outer vortex surfaces with satisfactory εφ and poor
Lagrangian tracking performance, i.e., the solid loop obviously deviates from the inner
dashed loop. On the contrary, the bottom one is oscillating around the inner vortex sur-
face with large εφ and satisfactory Lagrangian tracking performance. Thus, besides εφ ,
we need another metric to quantify the Lagrangian tracking performance in the overall
assessment of the VSF solution.

4.2 Volume overlap ratio of VSF isosurfaces

The evolution of vortex surfaces is characterized by the VSF isosurfaces of a particular
contour value φv = ϕ. Although ϕ is expected to be constant, it is adjusted at different

Fig. 4 Sketch of different surface tracking performances from a given time t (left) to a later time t + �t (right).
The blue dashed loops denote two vortex surfaces in the ideal tracking, and red solid loops denote a VSF
isosurface from a numerical VSF solution. The upper right solution has satisfactory accuracy but poor
Lagrangian tracking performance, and the bottom right one has poor accuracy but satisfactory tracking
performance
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times due to the numerical dissipation. In this implementation, ϕ is implicitly determined
from [11]

V (φv = ϕ, t) = V (φv = Cφ , t = 0) (10)

by searching the isocontour values φv = ϕ at a given time t and φv = Cφ at the initial
time which correspond to the same fluid volume Vφ ≡ V (φv = Cφ , t = 0). Here, the fluid
volume within an isosurface of φv = ϕ is calculated by the integration over the entire
computational domain as

V (φv = ϕ) =
∫

�

Hδ(φv = ϕ)dx, (11)

where

Hδ(φv = ϕ) =

⎧
⎪⎨

⎪⎩

0, φv − ϕ < −δ,
1
2δ (φv − ϕ + δ) + 1

2π sin π(φv−ϕ)
δ

, |φv − ϕ| � δ,
1, φv − ϕ > δ

(12)

is the discretized Heaviside function [28] with a smoothing parameter δ = 1× 10−6. The
previous VSF visualization shows that the isosurface of φv = ϕ can reasonably describe
the continuous temporal evolution of a particular vortex surface, and this VSF isocontour
selection is consistent with the volume conservation implied by the Helmholtz theorem
in the limit of in ideal flows [11].
To quantify the tracking performance from numerical VSF solutions, we propose a

volume overlap ratio

RV = V⋂

Vφ

, (13)

where the volume overlap is calculated by

V⋂ =
∫

�

Hδ(φv = ϕ)Hδ(φ
ref
v = ϕref)dx. (14)

Here, φv is the VSF solution being examined, and φref
v denotes an exact reference VSF

solution. In the implementation, φref
v is obtained as a numerical VSF solution with high

grid resolution, so it is presumed to be accurate enough with good convergence and low
numerical dissipation. The isocontour values of ϕ and ϕref satisfy

∫

�

Hδ(φv = ϕ)dx =
∫

�

Hδ(φ
ref
v = ϕref)dx = Vφ . (15)

Thus, RV characterizes the normalized volume overlap ratio between the volumes within
the isosurfaces of the candidate VSF solution φv = ϕ and the reference VSF solution
φref
v = ϕref.
For example, Fig. 5 plots cross-sections of VSF solutions on the y–z slices at x = 3 and

tTG = 5.0 in the TG flow for Re = 400 with N = 128 (red for the VSF solution to be
tested) and N = 512 (blue for the reference VSF solution) along with their overlap region
(shaded), where Fig. 5c combines Fig. 5a and b. The isocontour value corresponds toV�/8
and the volume overlap ratio is RV = 0.44, where V� denotes the volume of the whole
computational domain.
The volume overlap ratio characterizes the time coherence of the vortex surface track-

ing based on VSF solutions. The best tracking performance has RV = 1. To balance
reasonably good time coherence and moderate computational cost, we propose a crite-
rion RV ≥ 0.5 for satisfactory performance of vortex surface tracking. Note that the VSF
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Fig. 5 Illustration of the volume overlap ratio based on the y–z slices of numerical VSF solutions at x = 3 and
tTG = 5.0 in the TG flow for Re = 400. The edge is the intersection of the VSF isosurface and the y–z plane

solution is closer to the reference one while the VSF grid resolution is more demanding
for larger RV .

