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Abstract

In this work, we extend the characteristic-featured shock wave indicator based on
artificial neuron training to 3D high-speed flow simulation on unstructured meshes.
The extension is achieved through dimension splitting. This leads to that the proposed
indicator is capable of identifying regions of flow compression in any direction. With
this capability, the indicator is further developed to combine with h-adaptivity of mesh
refinement to improve resolution with less computational costs. The present indicator
provides an attractive alternative for constructing high-resolution, high-efficiency
shock-processing methods to simulate high-speed inviscid flows.

Keywords: High-order high-resolution method, Shock wave detector, H-adaptive
method, Transonic supersonic flow

1 Introduction
Recently, high-order, high-resolution schemes are widely used in computational fluid
dynamics for their strength in capturing detailed features of wave structures. Specially,
Discontinuous Galerkin (DG) methods [1–4] can treat wave propagation well due to its
upwind numerical flux which solves a Riemann problem arising from the discontinuous
representation of the solution at element interfaces. As compared to finite difference (FD)
and finite volume (FV) methods, DG schemes are easier to achieve high order and eas-
ier to handle complex boundaries on unstructured meshes. However, DG methods have
a higher probability of making solutions suffer from unphysical oscillations as compared
with low-order methods. The oscillations are produced by over-fitting shock wave dis-
continuities using high-order degrees of freedom (DoFs), and usually cause robustness
issues of simulating high-speed flows. In addition, DG is recognized as more expensive in
terms of computational costs for that it requires more DoFs to achieve the same accuracy
as compared to classical finite element (FE) methods.
To eliminate unphysical oscillations near shock/contact wave discontinuities and

improve robustness of DG methods on simulations of high-speed flows, a number of
shock-processing (correction) techniques are designed to correct high-moment DoFs
between spatial discretization and temporal discretization, such as limiting techniques
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[3, 5], solution reconstruction [6–8], and artificial diffusion [9–11]. However, the use
of correction techniques usually leads to inefficiencies of numerical schemes or even
deterioration of accuracy. Therefore, it is necessary to employ a troubled-cell or shock
wave indicator to guide accurate application of correction techniques. There are several
practical troubled-cell indicators, such as the classical Total Variation Bounded (TVB)
based indicator [3], KXRCF shock detector [12], Harten’s troubled-cell indicator [13],
the posteriori subcell-based indicator in [14], and a simple indicator in [15]. There are
still very recent Artificial Neural Network (ANN) based troubled-cell indicators in [16–
18] to improve the accuracy of discontinuity capturing. However, these indicators men-
tioned above mainly detect troubled-cells based on the posteriori errors of numerical
oscillations, usually cannot theoretically avoid detecting noise such as wrongly marked
extremums, and part of them need increased computational costs to evaluate their values.
In our recent work, we employ an Artificial Neuron (AN) with characteristic-

compression-imbedded data to propose a characteristic-featured shock wave indicator.
The resultant indicator is concise, compact and explicable, andwe have proved in [19] that
its output can measure the compression of characteristic curves, which evolve into shock
wave discontinuities. The indicator has been extended to 2D unstructured meshes and its
performance combined with various correction techniques was presented in [20]. In this
work, we develop this indicator to 3D unstructured meshes via dimension by dimension.
This extension technique makes the present indicator capable of detecting compressible
waves in any direction. Such a feature enables the present indicator to work closely with h-
adaptivity of mesh refinement to further improve resolution and efficiency of simulation
of high-speed inviscid flows.
The rest of the paper is arranged as follows. In Section 2, we briefly introduce the

governing equations, spatial Discontinuous Galerkin (DG) discretization, temporal dis-
cretization and correction techniques including artificial viscosity. The description of the
characteristic-featured shock wave indicator, development on 3D unstructured meshes,
and some corresponding properties are presented in Section 3. Mesh refinement strat-
egy based on the present shock wave indicator is presented in Section 4. Numerical
experiments are provided in Section 5 to show the performance of the present indicator
combined with various correction techniques andmesh refinement onmulti-dimensional
unstructured meshes. We make a few conclusions in Section 6.

