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Abstract

In this paper, we extend the unified gas-kinetic wave-particle (UGKWP) methods to the
multi-species gas mixture and multiscale plasma transport. The construction of the
scheme is based on the direct modeling on the mesh size and time step scales, and the
local cell’s Knudsen number determines the flow physics. The proposed scheme has
the multiscale and asymptotic complexity diminishing properties. The multiscale
property means that according to the cell’s Knudsen number the scheme can capture
the non-equilibrium flow physics when the cell size is on the kinetic mean free path
scale, and preserve the asymptotic Euler, Navier-Stokes, and magnetohydrodynamics
(MHD) when the cell size is on the hydrodynamic scale and is much larger than the
particle mean free path. The asymptotic complexity diminishing property means that
the total degrees of freedom of the scheme reduce automatically with the decreasing
of the cell’s Knudsen number. In the continuum regime, the scheme automatically
degenerates from a kinetic solver to a hydrodynamic solver. In the UGKWP, the
evolution of microscopic velocity distribution is coupled with the evolution of
macroscopic variables, and the particle evolution as well as the macroscopic fluxes is
modeled from a time accumulating solution of kinetic scale particle transport and
collision up to a time step scale. For plasma transport, the current scheme provides a
smooth transition from particle-in-cell (PIC) method in the rarefied regime to the
magnetohydrodynamic solver in the continuum regime. In the continuum limit, the
cell size and time step of the UGKWP method are not restricted by the particle mean
free path and mean collision time. In the highly magnetized regime, the cell size and
time step are not restricted by the Debye length and plasma cyclotron period. The
multiscale and asymptotic complexity diminishing properties of the scheme are
verified by numerical tests in multiple flow regimes.
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1 Introduction
Gas mixture and plasma widely exit in the universe and are extensively applied in the
industry of aerospace, chemical, and nuclear engineering. Both gas mixture and plasma
transport have multiscale nature. For the gas mixture, the flow regime varies from rar-
efied to continuum regimes according to the Knudsen number. In the rarefied regime,
the fundamental governing equation is the multi-species Boltzmann equation [1], which
resolves the flow physics on the particle mean free path and mean collision time scales.
The complex five-fold integral collision operator of the Boltzmann equation makes
both mathematical analysis and numerical simulation difficult. Therefore, many kinetic
models have been proposed. For example, the McCormack model [2] linearizes the non-
linear collision term with the assumption for the distribution function to slightly deviate
from equilibrium. The collision term of Andries-Aoki-Perthame (AAP) model [3] is
approximated by a single relaxation term. Other modified models attempt to recover cor-
rect transport coefficients [4, 5]. Although the kinetic equation resolves kinetic scale flow
physics, the high dimension of the equation makes the computations expensive in practi-
cal 3D engineering applications. On the other hand, the hydrodynamic model, namely the
Euler or Navier-Stokes (NS) equations, is mostly used in the continuum flow regime. For
the plasma transport, the flow physics becomes more complicated. The plasma regime
varies not only from rarefied to continuum regimes according to the Knudsen number, but
also from the two-fluid to magnetohydrodynamic (MHD) regimes according to the nor-
malized Larmor radius and Debye length. In the rarefied flow regime with large Knudsen
number, the plasma physics is described by the kinetic Fokker-Planck-Landau equation
coupled with the Maxwell equation [6]. In the hydrodynamic regime at small Knudsen
number, the two-fluid hydrodynamic system coupled withMaxwell equation can describe
the plasma dynamics in an effective way, which takes into account the Hall effect, electron
inertia effect, and resistive effect, etc. [7]. In the highly magnetized flow regime where
the normalized Larmor radius approaches zero and Debye length is on the order of the
reciprocal of the speed of light, a single fluid ideal MHD can be used to describe the
large scale plasma physics [8]. For both multiscale gas mixture and plasma transport, the
hydrodynamic descriptions are more effective, but limited in the continuum flow regime;
while the kinetic models capture kinetic scale physics, but have complex form and high
dimensionality. Therefore, in order to capture flow physics in different regimes in a cor-
responding most efficient way, the construction of multiscale method for gas mixture and
plasma transport is highly demanded.
In general, the numerical methods for gas mixture and plasma transport can be catego-

rized into the deterministic and stochastic methods. The deterministic discrete ordinate
method (DVM) has great advantages in the simulation of low speed and small temper-
ature variation flow due to the absence of statistical noise [9]. In the past decade, many
deterministic numerical methods have been developed for multi-species gas mixture
[10–14], as well as plasma transport [15–18]. On the other hand, when dealing with the
high speed and 3D flow, the stochastic particle method shows great advantages in terms
of memory reduction and computation efficiency. The direct simulation Monte Carlo
(DSMC) method has been extended to gas mixture and chemical reaction [19]. For the
simulation of plasma transport, the particle-in-cell (PIC) method has been developed and
widely applied in industry [20]. For the traditional DVM, DSMC, and PIC methods, the
numerical cell size is usually required to be less than the particle mean free path and the
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Debye length, and the time step is required to be less than the mean particle collision
time. The constraints on the cell size and time step limit the application regime of the
traditional DVM, DSMC, and PIC methods and it becomes impossible to use them in
the continuum flow regime. In order to remove these constraints and develop the most
efficient methods in the corresponding regimes, the asymptotic preserving schemes have
been proposed that attempt to preserve the flow dynamics in the collisionless and the
Euler limiting regimes [10, 21].
The unified gas-kinetic scheme (UGKS) proposed by Xu et al. is a multiscale numer-