4.3 Conservation of numerical VSF solutions

In practice, RV may be not available due to the lack of the reference VSF solution with high
grid resolution, so we need to find a surrogate metric to assess the Lagrangian tracking
performance of numerical VSF solutions. In the present VSF evolution, the VSF isosurface
is volume-preserving under the selection of isocontour levels in Eq. (10), but it can be
artificially distorted by the dissipative numerical regularization.
The distortion is related to the numerical dissipation, which can be quantified by

Rφ(t) ≡
√〈

φ2
v (t)

〉

√〈
φ2
v (t = 0)

〉 . (16)

Note that Rφ = 1 for the ideal vortex surface tracking based on Eq. (5). In similar front
tracking problems, such as in the level set method [29, 30], the conservation degree of the
numerical solution of the tracer scalar governed by the equation in the form of Eq. (5) is an
important metric to assess the tracking performance. Thus, we examine the correlation of
Rφ and RV to demonstrate that whether Rφ is suitable to characterize the vortex surface
tracking.
In the VSF calculations for the TG flow with Re = 400, we use the VSF solution with

N = 512 as the reference one, and collect RV and Rφ at different times and with dif-
ferent grid resolutions. Note that in order to avoid the grid resolution effect of velocity
field, we set the same number of grid points 5123 for DNS but different N for VSF cal-
culations. In Fig. 6, the data points on the same curve from right to left are obtained at
tTG = 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. In this time period, the TG flow has a transition to the
turbulent-like state. The isocontour values correspond to Vφ = V�/16 and V�/4.
We find that Rφ and RV are positively correlated, indicating the effectiveness of Rφ for

characterizing the surface tracking performance. Moreover, the correlation depends on
the grid resolution and the isocontour level. It is noted that the volume Vφ within the iso-
surface of φv = Cφ decreases with the increasing Cφ . For the same Rφ , RV increases with
N and Vφ . This suggests that the isosurface at a large isocontour level with small volume
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Fig. 6 Correlation of the data points of RV and Rφ in the TG flow for Re = 400. The symbols on the same
curve from right to left are obtained at tTG = 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. The region satisfying the tracking
criteria in Eq. (17) is shaded in light blue

tends to be significantly distorted on a coarse grid, so we still need to use a reasonably high
grid resolution and a suitable Cφ corresponding to a large enough volume for the assess-
ment. For N = 256, we observe that the criterion RV > 0.5 is satisfied for Rφ > 0.05, i.e.,
the corresponding data points are within the shaded region in Fig. 6.
As an illustrative example, we show the close-up view of VSF isosurfaces in the TG flow

for Re = 400 at tTG = 7.0 with N = 512, N = 128, and N = 64 in Fig. 7. We observe
two clear twisted vortex tubes from the reference numerical VSF solution with N = 512
and Rφ = 0.5624 in Fig. 7a. By contrast, the vortex tube is barely resolved for the low-
resolution VSF solution with N = 128 and Rφ = 0.0508 in Fig. 7b. Although some parts
are under-resolved, e.g., the very twisted part at the right end of the vortex tube in Fig. 7b,
the essential tube structure is still preserved with Rφ = 0.0508. On the other hand, the
vortex tube is not well resolved in Fig. 7c with N = 64 and Rφ = 0.0212.
Therefore, we propose the criteria

εφ < 0.05 and Rφ > 0.05 (17)

to quantify both the VSF deviation and Lagrangian tracking performance. The threshold
values are selected for the perturbed TG flow which has features of both turbulent and
transitional flows with large-scale coherent and small-scale turbulent flow structures.

