Wang and Luo Advances in Aerodynamics (2021) 3:1 A van in A r n ml
https://doi.org/10.1186/542774-020-00055-6 d ances € Ody da cs

RESEARCH Open Access

A reconstructed discontinuous Galerkin ")
method for compressible flows on moving
curved grids

Chuanjin Wang and Hong Luo”

*Correspondence: hluo2@ncsu.edu
Department of Mechanical and Abstract

Aerospace Engineering, North A high-order accurate reconstructed discontinuous Galerkin (rDG) method is
g;g;';”aNgtaljzkjmve“ity’ Raleigh developed for compressible inviscid and viscous flows in arbitrary Lagrangian-Eulerian
o (ALE) formulation on moving and deforming unstructured curved meshes. Taylor basis
functions in the rDG method are defined on the time-dependent domain, where the
integration and computations are performed. The Geometric Conservation Law (GCL)
is satisfied by modifying the grid velocity terms on the right-hand side of the
discretized equations at Gauss quadrature points. A radial basis function (RBF)
interpolation method is used for propagating the mesh motion of the boundary nodes
to the interior of the mesh. A third order Explicit first stage, Single Diagonal coefficient,
diagonally Implicit Runge-Kutta scheme (ESDIRK3) is employed for the temporal
integration. A number of benchmark test cases are conducted to assess the accuracy
and robustness of the rDG-ALE method for moving and deforming boundary problems.
The numerical experiments indicate that the developed rDG method can attain the
designed spatial and temporal orders of accuracy, and the RBF method is effective and
robust to avoid excessive distortion and invalid elements near moving boundaries.
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1 Introduction

Many engineering problems require the solution on variable geometries, such as aeroelas-
ticity, fluid-structure interaction, flapping flight and rotor-stator flows in turbine passage.
Due to the limitation of the measurement techniques in the experiment, numerical sim-
ulation of such problems is an important supplement to investigating and understanding
these complex phenomena. The arbitrary Lagrangian-Eulerian (ALE) [1] formulation tak-
ing into account the mesh motion by nature, has been considered often and commonly
used to solve such problems numerically.

For these engineering problems mentioned above, the ALE formulation usually com-
bines consistently the advection due to mesh motion and the advection due to fluid
motion, i.e., these two are solved simultaneously. This type of formulation is termed
unsplit ALE [2-4], as opposed to the split ALE or Lagrange-plus-remap ALE which
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consists of three steps, a Lagrangian step, a rezoning step and a remapping step. The
Lagrangian-plus-remap ALE method is mainly used in hydrodynamics where the evolu-
tion of flow is undergoing large deformation due to the strong compression or expansion.
The application of the unsplit ALE method to the hydrodynamic problems has been
reported in [2, 4—6]. In this paper, our focus is on the unsplit ALE method for the moving
boundary/grid problems, typically the flow over moving airfoils.

In such problems, the velocity and/or position of the boundary nodes are usually known
in practice, either from the prescription of an analytical expression or discrete data, or
from the response of the solid in the fluid-structure interaction case. With the movement
of the boundary nodes, the interior of mesh might be distorted or even invalid. Thus,
either regenerating the mesh, or a smoothing procedure that propagates the boundary
motion into the interior is necessary, to preserve the mesh quality. However, regeneration
of the mesh is usually computationally very expensive, and the latter case, a smoothing
procedure is preferred in general. Various methods have been proposed in the literature
to smooth the interior mesh. One type of these methods requires the solution of a system
of elliptic (Poisson-type) partial differential equations (PDEs), such as linear elasticity [7]
and non-linear elasticity [8] methods. Another smoothing procedure is the interpolation
method, for example, the radial basis function (RBF) interpolation [9-11] and Delaunay
graph mapping [12]. In this work, we take advantage of the RBF interpolation based on
its efficiency and mesh quality performance.

The high order methods, most commonly the discontinuous Galerkin methods (DGM),
due to their higher computational efficiency compared with the low order method, have
been investigated extensively in the Eulerian frame, and are gaining more and more
interest in the ALE formulation.