2 Numerical scheme framework
2.1 Governing equations

We consider a multi-dimensional conservation law

∂U
∂t

+ ∇ · F(U) = 0, (1)

where U ∈ Rm is the vector of conserved variable and F(U) = (Fd(U)) ∈ Rm × Rd.m, d
represent the dimension of conserved vector and spatial space, respectively.
In this work, we focus on the Euler equations, where the conservative variable vector U

and the advection flux vector F(U) in 3D space are
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U =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ

ρu1
ρu2
ρu3
E

⎞
⎟⎟⎟⎟⎟⎟⎠
, F1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρu1
ρu21 + p
ρu1u2
ρu1u3

u1(E + p)

⎞
⎟⎟⎟⎟⎟⎟⎠
, F2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρu2
ρu1u2

ρu22 + p
ρu2u3

u2(E + p)

⎞
⎟⎟⎟⎟⎟⎟⎠
, F3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρu3
ρu1u3
ρu2u3

ρu23 + p
u3(E + p)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(2)

here ρ, p, E denote the density, pressure, and total energy of the fluid, respectively. u =
(u1,u2,u3) is the velocity vector of the flow in the coordinate direction. The pressure can
be computed from the equation of state

p = (γ − 1)
(
E − 1

2
ρu2j

)
(3)

Here, γ = Cp/CV denotes the ratio of specific heats. We set γ = 1.4 for all the test
cases in this work.

2.2 General DG formulation

The Discontinuous Galerkin (DG) scheme is used to discretize the weak form of the
governing Eq. (1) over the domain �

∫
�

∂U
∂t

φ d� +
∫

�

Fd · nd φ d� −
∫

�

Fd · ∇φ d� = 0, (4)

where �(= ∂�) denotes the boundary of � and nd is the unit outward normal vector
to the interface boundary. We assume that the domain is subdivided into a collection of
non-overlapping elements �e. We introduce the following broken space of vector-values
polynomials with a degree of p

Vp
h = {v ∈ L2(�) : v|�e ∈ Pp(�e)}. (5)

Provided the basis functions {φe
i (x)} of Vp

h, the local numerical solution Uh on �e can be
computed by the basis function

Uh(x, tn) =
p∑

i=1
Un
i · φe

i (x). (6)

The Taylor basis functions [21] are used in this work. For sake of simplicity, let us
consider a quadratic polynomial solution Uh in 3D space which is expressed as

Uh =Ū φ0(x) + ∂U
∂x

|c�x φ1(x) + ∂U
∂y

|c�y φ2(x) + ∂U
∂z

|c�z φ3(x)

+ ∂2U
∂x2

|c�x2 φ4(x) + ∂2U
∂y2

|c�y2 φ5(x) + ∂2U
∂z2

|c�z2 φ6(x)

+ ∂2U
∂x∂y

|c�x�y φ7(x) + ∂2U
∂y∂z

|c�y�z φ8(x) + ∂2U
∂z∂x

|c�x�z φ9(x),

(7)
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with

φ0(x) = 1, φ1(x) = x − xc
�x

, φ2(x) = y − yc
�y

, φ3(x) = z − zc
�z

φ4(x) = (x − xc)2

2�x2
− 1

|�e|
∫

�e

(x − xc)2

2�x2
d�,

φ5(x) = (y − yc)2

2�y2
− 1

|�e|
∫

�e

(y − yc)2

2�y2
d�,

φ6(x) = (z − zc)2

2�z2
− 1

|�e|
∫

�e

(z − zc)2

2�z2
d�,

φ7(x) = (x − xc)(y − yc)
�x�y

− 1
|�e|

∫
�e

(x − xc)(y − yc)
�x�y

d�,

φ8(x) = (y − yc)(z − zc)
�y�z

− 1
|�e|

∫
�e

(y − yc)(z − zc)
�y�z

d�,

φ9(x) = (x − xc)(z − zc)
�x�z

− 1
|�e|

∫
�e

(x − xc)(z − zc)
�x�z

d�,

(8)

where �x = 0.5(xmax − xmin), �y = 0.5(ymax − ymin), �z = 0.5(zmax − zmin), and
(xc, yc, zc) is the centroid of the element �e.
Replacing test function φ in (4) by elemental basis function φe

i (x), we can obtain the
semi-discrete form by applying weak formulation on each element �e,

d
dt

∫
�e

Uhφ
e
i d� +

∫
�e

F̂d(U−
h ,U

+
h ;nd)φ

e
i d� −

∫
�e

Fd(Uh) · ∇φe
i d� = 0, (9)

where i is the index of polynomial basis on each element �e, F̂d is a consistent numerical
flux.