ical method for the simulation of gas flow [22, 23]. In the last decade, the UGKS has
been well developed and extended to the multiscale transports, such as radiative transfer
[24], plasma physics [16], gas-particle multiphase flow [25], neutron transport [26], etc.
The two important ingredients of the UGKS are: firstly, the evolution of velocity distribu-
tion function is coupled with the evolution of the macroscopic flow variables; secondly,
the numerical flux of the UGKS is constructed from the integral solution of the kinetic
equation which takes into account the accumulating effect from particle free stream and
collision up to a time step scale. The UGKS has been proved to be a second order uni-
fied preserving scheme that can accurately capture the NS solutions when the cell size
and time step being much larger than the particle mean free path and mean collision time
[27], the same as the traditional NS solvers for the direct discretization of the macro-
scopic equations. To further improve the efficiency of the UGKS in the simulation of high
speed flow, the unified gas-kinetic wave-particle (UGKWP) method has been proposed
and applied in the simulation of multiscale gas dynamics and photon transport [27–29].
The construction of the UGKWPmethod follows the same direct modeling methodology
of the UGKS: the evolution of individual microscopic particle is coupled with the evolu-
tion of macroscopic flow variables, and the multiscale particle evolution is controlled by
the same integral solution of the kinetic model equation. The purpose of this work is to
extend the UGKWPmethod to the field of multiscale gasmixture and plasma simulations.
The proposed UGKWPmethod shares the same multiscale property with the UGKS [16]
and DUGKS [17, 18]. The scheme preserves the collisionless limit in the rarefied regime,
and the corresponding NS andMHD solvers in the comtinuum flow regime. An appealing
feature of the UGKWP is that the computational complexity diminishes with the transi-
tion of the flow regime from kinetic to the continuum one. Especially, in the NS andMHD
regime, the UGKWP converges to hydrodynamic flow solvers.
The rest of the paper is organized as follows. The governing equations for gas

mixture and plasma transport are discussed in Section 2. In Section 3, the UGKWP
methods for gas mixture and plasma transport are proposed. The unified preserving
and asymptotic complexity diminishing properties of the UGKWP are discussed in
Section 4. The numerical examples are shown in Section 5, and the last Section 6 is the
conclusion.

2 Governing equations for multi-species gas mixture and plasma transport
This section is about the governing equations to be used in the construction of the
schemes. The multi-species Boltzmann equation is first reviewed, and then the kinetic
model equation proposed by Andries, et al. [3] will be discussed, including its asymp-
totic behavior in continuum regime. The two fluid kinetic-Maxwell system, as well as the
Hall-MHD equations will be presented.
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2.1 Multi-species Boltzmann equation

A gas mixture composed of m species can be modeled by the multi-species Boltzmann
equations,

t f v f
m

k 1
k f , fk , (1)

where f t, x, v is the velocity distribution function of species , and the collision between
species and k follows the integral operator

k f , fk
R3 S2

f fk f fk B ,k vr n, vr dndv (2)

where fk fk t, x, v , f f t, x, v , fk fk t, x, v . The post collision velocity v

and v follow

v v 2 k
m

vr n n,

v v 2 k
mk

vr n n,

where k
m mk
m mk

is the reducedmass, and n is the unit vector joining the centers of the
two colliding spheres. The collision kernel B ,k depends on relative velocity vr v v .
The macroscopic density , velocityU , temperature T , and energy E of species can
be calculated by taking the moments of the velocity distribution f ,

m n
R3

f dv, U
R3

vfdv,

T
1

3n kB R3
v U 2 fdv, E

1
2

U 2 3
2
n kBT ,

wherem and n are the molecular mass and number density of species . For m species
gas mixture, the total density , total number density n, total momentum U , and total
energy E satisfy

m

1
, n

m

1
n ,

U
m

1
U , E

m

1
E .

(3)

Boltzmann equation is a fundamental equation that describes the mean free path level
flow physics, however, to numerically solve the five-fold collision operator is costly.
Simplified kinetic model equations are developed in the literature [30–33], including a
relaxation-type kinetic model proposed by Andries, et al. [3]. AAP model will be intro-
duced in the next section, based on which the numerical schemes for multi-species gas
mixture and plasma are constructed.

2.2 Kinetic model equation for multi-species gas mixture

The relaxation-type kinetic model equation that originally proposed by Gross and Krook
[34] has been widely used in the numerical simulation of rarefied gas dynamics due to
its simple formulation. Such BGK-type operator has been extended to model the multi-
species collision by Andries, Aoki, and Perthame [3], which can be written as

t f v xf
g f

, (4)
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where the post collision distribution function is a Maxwellian distribuion

g
m

2 kT

3 2
exp

m
2kBT

v U 2 , (5)

and the parametersT andU are chosen to recover the exchanging relations forMaxwell
molecules,

U U
m

N

k 1
2 k knk Uk U ,

T T
m
3kB

U U 2

m

N

k 1

4 knk
m mk

Tk T
mk
3kB

Uk U 2 .

(6)

For Maxwell molecules, the interaction coefficient and relaxation parameter satisfy

1 N

k 1
knk , k 0.422

a k m mr
m mr

1
2
,

where a k is the constant of proportionality in the intermolecular force law [35]. The
advantage of AAP model is that it satisfies the indifferentiability principle, entropy con-
dition, and can recover the exchanging relationship of Maxwell molecules with such a
simple relaxation form [3].
Based on AAP model, Liu et al. proposed a BGK-Maxwell system for fully ionized

plasma transport [16], which can be written as
f
t

v xf a xf
g f

,

B
t x E 0,

E
t

c2 x B
1
0
j,

(7)

where j e niUi neUe is the electric current, and the velocity distribution f t, x, v
of species ( i for ion and e for electron) is governed by a kinetic equation that
coupled with the Maxwell equations for electromagnetic wave. In the Maxwell equations,
E and B are the electric and magnetic field, c is speed of light, and 0 is the vacuum
permittivity. In the kinetic equation, the Lorenz acceleration as takes the form

as
e E v B

ms
,

where e is electric charge, and ms is the particle mass of species s. The post collision
distribution g takes the same form of the AAP model as given in Eq. (5), however the
interspecies interaction coefficient ie is determined by the plasma electrical conductivity
p [16]

ie p
nie mi me

2mime
. (8)

The hydrodynamic equations such as the Navier-Stokes equations, the Euler equations,
and magnetohydrodynamic equations can be derived in the continuum regime. The
asymptotic behavior of above kinetic model Eqs. (4) and (7) will be briefly discussed in
the next subsection.
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2.3 Asymptotic behavior of the kinetic system

In this section, the asymptotic analysis is applied to give the corresponding hydrodynamic
limits of the AAP model and BGK-Maxwell equations. Given the reference length L ,
temperature T , mass m , number density n , and magnetic field strength B , the
following reference variables can be deduced,

V 2kBT m , t L V , m n ,

E B V , a eB V m , f m n V 3 ,

which are the reference velocity, time, density, electric field, acceleration, and velocity
distribution respectively. Based on the above reference variables, the AAP model can be
re-scaled as

t f v xf
g f

,

and the BGK-Maxwell system can be re-scaled as

f
t

v xf
1
r
a xf

g f

B
t x E 0

E
t

c2 x B
1
2
Dr

j,

where the variables with a tilde stand for the re-scaled variables, and especially r and D
are the normalized Larmor radius and Debye length,

r
eB L
m V

, D
0m V 2

ne2
m V
eB

.