The discontinuous Galerkin methods (DGM), originally introduced for solving the neu-
tron transport equation by Reed and Hill [13], are widely used in computational fluid
dynamics (CFD), owing to their many distinctive, and attractive features, such as flexi-
bility to handle complex geometry, compact stencil for higher-order reconstruction, and
amenability to parallelization and /p-adaptation. However, the DG methods have been
recognized as expensive in terms of both computational costs and storage requirements.
Indeed, compared to the finite element and finite volume methods, the DGM require
solutions of systems of equations with more unknowns for the same grids. It is our
belief that a lack of efficiency is one of reasons that prevents the application of DGM
to engineering-type problems. In order to reduce high costs associated with the DGM,
Dumbser et al. [14—16] introduced a new family of reconstructed DGM, termed PnPm
schemes and referred to as rDG(PnPm) in this paper, where Pn indicates that a piecewise
polynomial of degree of # is used to represent a DG solution, and Pm represents a recon-
structed polynomial solution of degree of m (m > n) that is used to compute the fluxes.
The rDG(PnPm) schemes are designed to enhance the accuracy of the DGM by increas-
ing the order of the underlying polynomial solution. The beauty of rDG(PnPm) schemes
is that they provide a unified formulation for both FVM and DGM, and contain both
classical FVM and standard DGM as two special cases of rDG(PnPm) schemes. When
n = 0, i.e. a piecewise constant polynomial is used to represent a numerical solution,
rDG(POPm) is nothing but classical high order finite volume schemes, where a polynomial
solution of degree m (m > 1) is reconstructed from a piecewise constant solution. When
m = n, the reconstruction reduces to the identity operator, and rDG(PnPn) scheme yields
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a standard DG(Pn) method. For n > 0, and n > m, a new family of numerical methods
from third-order of accuracy upwards is obtained. A number of algorithms are proposed
[17-22] to construct the PnPm schemes, and their spatial convergence and effectiveness
are validated [23-27].

Based on the higher performance of the rDG methods in the Eulerian frame, an exten-
sion to the arbitrary Lagrangian-Eulerian (ALE) formulation is natural and desirable. A
number of DG-ALE methods in the literature have been proposed and investigated for
the compressible flows. How to satisfy the Geometric Conservation Law (GCL) is a crit-
ical issue for the ALE formulation, especially for higher-order DG methods, where the
basis functions being defined on the time-dependent or fixed reference domain/element
will come into the picture, making the problem more complicated.

In general, there are two types of approaches to ensure the satisfaction of the GCL
condition. The most consistent and elegant approach is the space-time DG formulation.
This formulation is fully conservative in space and time, and the GCL is automatically
satisfied. The space-time DG methods have been applied to both incompressible [28, 29]
and compressible flows [30-33]. However, the generation of the space-time meshes will
require additional work. And, the space-time DG methods do not allow for explicit time
stepping or implicit multi-step schemes [34].

The second type requires special treatment for the ALE formulations on a fixed or
time-dependent mesh, for example, an additional equation for updating the transforma-
tion Jacobian, or a correction of the grid velocity terms. Lomtev et al. [35] presented a
matrix-free DG-ALE method using spectral basis for 2D and 3D compressible viscous
flows in moving domains. A force-directed algorithm from graph theory is used to update
the grid while minimizing distortions. In the method proposed by Persson et al. [34],
the governing equations in the time-dependent physical domain are transformed to the
conservations laws in a fixed reference domain (the initial domain), the conservative vari-
ables defined on the initial domain are solved thereafter. A continuous mapping between
the time-dependent physical domain and the fixed initial domain is introduced to take
into account the mesh motion. The transformation Jacobian is updated in time to ensure
the GCL condition. Nguyen [36] presented a DG-ALE method using an explicit fourth
order TVD Runge-Kutta method and the freestream solution is shown to be preserved
numerically. Mavriplis [37] derived a general approach inspired from the space-time for-
mulation to update the grid velocity terms at the Gauss quadrature points such that the
GCL is satisfied. Ren and Xu et al. [38] introduced a DG-ALE method based on the gas-
kinetic theory. In their method, the initial domain is taken as the reference domain, and
the basis functions are mapped from this reference domain to the time-dependent phys-
ical domain. The computations are conducted in the physical domain. A space-time type
integration is used to obtain the discretized equations and then the gas kinetic flux is
computed to advance the solution. This method is shown to preserve the uniform flow
automatically, and applied to several moving boundary problems.