2.3 Temporal discretization

The spatial discretization (9) leads to a system of ordinary differential equations,

M
dU
dt

+ R(U) = 0, (10)

whereM denotes the mass matrix,U is the solution vector, and R(U) is the residual vector
with the form of

M =
(
(φe

i ,φe
j )�e

)
, Uh = U · (φe

1,φ
e
2, ..,φ

e
9)e loops

R(U) =
∫

�e
F̂d φe

i d� −
∫

�e
Fd(Uh) · ∇φe

i d�
(11)

A high-order and stable explicit temporal discretization SSP-RK3 [22] scheme is applied
to treat unsteady problems. This work focuses more on steady problems, in order to speed
up the convergence and improve the stability of simulation for steady problems, implicit
temporal discretization is presented in this work. Using Euler implicit time-integration,
the spatial discretized Eq. (9) can be linearized in the temporal direction and written as

M
�Un

�t
+ R(Un+1) = 0

⇐⇒M
�Un

�t
+ R(Un) + (

∂R
∂U

)n�Un = 0

⇐⇒(
M
�t

I + (
∂R
∂U

)n)�Un = −R(Un),

(12)
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where ∂R
∂U is the Jacobian matrix, �t is the time increment, and �Un = Un+1 − Un is the

solution difference between time level n and n+1. This system of linear equations at each
time step is solved by the GMRES method with a LU-SGS preconditioner [23].

2.4 Correction techniques

As mentioned in the introduction, there are a number of correction techniques to treat
shock wave discontinuities. For example, we employ the Barth-Jespersen limiter [24] in an
explicit temporal scheme to treat unsteady problems in [20], and employ the artificial vis-
cosity with strong-residual term in an implicit temporal scheme to treat steady problems.
Here, we describe artificial viscosity in details.
The artificial viscosity technique can treat shock waves through adding an adaptive arti-

ficial viscosity term to bring parabolic properties into hyperbolic conservation laws (1)
to smear the shock wave discontinuities. Thus, the semi-DG scheme is modified into

d
dt

∫
�e

Uhφ
i
e d� +

∫
�e

F̂k(U−
h , U

+
h ;nk)φ

i
ed� −

∫
�e

Fk(Uh) · ∇φi
e d�

+ εe

∫
�e

∇Uh · ∇φi
e d� = 0.

(13)

Parameter εe in this work is a Hartmann-type coefficient of strong residual

εe =Cεh2−β
e

∫
�e

|∇ · F(uh)| d�

|�e| , (14)

where Cε and β are problem and mesh dependent parameters which are usually set to
0.0001 − 0.01, 0.01 − 0.5, respectively.

3 The characteristic-featured shock wave indicator
In our recent work [19, 20], we proposed a characteristic-featured indicator based on
training an artificial neuron (AN) to detect shock wave discontinuities.We firstly describe
the indicator on 1D mesh, next develop the shock wave indicator on 3D unstructured
meshes, then show some properties of the present indicator, and finally provide its
application prospects as a shock wave indicator.

3.1 Indicator on 1Dmesh

For 1D scalar conservation laws
∂u
∂t

+ ∂f (u)

∂x
= 0,

we consider a numerical solution uh(x, t) on a perturbed mesh, he denotes the mesh-
size of element Ie, ūe = 1

he
∫
Ie uh(x, t)dx is the cell-avaerge of variable u inside Ie. The

characteristic-featured shock wave indicator through training an artificial neuron (AN)
[20] using the information of neighbours (Ie−1, Ie, Ie+1) is presented as follows,

õute(λ̄L, λ̄R; he−1, he, he+1) = 1
1 + e−W (λ̄L−λ̄R)+M1(he−1+he+he+1)+M2

. (15)