Fig. 7 Comparison of isosurfaces of numerical VSF solutions in the closed-up view in the TG flow at tTG = 7.0
for Re = 400 with different N and Rφ
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5 Evolution of VSFs
5.1 Morphology of vortex surfaces

We compare the morphology and dynamics of vortex surfaces in the flows under dif-
ferent magnitudes of the HIT disturbance. Figure 9 depicts the VSF isosurfaces with
Vφ = V�/16 at two typical times t = 0.5 and 1.5 in cases M0, M1, and M2. The surfaces
are color-coded by |ω|. The selection of Vφ = V�/16 is based on the satisfactory Rφ in
Fig. 8 and the visualization effect of displaying fine-scale structures.
The transition from a smooth flow to a turbulent flow occurs around tTG = 4.5 ∼ 6.0 in

TG flows, or equivalently t = 0 ∼ 1.5 in case M0. This process under the TG symmetries
[21] has been elucidated by the evolutionary geometry and topology of VSF isosurfaces [6,
11]. Initially, the two blob-like vortex surfaces approach to each other. They are flattened
and then merged together around tTG = 4.5 or t = 0. As shown in Fig. 9a and b, the
edge of the merged structure rolls up into vortex tubes during t = 0 ∼ 1.5. At late times,
the tubes are tangled and twisted, constituting a turbulent-like flow. The VSF isosurface
reveals the Lagrangian-like continuous evolution of vortex surfaces, which has essential
differences from the visualization using Eulerian vortex criteria [5, 6] such asQ [9] and λ2
[10] criteria.
Next, we illustrate how the imposed HIT disturbance changes the evolution of vortex

surface during the transition in case M1 with ηM = 0.05 and in case M2 with ηM = 0.1.
First, the time evolution of εφ and Rφ in Fig. 8 indicates that the effective time period
for the vortex surface tracking is around t = 0.5 ∼ 1.5 based on the criteria in Eq. (17).
Compared with case M0, the imposed HIT disturbance in case M1 significantly wrinkles
the vortex surface and produces more small-scale vortex tubes at t = 0.5 in Fig. 9b, and
then some of the small-scale tubes are dissipated at t = 1.5 in Fig. 9e. On the other hand,
the large-scale TG coherent structures are similar in cases M0 and M1. For more intense
HIT disturbance in case M2, the vortex surface breaks down into a turbulent-like state
with the emergence of numerous small-scale vortex tubes in Fig. 9c and f. The large-
scale TG structures are barely distinguished, while the regions of very large local vorticity
magnitude remain due to the TG symmetries.
Figure 10 provides a close-up view of the continuous evolution of vortex surfaces to

reveal the local vortex dynamics, where the zoom-in region is marked by the black dashed

Fig. 8 Temporal evolution of εφ and Rφ in cases M1 and M2
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Fig. 9 Comparison of temporal evolutions of the VSF isosurface with Vφ = V�/16 in cases M0, M1, and M2.
The surfaces are color-coded by the vorticity magnitude

Fig. 10 Close-up view of the evolution of the VSF isosurface with Vφ = V�/16 in the region marked by the
black box in Fig. 9b in case M1 (ηM = 0.05). The color bar is the same as that in Fig. 9
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box in Fig. 9b. First, the perturbed vortex tube with large vorticity magnitude is wrinkled,
then it is persistently stretched and twisted to form a spiral vortex tube, as marked in
red boxes in Fig. 10a and f. By contrast, the wrinkled vortex surface with small vorticity
magnitude tends to be smoothed as marked in blue boxes in Fig. 10a and f. The locally
twisted spiral vortex tube reveals the important vortex core dynamics [31] in turbulent
flows. This vortex geometry is consistent with the strained spiral vortex model [16] for
small-scale turbulent structures, and supports the structure-based subgrid scale models
[32] for the large-eddy simulation.
We continue to zoom in the region in the red box in Fig. 10 to show the detailed

evolution of the twisted vortex tubes in Fig. 10. Besides the persistent twisting of vor-
tex tubes with high |ω|, we notice that the vortex tubes are intertwined with each other
in Fig. 11d,e,f. At the mean time, the twisted vortex tube is flattened into a ribbon-like
structure, suggesting a possible way for the reduction of the characteristic length scale.
For comparison, Fig. 12 shows the VSF isosurfaces in the same regions in Figs. 10 and