In the current work, the reconstructed discontinuous Galerkin (rDG) method is
extended to the ALE formulation, to simulate flow problems with moving or deforming
grids. The Taylor basis functions are defined on the time-dependent physical domain, as
a continuation of the rDG method in the Eulerian formulation. For better resolution at
the wall of the airfoil, the curved elements are used in the whole domain. The third order
temporal scheme ESDIRK3 (Explicit first stage, Single Diagonal coefficient, diagonally
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Implicit Runge-Kutta) is employed for time marching. To enforce the GCL, we follow a
similar idea as in [37], by updating the grid velocity terms at Gauss quadrature points. The
radial basis function (RBF) interpolation method has been chosen as the mesh smooth-
ing algorithm to provide the mesh motion for the interior nodes, given the displacement
or velocity at the boundary nodes. Numerical test cases are set up to demonstrate the
accuracy and capability of the derived rDG-ALE method.

The remainder of this paper is organized as follows. The governing equations are pre-
sented in Section 2. The rDG formulation in ALE frame is derived in Section 3. Section 4
discusses how to satisfy the Geometric Conservation Law (GCL) condition. The RBF
method for the mesh movement will be described in Section 5. Section 6 presents a set of

numerical examples. Finally conclusions are given in Section 7.

2 Governing equations
The Navier-Stokes equations governing the unsteady compressible viscous flows can be
expressed as

ot Xk 0xx

U  oF (U G, (U, VU
" x( )= k( ) )

where the summation convention has been used. The conservative variable U, advective
flux vector F and viscous flux vector G are defined by

P ou; 0
U= | pu; F; = puil; +P5ij Gj =| 7 (2)
oe uj(pe + p) uty + gj

Here p, p and e denote the density, pressure and specific total energy of the fluid, respec-
tively, and u; is the velocity component of the flow in the coordinate direction x;. The
pressure can be computed from the equation of state

1
p=( —-Dp <6 - Zuiui) (3)

which is valid for perfect gas. The ratio of the specific heats y is assumed to be constant
and equal to 1.4. The viscous stress tensor 7;; and heat flux vector g; are given by
du;  Ouy 2 duy 1 poT
T = — 4+ — |- —pu—234 = 4
y=H <8xj 0x; SM dxy 9 y — 1 Pr dx; @)
In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number,

which is taken as 0.7 for air. 1 represents the molecular viscosity, which can be determined
through Sutherlands law

Hw_ (T %TO—'_S (5)
po \To) T+S

where (g is the viscosity at the reference temperature Tp and S = 110K. The temperature
T of the fluid is determined by

p
T=-— 6
R (6)
where R is the gas constant.
The Euler equations can be obtained if the effects of viscosity and thermal conduction

are neglected in Eq. 1.
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3 Reconstructed discontinuous Galerkin discretization
Since the grid velocity only contributes to and appears in the convective term, it’s suffi-
cient to consider the compressible Euler equations here for deriving the ALE formulation.
The differential governing equation can be written in the form
IU(x, )
ot

where % is the usual Eulerian time derivative.