Here,W = 10,M1 = 4,M2 = 1, and λ̄L, λ̄R are the left and right side weighted averages
of eigenvalue λ(u) = f ′(u) which are convex combinations of cell-averages λ̄e−1, λ̄e and
λ̄e+1, λ̄e, respectively (Refer to Fig. 1), in [20], λ̄L, λ̄R are set to integral-averages

{
λ̄L = he−1

he−1+he · λ̄e−1 + he
he−1+he · λ̄e

λ̄R = he+1
he+1+he · λ̄e+1 + he

he+1+he · λ̄e.
(16)
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Fig. 1 Geometry information for 1D scalar indicating

In practice, we foundM1 in (15) is not sensitive to the convergence of AN.We retrain an
AN with 3 arguments λ̄L, λ̄R, hM (hM := max {he−1, he, he+1}) and without hidden layer,
and the AN convergents as well and maintains a similar working mechanism. In order to
make the indicator more concise, we adopt a model with less input arguments and keep
most coefficients in (15) unchanged. The expression of the modified shock wave indicator
is present as follows,

õute(λ̄L, λ̄R; hM) = 1
1 + e−W (λ̄L−λ̄R)+M1hM+M2

. (17)

Here, W = 10,M2 = 1 keep unchanged, M1 = 12, λ̄L, λ̄R are defined by (16) and
hM = max {he−1, he, he+1} is the local maximummesh-size. We drop the subscript "M" in
the following text for convenience.
In [19], we have proved that the output of indicator (17) measures the admissible jump

values of eigenvalues, the greater the value of λ̄L − λ̄R is, the stronger the admissible
jump is (a big admissible jump value implies characteristic compressing and leads to the
development of a shock wave), at the same time the output of the indicator (17) is closer
to 1.

3.2 Extension to system

For 1D system of conservation laws (1), the indicator is extended by characteristic field
splitting, that is to apply the scalar indicator (17) to each genuinely nonlinear character-
istic field to detect the compressing or intersection of characteristic curves (refer to [25]).
The expression is presented as follows,

ôute = maxi
{
õute(λ̄i,L, λ̄i,R; h)

}
. (18)

Here, λ̄i,L, λ̄i,R are the left and right side-weighted cell-averages of eigenvalue λi of i-th
genuinely nonlinear characteristic field, respectively, and õute(λ̄i,L, λ̄i,R; h) is defined in
(17). Especially, for the 1D Euler equations, the indicator (18) becomes

ôute = max
{
õute( (ū − ā)L, (ū − ā)R; h); õute( (ū + ā)L, (ū + ā)R; h)

}
. (19)

where a =
√

γ p
ρ

represents the speed of sound. It should be noted that the contact dis-
continuity can be detected with the indicator (19), because there is always an admissible
jump occurring to the 1- or 3- eigenvalues across the 2-contact discontinuity.
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3.3 Development on 3D unstructuredmeshes

The indicator (17) is extended to 3D unstructured grids through dimension splitting, that
is to construct side-weighted averages of eigenvalue λ̄ on each dimension, and then apply
(17) in each spatial dimension to accomplish the indication. Note that compression of
characteristic cones in any direction results in compression of the characteristic curves
projected onto the x or y or z-direction. Therefore, multi-dimensional indicator through
dimension splitting can capture shock discontinuities aligned to any directions, although
it is only applied along x, y and z-directions.
Thus, careful evaluation of the weights of neighbours to construct λ̄ becomes crucial

to avoid the influence of mesh shape and mesh size. Here, we present a relatively simple
construction method shown in our recent work [20].
We set the 3D Euler equations on the following mesh (refer to Fig. 2) as an example to

show the extension procedure. Firstly, we present the following notation to be used,
�1,�2,�3 are the neighbours of �0, bk = (xk , yk , zk) is the centroid of �k , |�k| rep-

resents the volume of �k , Ak represents the volume ratio with the form of |�k ||�0|+|�k | ,
nk = (nkx, nky, nkz) represents the unit vector of centroid connection vector b0bk|b0bk | , λ�k

represents cell-averages of eigenvalues in�k in the x, y, z direction, λ = u1±a,u2±a,u3±
a.
Based on the methods shown in [20], in order to construct side-weighted averages of

eigenvalue λ̄ and reduce the influence of mesh shape and mesh size, we need to solve
two key issues, (a) one is how to select the left or right side element of �0 on each spa-
tial dimension among all neighbours, such as right-side element of �0 in the z-direction
(named as top-side element); (b) the other is how to select the “weight” for each side-
element, such as how to evaluate the weights for each top-side element when constructing
weighted average λ̄T . The procedure of constructing side-weighted averages λ̄ on each
spatial dimension is presented as follows.