11 in cases M0 and M2. The VSF isosurfaces in case M0 in Fig. 12a and b have much
less wrinkling than those in case M1, and the surfaces in both the large and small |ω|
regions stay smooth. The VSF isosurfaces in case M2 in Fig. 12c and d show much more
wrinkled surfaces and chaotic small-scale structures with small |ω|. In particular, the
comparison of Fig. 12b and d shows that the large-scale vortex tube structure in case
M0 remains in case M2, and it consists of multiple small-scale, thread-like structures.
This observation supports the strained spiral vortex model [16, 33] in HIT. Moreover,
the geometric differences of vortex surfaces in the three cases and the time coherence at

Fig. 11 Further close-up view of the evolution of the VSF isosurface with Vφ = V�/16 in the region marked
by the red box in Fig. 10 in case M1 (ηM = 0.05). The color bar is the same as that in Fig. 9. Some vortex lines
are integrated from points on the surface
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Fig. 12 Close-up views of VSF isosurfaces within the same regions in Figs. 10 and 11 at t = 1.0 in cases M0 and
M2. The color bar is the same as that in Fig. 9. The VSF isosurfaces with |ω| < |ω|max/10 in (a) and (c) and with
|ω| < |ω|max/3 in (b) and (d) are cut off for clarity. Some vortex lines are integrated from points on the surface

different times (e.g., t = 0.5 and 1.5) are not well characterized in the isosurface of |ω|
(not shown).

5.2 Vortex surface distortion and local vorticity

From the visualization of VSF isosurfaces, the deformation of vortex surfaces tends to
occur near the strong vorticity region. The local geometry of VSF isosurfaces is quantified
by the mean curvature κ ≡ (∇ · n)/2 with n ≡ −∇φ/|∇φ|. As illustrated in Fig. 9, the
surface distortion at the same time for cases M0, M1, and M2 increases with ηM. The
geometric difference between the TG flow and the perturbed TG flows is characterized
by the volume-averaged mean curvature difference

�〈|κ(t)|〉 ≡ 〈|κM(t)|〉 − 〈|κTG(t)|〉 , (18)

where κM denotes the mean curvature in cases M1 or M2, and κTG denotes the mean
curvature in case M0.
Thus, we quantify the preferential deformation in cases M1 and M2 using the volume

averaged mean curvature difference conditioned on low and high vorticity regions 0 ≤
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|ω|/|ω|max ≤ 1/8 and 7/8 ≤ |ω|/|ω|max ≤ 1 in case M0, respectively, in Fig. 13. It is
clear that the surface distortion due to the HIT disturbance is enhanced within the high-
|ω| region with time, while it is mitigated within the low-|ω| region, consistent with the
observation in Fig. 10. This preferential surface distortion implies that the energy cascade
from large to small scales tends to occur in high-|ω| region.

6 Conclusions
We propose criteria of tracking vortex surfaces in complex flows. The criteria in Eq. (17)
involve not only the deviation εφ of the numerical VSF solution, characterizing the attach-
ment of vortex lines on VSF isosurfaces, but also the conservation ratio Rφ , characterizing
the Lagrangian-like tracking performance.
The new criterion on the numerical conservation is positively correlated to the volume

overlap ratio between the isosurfaces of the numerical and reference VSF solutions. This
criterion quantifies the error from the numerical artifact due to the nonuniqueness of
VSF solutions in the correction step of VSF calculation. The comprehensive assessment of
VSF solutions based on Eq. (17) provides a time range when the vortex surface tracking is
satisfactory for both the accuracy of the vortex surface definition and the time coherence
of the one-to-one flow map of VSF isosurfaces.
In order to assess the vortex tracking in chaotic but still coherent flow fields, we develop