For the sake of simplicity, the tilde is omitted in the following parts of the paper.
In the continuum regime, the AAP model recovers the Navier-Stokes and Euler

equations as 0,

AAP model , 1 Navier-Stokes equations , 0 Euler equations.

According to the Chapman-Enskog theory [1], the distribution of AAP model can be
expanded as

f g tg v xg O 2 , (9)

where g is the Maxwellian distribution of the averaged quantities of all species that are
evaluated from Eq. (3). The zero-th order expansion with respect to gives the Euler
equations [3],

t U 0,

t U p UU 0,

tE EU pU 0,

(10)

and the first order expansion gives the Navier-Stokes equations [3],

t U J 0,

t U p UU 0,

tE EU pU U q 0.

(11)
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The mass diffusion flux J is

J
m

k 1
L k

x n kBT ,

and the shear stress and heat flux q satisfy

xU xU
T 2

3
U ,

q
5
2
kBT

n

k 1

Jk
mk

xT ,

with the viscous coefficient kBT m
k 1 knk , and the heat conduction coefficient

5
2k

2
BT

m
k 1

knk
mk

. The Prandtl number of the AAP model is one, which means the
model cannot preserve the correct relaxation of both stress and heat flux. To fix the
Prandtl number, the ellipsoidal statistical model is proposed by Brull [4]. The mass flux
coefficient matrix L is a symmetric matrix [3]

L M 1 , (12)

with

Mij
k i

2 ik
mi mk

k if i k

Mik Aik i if i k,
(13)

and

ik i ik
i k . (14)

In the mass flux, the Soret and the Dufour coefficients are equal to zero, which stand
only for Maxwell particles. For more general potentials, this does not hold. Moreover, for
Maxwell particles, the mass diffusion coefficient are not consistent with that derived from
the Boltzamnn operator.
The BGK-Maxwell system converges to the two-fluid system andmagnetohydrodynam-

ics system as 0 and r 0,

BGK-Maxwell equation 1

ie 1
two-fluid system r 1 MHD equations.

In the continuum regime with 1 and ie 1, the distribution of BGK-Maxwell
system can be expanded as

f g tg v xg O 2 ,

where g is the Maxwellian distribution of the macroscopic quantities of species . The
first order expansion gives hydrodynamic two-fluid equations

t x U 0,

t U x U U p U
n
rLi

E U B S ,

tE x E p U U U xT
n
rLi

U E Q ,

(15)

where the strain rate tensor U is

U xU xU
T 2

3
divxU . (16)
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The viscosity and the thermal conductivity can be expressed by the relaxation
parameter as

n kBT ,
5
2
kB
m

nkBT .

In above two-fluid system, Si Se and Qi Qe are the corresponding momentum
and energy exchange between electron and ion,

S
r

2m mr
m mr

n r Ur U ,

Q
r

4m mr

m mr
2 nr r

3
2
kBTr

3
2
kBT

mr
2

Ur U 2 .

In the magnetohydrodynamic regime withme mi, the first order with respect to r, the
zero-th order with respect of and me mi of the two-fluid system give the Hall-MHD
equations,

t x U 0,

t U x UU p 2
Dc

2
x B B,

tE x E p U 2
Dc

2nU x B B ,

tB x E 0,

E U B
r
j

Resistive term

r
n

2
Dc

2
x B B

Hall term

,

(17)

where j eniUi eneUe is the current density, and nie mi me
2mime ie

is the electrical
conductivity. In the limit where D c 1 and r 0, one gets the ideal MHD equations,

t x U 0,

t U x UU pI x B B,

tE x E p U U x B B ,

tB x U B 0.

(18)

The asymptotic limiting equations of the AAP model and BGK-Maxwell system are given
in the above discussion. In the next section, the unified gas-kinetic wave-particle method
for gas mixture and plasma transport will be proposed.

3 Unified gas-kinetic wave-particle method
3.1 UGKWPmethod for multi-species gas mixture

The unified gas-kinetic wave-particle method is a multiscale numerical method that
preserves the asymptotic limits of the AAP model. The UGKWP method couples the
evolution of the velocity distribution f and the macroscopic quantities W . The evolu-
tion of microscopic distribution and macroscopic variables will be given in the following
subsections.

3.1.1 The evolution ofmicroscopic velocity distribution function

Similar to the UGKWPmethod for single species gas [27], in current scheme the velocity
distribution function is partially represented by an analytical distribution g ,c and par-
tially represented by stochastic particles P k m k , x k , v k , which are shown in Fig. 1.
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Fig. 1 The diagram of particle updating procedure: 1. Sample particle free streaming time tc, ; 2. Stream
particles and update macroscopic quantities; 3. Rebuild velocity distribution

Herem k is the mass of simulation particle P k , which represents a cluster of real gas par-
ticles of species , and x k , v k stand for the position and velocity of simulation particle
P k . The evolution of the microscopic velocity distribution function follows the integral
solution of the kinetic Eq. (4). With initial condition f 0, x, v f ,0 x, v , the integral
solution at x, t can be written as

f x, t, v
1 t

0
e t t g x , t , v dt e t f ,0 x0, v , (19)

where the equilibrium distribution is integrated along the characteristics x x v t t .
Substituting the second order Taylor expansion of equilibrium

g x , t , v g x, t, v xg x, t, v x x tg x, t, v t t O x x 2 , t t 2 ,

into the integral solution, the numerical multiscale evolution solution for simulation
particle can be obtained,

f x, t, v 1 e t g x, t, v e t f0, x0, v , (20)

where

g x, t, v g x, t, v
te t

1 e t tg x, t, v v xg x, t, v . (21)