+V-FU)=0 (7)

Defining the (Taylor) basis functions ¢; associated with the moving volume QL, mul-
tiplying ¢; on the equation above and integrating on the moving volume, one will get

immediately
ou
/ ¢,—d§2+/ ¢V -FdQ =0 (8)
o 9t o
Using Reynolds Transport Theorem
d 3 (Ug;
— [ UgjdQ = / MdSH— / V- (Ug;V,) dS2
dt QL QL ot QL ©)

ou 0¢;
= i—dQ —dQ Vg - ndl’
'/S;é(ﬁ]at +/§22Uat +\/1;5U¢]gn
where V, is the grid velocity, and the divergence theorem
/ ¢,V-Fd§2+/ F-V(l)de:/ ¢;F - ndl' (10)
(4 (4 r

Eq. 8 becomes
d 0¢;
— | UgdQ+ | ¢j(F—UV,) ndl — F-Vg+U— |d2=0 (11)
dt Q It QL at
The fundamental ALE relation for the total time derivative, Eulerian time derivative and
the spatial gradient is

%=%+Vg-v¢ (12)
We note that the total time derivative % is with respect to the grid velocity, in contrast to
the material derivative with respect to the fluid velocity. And also, the % here is equivalent
to the referential time derivative % |x in [38] where the subscript X was used to indicate
fixing the mapping position in the initial mesh; in our case, although we are not perform-
ing an explicit mapping from the initial configuration to the time-dependent element as
in [38], we are essentially using an implicit one-to-one mapping from the points (e.g., the
Gauss quadratures) on a standard reference element to the grid coordinates in the time-
dependent element. Thus in either case, we are tracking the grids when using this total
time derivative, i.e., holding the grid point label fixed.

Plugging this relation into Eq. 11, we end up with the rDG-ALE formulation

d do;
— / U¢de+/ o (F — UVg) -ndl’ —/ (F — UVg)~V¢de—/ U—-dQ =0
dt Q I Q dt

t t
e Qe

(13)

Note that Taylor basis functions [39] are used in the present work, which are defined on
the time-dependent physical element, and therefore are time-dependent, i.e.,

¢j = ¢;(t)
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except for j = 1, ¢ = 1 which is a constant and thus d¢,/dt is zero everywhere
and at any instant time. The resulting ALE formulation will be discretized in space
using the reconstructed discontinuous Galerkin method as in the Eulerian formulation
(18, 19, 22, 23, 27].

4 Geometric conservation law (GCL)
The Geometric Conservation Law (GCL) states that the fully discretized equations should
preserve a constant solution under arbitrary mesh movement, i.e., given a uniform initial
flow condition, the solution should be maintained by the devised ALE solver.

Consider the BDF1 temporal discretization scheme.

1 n+1  n+1 nn n+1 n+1 n+1lyn+1
At[/ﬁgﬂu ¢ ae - Qqubde + rg+1¢j (F — Uty )~ndF

¢{’1+1
_ (Fn+1 _ U}’l+lvn+1) A V¢n+1d§2 o U}’l+1 lidgz =0
Qutt g J Q! dt
(14)
Plugging a constant solution into the equation above leads to
1 n+1 n _ n+lym+1
Az |: et ¢ dQ /Qn ¢/'dQ2 | = - ¢V -ndl
’ (15)

n+1
— | vitl.vgrtlag + Y aq
Qitl g J Q! dt

This is the GCL equation that needs to be satisfied by the rDG method with BDF1 scheme.
Note that for a constant solution U, the Eulerian flux F vanishes due to its consistency

property. Unfortunately, this equation will not hold in general, even at the DG(PO0) (Finite
Volume) level which corresponds to ¢ = 1. To verify, plugging in the basis ¢ = 1, the
GCL equation reduces to

1
~ [t -] = /FM V, - ndl’ (16)

where the mesh velocity is defined as

xn—i—l —x"

Vy, = — (17)
The GCL equation above for FV states that the volume change between two successively
discretized time levels # and 7 + 1, equals to the volume flux at the element interfaces at
time level n+ 1 (time level # if using explicit time stepping). Unfortunately, this is not true
in general.