a turbulent-like flow combining the large-scale coherent structures in the TG flow and
small-scale turbulent structures in HIT. TheHIT disturbance is added to the TG flow near
the TG transition time, which accelerates the transition to turbulence while preserves the
large-scale TG symmetries. In the flow evolution, the vortex tracking criteria are satisfied
within a finite period from t = 0.5 to 1.5 in cases M1 and M2 with HIT strengths ηM =
0.05 and 0.1.
From the evolution of vortex surfaces during the effective tracking period, we demon-

strate several local vortex dynamics. First, the imposed HIT disturbance significantly
wrinkles vortex surfaces and accelerates the rolling up of small-scale vortex tubes. Sec-
ond, the wrinkled vortex tube with large |ω| tends to be further twisted around the vortex

Fig. 13 Temporal evolution of the averaged mean curvature difference in cases M1 and M2 conditioned on
low- and high-|ω| regions
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axis under the self-induction, generating more small-scale structures and contributing to
the energy cascade. By contrast, the wrinkling is mitigated in the region with small |ω|.
In future work, the tracking criteria can be applied to more complex flows, such as

compressible turbulence [34], with more available computational resources. In particular,
the detailed and quantitative investigation on the relation between the scale cascade of
vortex surfaces and the energy cascade in spectral space is expected for high-Re HIT and
wall-bounded turbulent flows.

Appendix A: Effect of the numerical scheme on the vortex surface tracking
The numerical regularization for Eqs. (6) and (7) is implemented using a dissipative finite-
difference scheme for the convection term. For example, theWENO scheme is used in the
present study. This scheme can effectively suppress numerical oscillations [26], while it
may cause excessive numerical dissipation which reduces Rφ and weakens the time coher-
ence in the vortex surface tracking. Thus, we also test the eighth-order targeted essentially
nonoscillatory (TENO) scheme [35, 36], which is presumed to be less dissipative than
WENO, for discretizing the convection term. We apply the WENO and TENO schemes
to calculate the VSF in the TG flow for Re = 400 with different N and use the criteria in
Eq. (17) to assess the performance of the two schemes for tracking vortex surfaces. The
case parameters are listed in Table 2.
Compared with the WENO scheme, the TENO scheme has less numerical dissipation

while has milder suppression on numerical oscillations. Figure 14 plots the temporal evo-
lution of εφ and Rφ for the five TG cases. For the VSF deviation, both WENO and TENO
perform well. In general, they have typically εφ < 0.05 at tTG = 0 ∼ 6 with N ≥ 256, and
εφ for TENO is overall larger than that for WENO on the same grid. For the numerical
conservation, TENO outperforms WENO, even when we compare the results for TENO
on grid points N3 and WENO on grid points (2N)3.
By comparing VSF visualizations from WENO and TENO schemes on the low-

resolution grid with N = 128 in Fig. 15a and b, the TENO scheme clearly resolves the
rolling up of vortex tubes, as the same as that from the reference solution in Fig. 15c. By
contrast, the WENO scheme cannot resolve the vortex tube due to the excessive numer-
ical dissipation in large straining regions. On the other hand, the TENO scheme can
introduce more numerical oscillations in smooth regions and take more computational
time than the WENO on the same grid (not shown). Hence, we still use the WENO
scheme with a high enough grid resolution to calculate the VSF in the turbulent-like flows
for the overall performance.

Table 2 TG cases for testing numerical schemes

Case N Scheme

TG1 128 WENO

TG2 128 TENO

TG3 256 WENO

TG4 256 TENO

TG5 512 WENO
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Fig. 14 Temporal evolution of εφ and Rφ in cases TG1∼TG5 with different numerical schemes and grid
resolutions

Fig. 15 Comparison of the VSF isosurfaces in cases TG1, TG2, and TG5 with different numerical schemes and
grid resolutions. The color bar is the same as that in Fig. 9
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