A physical interpretation of Eq. (20) is that a particle has a probability e t to free stream
in a time period [ 0, t], and has a probability 1 e t to interact with other particles
and reach a velocity distribution g . The free stream particles are kept and the collisional
particles get re-sampled from distribution g . The cumulative distribution function of
the free streaming time tf is

F tf t exp t , (22)
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from which tf can be sampled as tf ln with a uniform distribution U 0, 1 .
For a time step t, the particles with tf t will be collisionless particles, and the par-
ticles with tf t will be collisional particles. The procedure of updating particles in
UGKWP method is

Step 1: Sample free streaming time tf , k for each particle P k , and stream particle P k for
a time period ofmin t, tf , k ;

Step 2: Keep collisionless particles, and remove collisional particles. Calculate the total
conservative quantities of collisional particlesWh

i, from the updated conservative
quantitiesWi, asWh

i, Wi, Wp
i, ;

Step 3: Rebuild the microscopic velocity distribution. Calculate the analytical distribution
g ,c and re-sample collisional particles from distribution g ,f .

In the above particle updating procedure, the total conservative quantities of collisionless
particles in cell i are denoted asWp

i, , and the total conservative quantities of collisional
particles in cell i are denoted as Wh

i, . In the distribution rebuilding process, the Wh
i,

is divided into g ,c 1 e t n 1 g and g ,f e t n 1g , corresponding to the
collisional and collisionless particles in the next time step from tn to tn 1. The distribu-
tion g ,c is recorded analytically, and the distribution g ,f is re-sampled into stachastic
particles. Above discussion gives the evolution of particles, and in the next subsection we
will give the evolution of the conservative variables.

3.1.2 The evolution ofmacroscopic quantities

The evolution of macroscopic quantities is under the framework of finite volume scheme.
The cell averaged conservative variables Wi, i, , i, Ui, , i, Ei, on a physical cell

i are defined as

Wi,
1
i i

W x dx.

The finite volume scheme ofWi, follows

Wn 1
i, Wn

i,
s

t
i
ls Fs,

t
W n 1

i, Wn 1
i, , (23)

where ls i is the cell interface with center xs and outer unit normal vector ns. And
W n 1

i,
n 1
i, , n 1

i, U n 1
i, , n 1

i, E n 1
i, are calculated from Eq. (6). The numerical flux

of conservative variables Fs, at xs can be written as

Fs,
1
t

tn 1

tn
v nsf xs, t, v d dt,

where 1, v, 12 v2 2 is the conservative moments of distribution function with
the internal degree of freedom. The time dependent distribution function f xs, t, v at cell
interface is constructed from the integral solution of kinetic equation as given in Eq. (19).
The above UGKWP flux for conservative variables can be split into the equilibrium flux

Fg
s,

1
t

tn 1

tn
v ns

1 t

0
e t t g x , t , v dt d dt, (24)

and the free streaming flux

Ff
s,

1
t

tn 1

tn
v nse t f ,0 x0, v d dt. (25)
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First, the equilibrium flux Feq
s can be calculated directly from the macroscopic flow field.

Assume xs 0 and tn 0, the equilibrium g can be expanded as

g x, t, v g0, xg0, x tg0, t, (26)

where g0, g 0, 0, v . The initial equilibrium g0, and its spatial and time derivatives
can be obtained from the micro-macro consistency

g d
v n 0

gl d
v n 0

gr d , xg d xW , (27)

and compatible condition

tg d v xg d , (28)

where gl and gr are the equilibrium distributions according to the reconstructed left and
right side conservative variables at cell interfaceWl ,Wr , and xW is the reconstructed
spatial derivative of conservative variables at cell interface. In this paper, the van Leer
limiter is used to achieve a second order accuracy in space reconstruction. Substituting
the reconstructed equilibrium distribution Eq. (26) into the equilibrium flux Eq. (24), we
have

Fg
s, v ns C1g0, C2v xg0, C3 tg0, d ,

where the time integration coefficients are

C1 1
t

1 e t ,

C2
2 2

t
e t 2 2

t
,

C3
1
2

t
2

t
1 e t .

Next we consider the free stream flux Ff
s, . As stated in the last subsection, the initial

distribution is represented partially by an analytical distribution g ,c, and partially by
particles, and therefore the free stream flux Ff

s, is also calculated partially from the recon-
structed analytical distribution as Ff ,w

s, , and partially from particles as Ff ,p
s, . The initial

analytical distribution g ,c is reconstructed as

g ,c
0, x, v g ,c

0, xg ,c
0, x, (29)

which gives

Ff ,w
s, v n C4g0, C5v xg0, d ,

where the time integration coefficients are

C4 t
1 e t te t ,

C5 e t
2

t
1 e t t2

2
e t .

The net particle flux Ff ,p
s, is calculated as

Ff ,p
s,

1
t

k P
i
,
WPk,

k P
i
,
WPk, ,
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whereWPk, mk, ,mk, vk, , 12mk, v2k, , P
i ,

is the index set of the particles stream-
ing out of cell i during a time step, and P

i ,
is the index set of the particles streaming

into cell i. Finally, the finite volume scheme for conservative variables is

Wn 1
i, Wn

i,
s

t
i
ls F

eq
s,

s

t
i
ls F

fr,w
s,

t
i
Ff ,p
s,

t
W n 1

i, Wn 1
i, .

(30)

To solveWn 1
i, from Eq. (30), the following two linear system needs to be solved. The first

is them m linear system form species velocity vector Vn 1
i Un 1

i,1 ,Un 1
i,2 , ...,Un 1

i,m ,

AiVn 1
i Bi,

where B ,i
n
i, U

n
i, s

t
i
ls F u

s, , and F u
s, is the momentum flux of s

t
i
ls F

eq
s,

s
t
i
ls F

fr,w
s,

t
i
Ff ,p
s, . The matrix Ai read

Ai
n 1
i, 2 t

m

1

nn 1
i,

Ai 2 t nn 1
i, .