Fig. 2 Geometry information for 3D Euler indicating on unstructured grids
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Step-1: Selection of left, right side-element on each dimension. The direction of nk
is used to determine the position of �k to �0. �k is recorded as the backward element of
�0 if nkx < 0, similarly,

�k is left side element if nky < 0

�k is bottom side element if nkz < 0.

For example, refer to Fig. 2, �1 is marked as a forward element in the x-direction, a
left-side element in the y-direction, and a top-side element in the z-direction.
Step-2: Evaluation of weights of each side-element. As the position of �k to �0 on

each dimension is determined, the next is to evaluate the weights that λ�k contributes for
constructing side-weighted averages λ̄ on each dimension. The weights are products of
two parts, the direction weight and the size weight,
(a) direction weight. The direction weight represents the contribution of �k on each

spatial dimension, for n2kx + n2ky + n2kz = 1, the greater n2kx is, the more contribution �k
makes in the x-direction, while the less contribution�k makes in the y, z direction. There-
fore, n2kx is selected as the direction weight for constructing backward-weighted average
λ̄b or forward-weighted average λ̄f , and n2ky, n

2
kz are selected as the direction weight for

constructing λ̄L or λ̄R, λ̄B or λ̄T , respectively.
(b) size weight. The mesh size needs to be considered as another factor for weights

evaluating. The greater the volume |�k| is, the more contribution �k makes on each
dimension. Therefore, we set the volume ratio Ak = |�k ||�0|+|�k | as the size weight for
constructing λ̄ on each dimension.
Based on Step-2 and refer to Fig. 2, we can construct the forward-weighted average λ̄

f
�1

contributed by �1, which is a convex combination of λ̄�1 and λ̄�0 ,

λ̄
f
�1

= wf
1λ̄�1 + wf

0λ̄�0 (wf
0 + wf

1 = 1),

w̃f
1 = (n21x) · (A1), w̃f

0 = (1 − n21x) · (1 − A1),

wf
1 = w̃f

1/(w̃
f
1 + w̃f

0), wf
0 = 1 − wf

1.

(20)

where n21x is the direction weight and A1 is the size weight for �1 in the x-direction, wf
1 is

normalized weight combined by both direction and size weights.
Similarly, we have

λ̄L�1 = w̃L
0

w̃L
1 + w̃L

0
λ̄�0 + w̃L

1
w̃L
1 + w̃L

0
λ̄�1 with w̃L

1 = n21y · A1, w̃T
0 = (1 − n21y) · (1 − A1)

λ̄T�1 = w̃T
0

w̃T
1 + w̃T

0
λ̄�0 + w̃T

1
w̃T
1 + w̃T

0
λ̄�1 with w̃T

1 = n21z · A1, w̃T
0 = (1 − n21z) · (1 − A1).

(21)

At last, we assume all the same side-elements on each spatial dimension have an equiva-
lent opportunity to contribute to the construction of side-weighted averages. For example,
refer to Fig. 2, only �1 is determined as a left-side element in the y-direction, both �1 and
�2 are determined as top-side elements in the z-direction, thus we have

λ̄L = λ̄L�1 , λ̄T = 1
2
(λ̄R�1 + λ̄R�2). (22)

In addition, we define the characteristic mesh-size hx, hy, hz to be used as follows,

hx = max {|xk − x0|} , hy = max
{|yk − y0|

}
, hz = max {|zk − z0|} . (23)
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According to the steps above and combined with formulae (20), (21) and (22), side-
weighted averages of eigenvalue λ̄b, λ̄f , λ̄L, λ̄R, λ̄B, λ̄T can be constructed easily. Replacing
h in (17) by hx in the x-direction, hy in the y-direction, hz in the z-direction, and λ̄L, λ̄R
in (17) by λ̄b, λ̄f in the x-direction, λ̄L, λ̄R in the y-direction, and λ̄B, λ̄T in the z-direction,
we can obtain a concise and generalized characteristic-based shock wave indicator on
unstructured grids as follows,