The second m m linear system is for m species internal energies en 1
i

en 1
i,1 , en 1

i,2 , ...en 1
i,m

Cien 1
i Di,

where

Di, Eni,
s

t
i
ls FE

s,
1
2

n 1
i, Un 1

i,
2 t n 1

i,

2 n 1
i,

U n 1
i,

2
Un 1
i,

2

t n 1
i,

2 n 1
i,

U n 1
i, Un 1

i,
2

tnn 1
i,

m

1

2 n 1
i,

m m
Un 1
i, Un 1

i,
2
,

with FE
s, is the energy flux of s

t
i
ls F

eq
s, s

t
i
ls F

fr,w
s,

t
i
Ff ,p
s, , and

Ci nn 1
i, tnn 1

i,

m

1

4nn 1
i,

m m
,

Ci tnn 1
i,

4nn 1
i,

m m
.

Under the assumption of non-vacuum solutions ( n
i, 0), each system admits a

unique solution. The evolution of the microscopic velocity distribution and macroscopic
quantities compose the UGKWP method for multi-species gas mixture.

3.2 UGKWPmethod for plasma transport

In this subsection, the UGKWP method for plasma transport will be proposed, which is
the UGKWP method for multi-species coupled with the electromagnetic field. We split
the BGK-Maxwell equations into the transport equations and the interaction equations.
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The transport equations including the electron ion transport and electromagnetic wave
transport can be written as

t f v xf
g f

,

B
t x E 0,

E
t

c2 x B 0,

and the interaction equations are

t f
e
m r

E v B vf 0,

E
t

1
2
Dr

j.
(31)

In the next two subsections, the numerical evolution equations for the transport
equations and interaction equations will be presented respectively.

3.2.1 Evolution equations for the transport equations

In the transport equations, the electron and ion transports are decoupled from the
electromagnetic wave transport. The numerical evolution equation for the electron
and ion transport is the UGKWP method presented in Section 3. The Yee-grid based
Crank-Nicolson scheme proposed by Yang el al. is used as the evolution equation for
the electromagnetic wave transport [36]. The semi-implicit discretization of transverse
electric wave equation on Yee mesh can be written as

En 1
x xi 1

2
, yj Enx xi 1

2
, yj

tc2

2 y
Bn 1
z xi 1

2
, yj 1

2
Bn 1
z xi 1

2
, yj 1

2

tc2

2 y
Bn
z xi 1

2
, yj 1

2
Bn
z xi 1

2
, yj 1

2
,

(32)

En 1
y xi, yi 1

2
Enx xi, yj 1

2

tc2

2 x
Bn 1
z xi 1

2
, yj 1

2
Bn 1
z xi 1

2
, yj 1

2

tc2

2 x
Bn
z xi 1

2
, yj 1

2
Bn
z xi 1

2
, yj 1

2
.

(33)

And the semi-implicit discretization of magnetic wave equation is

Bn 1
z xi 1

2
, yi 1

2
Bn 1
z xi 1

2
, yi 1

2

t
2 y

En 1
x xi 1

2
, yj 1 En 1
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2
, yj

t
2 y

Enx xi 1
2
, yj 1 Enx xi 1

2
, yj

t
2 x

En 1
y xi 1, yj 1

2
En 1
y xi, yj 1

2

t
2 x

Eny xi 1, yj 1
2

Eny xi, yj 1
2

(34)
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Substituting Eqs. (32) and (33) into Eq. (34), an implicit equation for Bz can be derived as

1
c2 t2

4
D2x D2y Bn 1

z xi 1
2
, yj 1

2
1

c2 t2

4
D2x D2y Bn

z xi 1
2
, yj 1

2

f Enx ,Eny ,

which can be effectively solved by Douglas-Gunn algorithm. The advantage of the Yee-
grid based Crank-Nicolson scheme is that the divergence constraint of the Maxwell
equation is numerically preserved; the dispersion and dissipation error is lower than
the FDTD method; and the scheme is unconditionally stable, which removes the CFL
constraint on time step.

3.2.2 Evolution equations for the interaction equations

Taking conservative moments on Eq. (31), one gets themacroscopic interaction equations

U
t

e n
r

E U B ,

E
t

1
2
Dr

j.

The implicit discretization of the macroscopic interaction equations gives the following
linear system,

n 1
i Un 1

i
n 1
i Un

i
t
r
nn 1
i En 1 Un 1

i Bn 1 ,

n 1
e Un 1

e
n 1
e Un

e
t
r
nn 1
e En 1 Un 1

e Bn 1 ,

En 1 En
t

2
Dr

jn 1
i jn 1

e ,

(35)

from which the electromagnetic field and macroscopic flow variables are updated to tn 1,
and the velocity of the simulation particles is updated by

vn 1
k, vnk,

te
m r

En 1 vk, Bn 1 .

The evolutions of the transport equations and interaction equations compose the
UGKWP method for plasma transport.

4 Analysis and discussion
4.1 Unified preserving and asymptotic complexity diminishing properties of UGKWP

method

In this section, the multiscale property of the UGKWPmethod will be discussed, and the
computational complexity will be estimated. Guo et al. proposes the unified preserving
property which assesses the order of accuracy of a kinetic scheme in continuum regime
[37]. Crestetto et al. proposes the asymptotic complexity diminishing property of a kinetic
scheme which assesses the computational complexity of a kinetic scheme in continuum
regime [38]. In the following proposition, we show that the UGKWP method is a second
order UP scheme and an asymptotic complexity diminishing scheme.

Proposition 4.1 Holding the mesh size and time step, the UGKWP method satisfies:

1 The scheme is consistent to the collisionless Boltzmann equation as the local
relaxation parameter .
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2 The scheme becomes a second order scheme for the Navier-Stokes equations
0.

3 The total degree of freedom of the scheme Nf Nh
f as 0, where Nh

f is the
freedom of the hydrodynamic equations.