ôut3De = max
{
ôute(λ̄b, λ̄f ; hx), ôute(λ̄L, λ̄R; hy), ôute(λ̄B, λ̄T ; hz)

}
. (24)

Here, ôute is the indicator for system equations (18), λ̄b, λ̄f , λ̄L, λ̄R, λ̄B, λ̄T are defined by
(20), (21), (22).
(24) is used as the shock wave indicator in this work. Based on statements in Section 3.1 ,

we can conclude that (24) can detect shock wave discontinuities caused by compressing or
intersecting of characteristic. Especially it can detect contact waves in the Euler equations.

3.4 Indicating procedure based on the present indicator

We present two approaches to detect troubled-cells having shock wave discontinuities
based on the present indicator (24) on arbitrary grids. One is to flag cells by a critical
value s, that is

{
ôut3De ≥ s =⇒ �e is flagged as a troubled cell.
ôut3De < s =⇒ �e is not treated.

(25)

The parameter s is set to 0.5, while s can be set smaller for identifying weaker admissible
jump strength. This approach is suitable to be combined with TVB or WENO limiting
techniques when using explicit temporal schemes to simulate unsteady flows.
The other is to flag cells with a fixed fraction θ . Only the top θ fraction of elements with

output of (24) is flagged. This approach is suitable to be applied with artificial viscosity
in implicit temporal schemes to treat steady flows, and suitable to be applied in adaptive
mesh-refinement strategies as well. This use will be described in the next section.

4 Mesh adaptivemethod
Adaptive methods provide an attractive alternative for reducing computational costs of
DG schemes. Appropriate adaptive methods are able to focus computational resources
on needed regions to further capture the detailed features of wave structures (such as
shock and contact waves, vortex) and avoid the additional increase in computational costs
caused by global mesh refinement or global order enrichment.
The essence of adaptive methods is how to flag elements which need focusing on. As

mentioned in the last section, the indicator (24) is able to measure the compressing of
characteristics. This feature results in the indicator being naturally suitable as a special
error estimator which measures the unidirectional variation of eigenvalues to capture
specific wave structure such as shock, contact wave and vortex through detecting the
compressing of characteristics.
There are two strategies for mesh refinement once the local error estimator is deter-

mined. One is adaptively refining the mesh with a fixed fraction (each time only the top
or bottom fixed percent of mesh is refined or coarsened); the other is refining the mesh
with a fixed number (each time only a fixed number of mesh is refined or coarsened). In
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this work we select the former strategy based on the following error estimator for mesh
(quadrilateral grid) refinement,

ηe := maxd
{
ôutde (λ̄L,d, λ̄R,d ; hd)

}
. (26)

Here, the subscript d denotes the dimension of space, ôutde is the 1D indicator (17),
λ̄L,d , λ̄R,d are side-weighted averages of eigenvalues in the d-direction defined by (20), (21),
(22), and hd is the local characteristic mesh-size in the d-direction defined in (23).
The whole adaptive algorithm based on the above error estimator (26) can be briefly

summarized in Algorithm 1 as follows:

Algorithm 1 algorithm of h-adaption DG method
Data: Mesh G0; Initial solution U0; Refinement fraction θ ; MaxRefineCycle.
Initialize: solution U(−1)

h ; k = 0;
while (k i MaxRefineCycle) do

step-1: Compute convergent solution U(k)
h initialized by U(k−1)

h under mesh Gk ;
step-2: Evaluate error estimator ηe on each element �e;
step-3: Flag the top θ-fraction elements with values of ηe;
step-4: Implement mesh refinement or coarsening inside the flagged cell, obtain new
mesh Gk+1.
step-5: Transfer solution to the new mesh Gk+1, obtain U(k+1)

h ;
step-6: k ← k+1.

end while
return Final results Uh.

The performance of the proposed adaptive method is presented and discussed in
Section 5.