Proof 1 In the collisionless limit, we have

lim tf , lim ln . (36)

Therefore, all particles will be streamed formin t, tf , t. And the UGKWP
method solves collisionless Boltzmann equation in collisionless regime.

2 In the continuum regime when 0, we have

g x, t, v g x, t, v
te t

1 e t tg x, t, v v xg x, t, v

g x, t, v tg x, t, v v xg x, t, v O e t

g x, t, v tg x, t, v v xg x, t, v O 2

The analytic flux Fan of macroscopic variables, namely the equilibrium flux and
free streaming flux by analytic distribution function satisfies

Fan Feq Ff ,w

v n C1g0, C2v xg0, C3 tg0, d v n C4g C5v xg d

v n C1 C4 g0, C2 C4 C5 v xg0, C3 C4 tg0, d

v n g0, v xg0,
1
2

t tg0, d O e t

v n g0, v xg0
1
2

t tg0 d O 2

The sampled particle mass in the UGKWPmethod is e t h x and therefore the
net free streaming flow contributed by particles passing through the cell interface,
Ff ,p
s, O e t , diminishes. As 0, Eq. (30) exponentially converges to

Wn 1
i, Wn

i,
s

t
i
ls v n g0s, tg0,s v xg0,s

1
2

t tg0,s d

t
W n 1

i, Wn 1
i,

(37)

It can be observed that the numerical flux of conservative variables is consistent
with the Navier-Stokes flux given by first order Chapman-Enskog expansion
Eq. (9). Therefore in the continuum regime, the UGKWP method converges to
Eq. (37), which is a second order gas-kinetic Navier-Stokes solver [39], i.e., the
same as the direct macroscopic NS solver in smooth flow region.

3 As 0, the total mass of simulation particle e t h x 0, and therefore the
number of simulation particles Np 0 in continuum regime. As 0, the total
degree of freedom Nf Nh

f Np Nh
f , and the UGKWP method is an

asymptotic complexity diminishing scheme.
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4.2 Asymptotic preserving property of UGKWPmethod for plasma transport

Property 4.1 states that the UGKWP method for plasma transport preserves the two
fluid model in the hydrodynamic regime. In this subsection, the behavior of the UGKWP
method in the highly magnetized regime is discussed.

Proposition 4.2 In the highly magnetized regime as r 0, D c 1, the linear system
Eq. (35) is consistent to the magnetohydrodynamic equations.

Proof The Crank-Nicolson scheme for electromagnetic wave propagation gives

En 1 En tc2 B O t2, x2 .

The implicit discretization of the macroscopic interaction equations Eq. (35) gives

jn 1
i jn 1

e
t
r

2
Dc

2 En 1 En

r B O t2, x2 ,

and therefore the total momentum equation gives

n 1Un 1 n 1Un t
r

jn 1
i jn 1

e Bn 1

t B B O t2, x2 ,

which converges to a consistent MHD scheme.

5 Numerical tests
Five numerical tests are carried out in this section to verify the performance of the
UGKWPmethod in various flow regimes, including three 1D and two 2D tests. Firstly, the
shock structure of binary gas mixture is calculated to show the capability of the UGKWP
method in capturing the highly non-equilibrium state inside the shock layer. The second
test is the Landau damping and two steam instability, showing that the scheme can accu-
rately capture the interaction between plasma and electromagnetic field. The Brio-Wu
and Orszag-Tang tests verify the performance of the UGKWP method in different flow
regimes. In the last, the scheme is applied to the magnetic reconnection problem to study
how the electron-ion collision affects the reconnection rate. The code is sequentially oper-
ated on a single core of an i7-7660U CPU. The computational efficiency of the UGKWP
method is lower than that of the UGKS in the one dimensional and rarefied regime flow
calculations. For the simulations of two- and three-dimensional flows, especially close to
the continuum regime, the UGKWP method is much more effective than the UGKS.

5.1 Shock structure of binary gas mixture

Normal shock structure is a standard test for verifying the scheme in capturing the non-
equilibrium effect in rarefied regime. In this test, the Mach number is set as M 1.5, the
mass ratio of gas mixture ismB mA 0.5, diameter ratio dB dA 1, and the component
concentration of B is B 0.1. The hard sphere model is used and the reference mean
free path is defined by

1
2 d2An1

.
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For each component, the upstream and downstream conditions are related through
Rankine-Hugoniot condition. The cell size is chosen to be x 0.5 , and the CFL
number is 0.95. The mass of simulation particle is mp, 5 10 3, which corresponds
to around 200 simulation particles per cell. The normalized density, velocity and temper-
ature are compared to the reference UGKS solution [40], as shown in Fig. 2. The UGKWP
results well agree with the UGKS solution, which shows the capability of the UGKWP
in capturing the non-equilibrium flow physics. The velocity space of the UGKS is set as
[ 10 2KBT m , 10 2KBT m ] for each species and discretized into 100 velocity
grids each. The computational time for the UGKS is 200s to reach a steady state at the
dimensionless physical time t 250. The computational time for the UGKWP is 5mins,
including 100 physical time to average the solution.

5.2 Landau damping and two steam instability

The Landau damping and two steam instability are two classical phenomena that
have been well studied theoretically, and therefore we choose these two cases to test
the accuracy of the UGKWP method in capturing the interaction between plasma and
electromagnetic field. First we consider the Landau damping, which is about the Vlasov-
Poisson system perturbed by a weak signal. The linear theory of Landau damping can be
applied to predict the linear decay of electric energy with time [6]. The initial condition
of linear Landau damping is

f0 x,u
1
2

1 cos kx e
u2
2 , (38)

with 0.01. The length of the domain in the x direction is L 2 k. The background
ion distribution function is fixed, uniformly chosen so that the total net charge density for
the system is zero. When perturbation parameter 0.01 is small enough, the Vlasov-
Poisson system can be approximated by linearization around theMaxwellian equilibrium.
The analytical damping rate of electric field can be derived accordingly. Numerical cell
number in physical space is Nx 256, and the particle number in each cell is Np 1000.
We test our scheme with different wave numbers and compare the numerical damping
rates with theoretical values. For wave numbers k 0.3 and k 0.4, the evolution of