5 Numerical results
We now provide the performance of the present indicator (24) as employed to detect
shock waves on multi-dimensional meshes. All the test cases presented in this section are
governed by the Euler equations and discretized by the DG spatial discretization and the
local Lax-Friedrichs type numerical flux.

5.1 2D test cases

5.1.1 2D Riemann problem

We first test the present indicator on a 2D unstructured mesh (S- 1
400 ) to treat unsteady

problems. The computational domain is [−0.5, 0.5]×[−0.5, 0.5], S- 1
400 mesh is obtained

by a 400×400 structured quadrilateral mesh (mesh-size is 1
400 ), and diving each quadrilat-

eral element into two triangles. We apply the present indicator with a fixed value (s = 0.5)
and combined with the Barth-Jespersen limiter in an explicit temporal scheme to solve a
2D Riemann problem with the following initial conditions,

(ρ, u, v, p)0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.5, 0, 0, 1.5), if x > 0, y > 0,
(0.5323, 1.206, 0, 0.3) if x < 0, y > 0,
(0.138, 1.206, 1.206, 0.029) if x < 0, y < 0,
(0.5323, 0, 1.206, 0.3) if x > 0, y < 0,
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Fig. 3 Solutions (density) of the Riemann problem case for the 2D Euler equations with various indicators
with S − 1

400 grid at T=0.3 under RKDG(p2) framework

We simulate the results till T = 0.3 under SSP-RKDG(p2) framework, and TVB-
based indicators are presented for comparison. TVB-based indicators are sensitive to the
parameter M, and the following TVB-3 indicator denotes the TVB-based indicator with
M = 1000 (refer to [20] for details of TVB-based indicators). The results obtained by
different indicators are shown in Fig. 3. The results for this problem show a significant
improvement with the present indicator, which leads to a better shock and contact wave
resolution in the zoomed regions in Fig. 4. Furthermore, the results in Fig. 5 show the
present indicator marks thinner shock and contact waves regions and fewer noises as
observed in the central regions.
Readers can refer to [20] for more unsteady test cases.

5.1.2 2D steady flow

We now employ the present indicator on 2D unstructured meshes to treat steady
problems. We apply the present indicator with a fixed fraction (θ = 0.05) and combined

Fig. 4 Zoomed solution of the Riemann problem case for 2D Euler equations with S − 1
400 grid at T=0.3

under RKDG(p2) framework
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Fig. 5 Troubled-cells flagged by various indicators in the Riemann problem case for 2D Euler equations with
S − 1

400 grid at T=0.3 under RKDG(p2) framework

with the artificial viscosity in an implicit temporal scheme to simulate a transonic invis-
cid flow (Ma = 0.8,α = 1.25◦) around the NACA0012 airfoil. A rather fine mesh is used
as shown in Fig. 6, DG(p2) discretization is used in spatial direction, Cε and β in artificial
viscosity (AV) term are set to 0.01 and 0.01, respectively. The convergent solution flow
(density) is obtained by the present indicator (24), as presented in Fig. 7.(a), and the out-
put values of the present indicator are presented in Fig. 7.(b). One can observe from these

Fig. 6 A fine mesh for NACA0012 test case in the 2D Euler equations
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Fig. 7 Solution (density) and indicator in NACA0012 test case withMa = 0.8, α = 1.25◦ in the 2D Euler
equations on refined grids

results that the present indicator can detect the shock regions with high resolution and
low noise. Besides, to illustrate the present indicator can lead to a stably convergent status
and maintain physics properties well, residual convergence history in Fig. 8 and pressure
coefficient distributions on the surface of the airfoil as compared with experiment data
from [26] in Fig. 9 are provided below as well,

Fig. 8 Residual convergence history of the transonic flow over NACA0012 airfoil
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Fig. 9 Pressure coefficient distributions on the surface of the NACA0012 airfoil

Fig. 10 Mesh for M6 wing test case in the 3D Euler equations
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Fig. 11 Solution (density) and indicator in M6 wing test case withMa = 0.84, α = 3.06◦ in the 3D Euler
equations

In addition, indication with a fixed fraction performs efficiently as combined with arti-
ficial viscosity to treat high-speed steady flows. Readers can refer to [20] for efficiency
comparison and more results.

5.2 3D test cases

This part is to extend the present indicator to 3D test cases and observe its performance
when applied to treat steady flows.

Fig. 12 Residual convergence history of the transonic flow over M6 wing
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Fig. 13 Chordwise pressure distributions at several spanwise stations on M6 wing

5.2.1 Inviscid flow atMa=0.8395, α = 3.06◦ around the OneraM6wings

We use a mesh file (Tetrahedral mesh with 621508 elements) as shown in Fig. 10, DG(p2)
discretization is used in spatial direction, Cε and β in AV term are set to 0.1 and 0.01,
respectively . The convergent solution flow (density) is obtained by the present indicator
(24) with a fixed fraction of 0.05, as presented in Fig. 11.(a), and the output values of the
present unstructured indicator are presented in Fig. 11.(b). Residual convergence history
in Fig. 12 and chordwise pressure distributions at several spanwise stations on M6 wing
as compared with experiment data from [27] in Fig. 13 are provided as follows.

5.2.2 Inviscid flow atMa=0.75, α = 0◦ around the DLR-F4 body
We use a mesh file (Tetrahedral mesh with 550362 elements) as shown in Fig. 14,
DG(p2) discretization is used in spatial direction, Cε and β in AV term are set to 0.01

Fig. 14 Mesh for DLR-F4 body test case in the 3D Euler equations
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Fig. 15 Solution (density) and indicator in DLR-F4 body test case

and 0.2, respectively. The convergent solution flow (density) is obtained by the present
indicator (24) with a fixed fraction of 0.05, as presented in Fig. 15.(a), and the out-
put values of the present unstructured indicator are presented in Fig. 15.(b). Residual
convergence history in Fig. 16 and chordwise pressure distributions at several span-
wise stations on DLR-F4 body as compared with three groups of experiment data

Fig. 16 Residual convergence history of the transonic flow over DLR-F4 body
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Fig. 17 Chordwise pressure distributions at several spanwise stations on DLR-F4 body

in Fig. 17 are provided as follows. Figure 17 shows the comparative results with
experiment data. From results from CART3D and CFL3D shown in [28], we infer
that the present methods by solving RANS equations or LES can obtain more per-
fect agreement with experimental results, which can be further developed in the
future.

Fig. 18 Initial mesh and solution (density) of the transonic flow around the NACA0012 airfoil under DG(p2)
framework
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From these two cases, one can observe the present indicator can not only detect the
shock/compressing waves, but also identify the regions where characteristics compress
much, such as the regions near the head and tail of the wing, which are regions that usually
cause issues of convergence. As a result, employment of the present indicator in 3D can
detect shock and compressing regions accurately, further leading to a stably convergent
process and reduced computational costs in a steady problem.

5.3 Mesh adaptive refinement

The proposed h-adaptive method in Section 4 has been successfully applied to 2D test
cases. Here, we present a simple case of transonic flow around NACA0012 airfoil to show
its strength in terms of improving resolution with apparently reduced computational
costs.
The initial mesh is rather coarse and is shown in Fig. 18.(a), and the initial solution (den-

sity) with low-resolution and the output of indicator are presented in Fig. 18.(b)(c). After
3 times of mesh refinement (θ=0.05), one can observe a significant improvement in terms
of resolution in result (density), shown in Fig. 19.(b), and the reason can be explained
from that the proposed error estimator (26) can capture shocks accurately (Fig. 19.(c))

Fig. 19 Final results of the transonic flow around the NACA0012 airfoil after 3 times of mesh refinement with
θ = 0.05
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and guide the computational resources (more refined mesh) focusing on the shock and
compressing regions (Fig. 19.(c)).

6 Conclusion
We described a characteristic-featured shock wave indicator for system of conserva-
tion laws and developed it on 3D unstructured meshes. The present indicator has been
successfully applied as a local error estimator in h-adaptive (mesh refinement) method to
further improve resolution with less computational costs.
The numerical results demonstrated that the present indicator has excellent and robust

performance on shock wave detecting in different problems. It detects shock, contact
waves with low noise and high efficiency, provides an attractive alternative as an error esti-
mator to combine with h-adaptive method to design high-resolution and high-efficiency
schemes.
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