Fig. 2 Results of the shock wave in a binary gas mixture. Left figure shows the normalized density and
velocity. Right figure shows the normalized temperature. Symbols show the UGKWP solution and lines show
the reference UGKS solution
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Fig. 3 Results of Landau damping. Red line shows the time evolution of the electric energy calculated by the
UGKWP method, and the black lines give the theoretical prediction of the electric energy decay rate

the L2 norm electric field is plotted in Fig. 3. It can be observed that the decay rates and
oscillating frequencies 1.16, 1.29 agree well with theoretical data.
Once a larger perturbation with 0.5 and k 0.5 is applied, the linear theory

breaks down, and the nonlinear phenomenon occurs. The evolution of the electric energy
calculated by the UGKWP method is shown in Fig. 4a. The linear decay rate of electric
energy is approximately equal to 1 0.287, which agrees well with the values obtained
by Heath et al. [41]. The growth rate predicted by the UGKWP method is approximately
2 0.078, which is between the values of 0.0815 computed by Rossmanith and Seal and

0.0746 by Heath et al. [42].
Next we consider the linear two stream instability problem with initial condition

f x, v, t 0
2

7 2
1 5v2 1 cos 2kx cos 3kx 1.2 cos kx e

v2
2 ,

(39)

Fig. 4 Left figure shows the result of nonlinear Landau damping, Red line shows the time evolution of the
electric energy calculated by the UGKWP method, and the black lines show the reference solutions. Right
figure shows the result of two stream instability. Red line shows the time evolution of the electric energy
calculated by the UGKWP method, and the black line gives the theoretical prediction of the electric energy
increase rate
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Fig. 5 Contour of the velocity distribution of the linear two stream instability at t 70. Left figure shows the
WENO result and right figure shows the UGKWP solution

with 0.001 and k 0.2, and the nonlinear two stream instability problem with initial
condition

f x, v, t 0
1

2vt 2
exp

u U 2

2v2t
exp

u U 2

2v2t
1 cos kx ,

(40)

with 0.05, U 0.99, vt 0.3, and k 2 13. The length of the domain in the
x direction is L 2

k . The background ion distribution function is fixed, uniformly to
balance the charge density of electron. For the linear two stream instability a linear growth
rate of electric field can be theoretically predicted [6]. The UGKWP method is applied
to simulate this two stream instability problem with physical cell number Nx 512 and
simulation particle number Np 1000 per cell. The time evolution of electric energy
is shown in Fig. 4b, and good agreement between the UGKWP solution and theoretical
result can be observed. For the linear case, the distribution function contours in the phase
space at t 70 are shown in Fig. 5. And the contours of the nonlinear case at t 70
are shown in Fig. 6. The UGKWP results are compared with the WENO results [15]. Due
to the statistical noise, deviation can be found in the distribution functions calculated by
WENO and UGKWP. The overall resolution of the UGKWP is higher than the WENO
results due to the Lagrangian nature in the particle method.

Fig. 6 Contour of the velocity distribution of the nonlinear two stream instability at t 70. Left figure shows
the WENO result and right figure shows the UGKWP solution
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Fig. 7 Initial condition for the Brio-Wu shock tube problem

5.3 Brio-Wu shock tube

The Brio-Wu shock tube is originally designed for MHD solvers in continuum regime.
Here we calculate the Brio-Wu problem in rarefied (Kn=1), transitional (Kn=10 2), and
continuum (Kn=10 4) regimes. The same initial condition as the Brio-Wu one is given in
Fig. 7. The ion to electron mass ratio is set to be 1836, and the ionic charge state is set
to be unity. The normalized Debye length is D 0.001, the normalized Larmor radius
is r 0.001, and the normalized speed of light is 1000. The grid points in physical space
are Nx 1000. For the UGKS, the velocity space is discretized into 32 grids and for the
UGKWP, the simulation particle mass is set as mp 10 5, which corresponds to about
100 particles per cell. The UGKWP solutions in rarefied, transitional, and continuum flow
regimes are shown in Figs. 8, 9, and 10 and compared with the reference solutions of the
UGKS. In the MHD regime, the UGKWP solution is shown in Fig. 11 and compared to

Fig. 8 Multiscale Brio-Wu shock tube problem with Kn=1 and r 10 3. Lines show the UGKWP solutions
and symbols show the reference UGKS solutions
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Fig. 9 Multiscale Brio-Wu shock tube problem with Kn=10 2 and r 10 3. Lines show the UGKWP solutions
and symbols show the reference UGKS solutions

Fig. 10 Multiscale Brio-Wu shock tube problem with Kn=10 4 and r 10 3. Lines show the UGKWP
solutions and symbols show the reference UGKS solutions
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Fig. 11 Multiscale Brio-Wu shock tube problem with Kn=10 4 and r 0. Lines show the UGKWP solutions
and symbols show the reference MHD solutions

the reference ideal-MHD solution. In the rarefied regime, due to statistical noise, slight
deviation can be observed between the UGKWP and the UGKS solutions, especially in
the solutions of the magnetic field in the transitional regime, as shown in Fig. 9d. In the
continuum regime, the UGKWP solution agrees well with the reference solution. It can be
observed that the statistical noise significantly reduces as Knudsen number decreases due
to the asymptotic complexity diminishing property of the UGKWP. In the rarefied regime
with Kn=1, the computational time for the UGKWP is 70mins with 50 times averaging,
which is about 100 times slower than the UGKS. In the continuum regime with Kn=10 4,
the computational time for the UGKWP is 5s without averaging process, which is about
10 times faster than UGKS.

5.4 Orszag-Tang vortex

The Orszag-Tang Vortex problem was originally designed to study the MHD turbulence
[43]. In this work, the problem is calculated in rarefied (Kn=1) and continuum (Kn=10 4)
regimes to verify the multiscale and asymptotic complexity diminishing property of the
UGKWP. The initial condition for the current simulation is

mi me 25, ni ne 2,Pi Pe , By sin 2x ,

ui,x ue,x sin y , ui,y ue,y sin x ,
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where 5 3 and r 0.001. The computation domain is [ 0, 2 ] [ 0, 2 ] with a
uniform mesh of 200 200 cells. For the UGKWP, the mass of simulation particle is
mp 10 5, which corresponds to around 100 particles per cell. For the UGKS, the veloc-
ity space is discretized into 32 32 velocity grids. The UGKWP result in rarefied regime
is shown in Fig. 12 which is compared with the UGKS solution, and the UGKWP result
in continuum regime is shown in Fig. 13. A better agreement and lower noise can be
observed in the continuum regime due to the asymptotic preserving and the asymptotic
complexity diminishing property of the UGKWP. In the MHD regime, the UGKWP solu-
tion with Kn=10 4 and r 0 is shown in Figs. 14, 15 and 16, where in Fig. 16b the
UGKWP pressure distribution along y 0.625 is compared with the MHD solution
[44]. The computational time of the UGKWP in the rarefied regime is 200mins with 10
times averaging, which is 5 times slower than the UGKS. In the continuum and MHD
regime, the UGKWP takes around 2mins in computational time, which is close to the
efficiency of hydrodynamic solver, and is significantly faster than the UGKS.

5.5 Magnetic reconnection

Magnetic reconnection is an important phenomenon that transfers magnetic energy into
flow energy by topological change of magnetic field. In this test case, the UGKWPmethod
is used to study the reconnection phenomenon in different flow regime, and study how
the particle collision affects the collision rate and topology change of magnetic line. The
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Fig. 12 The results of the multiscale Orszag-Tang vortex problem with Kn 1 and r 10 3 at t 1.
Contour lines show the UGKWP solutions and contour floods show the UGKS solutions
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Fig. 13 The results of the multiscale Orszag-Tang vortex problem with Kn 10 4 and r 10 3 at t 1.
Contour lines show the UGKWP solutions and contour floods show the UGKS solutions
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Fig. 14 The UGKWP results of the multiscale Orszag-Tang vortex problem with Kn 10 4 and r 0 at t 1
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Fig. 15 The UGKWP results of the multiscale Orszag-Tang vortex problem with Kn 10 4 and r 0 at t 2

simulation uses the same initial condition as the GEM challenge problem [45]. The initial
magnetic field is given by

B y B0 tanh y ex,

and a corresponding current sheet is carried by the electrons
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Fig. 16 The UGKWP results of the multiscale Orszag-Tang vortex problem with Kn 10 4 and r 0 at
t 3. Sub-figure (a) shows the UGKWP pressure contour, and sub-figure (b) shows the comparison of the
UGKWP and MHD pressure distribution along y 0.625
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Je
B0 sech2 y ez.

The initial number densities of electron and ion are

ne ni 1 5 sech2 y .

The electron and ion pressures are set to be

Pi 5Pe
5B0
12

n y ,

where B0 0.1, mi 25me and 0.5. The computational domain is [ Lx 2, Lx 2]
Ly 2, Ly 2 with Lx 8 , Ly 4 , which is divided into 200 100 cells. Periodic

boundaries are applied at x Lx 2 and conducting wall boundaries at y Ly 2. To
initiate reconnection, the magnetic field is perturbed with B ez x , where

x, y 0.1B0 cos 2 x Lx cos y Ly .

Two Knudsen numbers are considered, Kn=10 3 in the transitional regime and Kn=10 4

in the continuum regime. The magnetic field topology as well as the distribution of flow
variables in transitional regime is shown in Figs. 17-18 at pit 15 and pit 30, and
the magnetic field topology in continuum regime as well as the magnetic reconnection
rate is shown in Fig. 19. In the continuum regime, the topology of the magnetic field
is symmetric, while in the transitional regime a magnetic island appears in the middle
region at pt 15 and merges into the big right island at pt 30. Due to the magnetic
island, two x-shape reconnection points form and the reconnection rate in the transitional
regime is significantly increased at 15 pt 30. After pt 30 when the middle
magnetic island merges with the right one, the reconnection rate slows down to the same
reconnection intensity as in the continuum regime, which is shown in Fig. 19b.

6 Conclusion
In this work, we extend the unified gas-kinetic wave-particle method to the field of multi-
species gas mixture and multiscale plasma transport. The construction of numerical
scheme for multiscale transport is based on the direct modeling methodology [23], where
the flow physics is modeled on the cell size and time step scales. In the unified framework,
the evolution of microscopic velocity distribution function is coupled with the evolution
of macroscopic quantities in a discretized space. The evolution solution of microscopic
distribution function is modeled from the accumulating effect of particle transport and
collision within a time step, from which numerical fluxes for both macroscopic flow vari-
ables and particle distribution function are obtained. The intrinsic governing equation
underlying the unified scheme depends on the local cell’s Knudsen number. A smooth
transition from the kinetic particle transport to the continuum hydrodynamic flow evo-
lution can be recovered seamlessly with the variation of the cell’s Knudsen number. For
the multispecies and plasma transport, the UGKWP has the properties of second order
unified preserving as well as the asymptotic computational complexity diminishing. In
plasma transport, the UGKWP method provides a smooth transition from PIC method
in the kinetic scale to the MHD flow solvers in the continuum regime. All kinds of MHD
equations, such as the two fluid models and ideal MHD, become subsets of the UGKWP
modeling. Compared to the discrete velocity method (DVM), the UGKWP is much effi-
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Fig. 17 The UGKWP results of magnetic reconnection with Kn=10 3 at pit 15
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Fig. 18 The UGKWP results of magnetic reconnection with Kn=10 3 at pit 30
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Fig. 19 Sub-figure (a) shows the magnetic field at pit 30 in continuum regime with Kn=10 4. And
sub-figure (b) shows the reconnected flux in transitional regime with Kn=10 3 and in continuum regime
with Kn=10 4

cient in the numerical simulation of highly non-equilibrium and high-dimensional flow
problems, especially for the high speed flows. In conclusion, the UGKWP method has
great potential to solve multiscale transport problems in rarefied flow [27, 28], radiative
transfer [29, 46], and plasma physics.
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