Here we follow the idea from the work of Mavriplis et al. [37]. The major difference
between the current work and that in [37] is that, the basis functions in [37] are defined
on the reference element, while the Taylor-basis functions used in the current work are
defined on the time-dependent physical element. This difference leads to two conse-
quences. First, in [37], the substantial derivative of the basis functions with respect to the
mesh motion will vanish, due to the definition of the basis function and the fact that the
reference element is invariant in time— thus the basis functions simply move with the grid
velocity and their values will never change. In contrast, for the Taylor-basis in this work,
they are defined on the time-dependent element, and if we consider a quadrature point,
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although it also travels with the mesh velocity, the value of its basis function is changing
in time inherently. Thus, an extra term containing the total derivative of the basis func-
tions will appear in this formulation. Second, in [37], the solution expansion is performed
on the reference element using the basis functions therein, thus the domain integral takes
on a different form than this work, i.e., in [37] the inverse of the transformation Jacobian
emerges when transforming the spatial gradient from reference element to physical ele-
ment, while in the current work the spatial gradient on the physical element can be used
directly without any transformation.

The idea of how to enforce the GCL condition stems from the space-time DG method.
Performing a full integration on Eq. 13 in both space and time (—on a space-time element,
as shown in Fig. 1) leads to

t+AL
f Urtlertlaq — / U'gldQ + / / ¢j (F —UVy) - ndl'dt
Qg+l J I‘é
t+At t+AL do;
_ / / (E—UV,) - VoydQdt — / / v aqar = o
] at P Qt dt

The GCL equation for space-time DG method is then obtained by plugging in a

(18)

constant solution

t+At
¢]f“+1dQ— ¢"dsz / ¢,Vg ndldt

t+AL t+AL do;
/ / V- VeydQdt + / f ’dszdt
QL QL

This GCL equation is automatically satisfied, provided enough Gauss quadrature points

QZI‘FI

(19)

are employed in both space and time to conduct the numerical integration.

Inspired from this property of space-time integration, a straightforward way to satisfy
the BDF1 GCL equation is to modify the right-hand side of Eq. 15 such that it works the
same way as its space-time DG counterpart Eq. 19. More explicitly, we want to have the
following conditions hold

A(t + At) At + At)
C(t+ At)

B(t +At)

A B(t + At)

A(t) C(t)

B(t)

B(t)

Fig. 1 Schematics for space-time integration at an edge (left) and cell (right)
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n+lym+1 At
o ¢/ Vg ondl = — t . $jV, - ndldt
1 1 1 t+At ’
/Q - Vit vertldg = ~ /t /Q , V, - VodQudt (20)
/ dqb,"“ o 1 t+Atf @dgdt
Qutl dt At J; Qt dt

However, as addressed in [37], although the values for these spatial integrals of grid
velocities can be obtained, they do not yield grid velocities themselves, and hence can not
be directly used in evaluating the integrals in Eq. 14.

Recall that eventually the numerical integration will be performed on the reference ele-
ment where the Gauss quadrature points reside, to this end, it’s beneficial to write the
above equations in terms of numerical integration on the reference element.

For BDF1 equation

i n+1 yn+1m+l g5 n AN J0 n+1 (gn+1 n+1lymn+1 n+1 1
At[/AU oI dG §6U¢j]d§2+fe¢j (F — Uty >~n] dt

Qe
d¢{’l+1
_f <Fn+1 _ Un+1vn+1> ) V¢(l+1]n+1d§ _/ Ul G — o
§e g ] §e dt
(21)
and for space-time DG
R R t+At e

/A UrtlertlrtlaQ — /A U} d + / /A ¢j (E—UV,) - njdldt

Q. Q t T, (22)

t+At R t+At dp; ~
— / / (E - UV,) - VoJdQadt — / / U—"JdQdt = 0
t ﬁe t ﬁe dt

Also the two GCL equations corresponding to the above discretizations can be rewrit-
ten accordingly as

1 n+lm+1 35 ol — n+lymn+1 +1
—At |;/§e ¢j J T dQ — S ¢j”]"d52 = S ¢j Vg’ -nJ"dldt
n+1 (23)

~ dp; ~
- / Vit vt laQdt + / — " dQdt
Q. g, dt

and

N R t+At -
- ¢;’l+1]n+1dQ_ /A ¢;’1]”d§2= / /A Vg - njdl'dt
Qe Qe t Ie

t+At R AL dg (24)
- f fA V, - VJdQdt + / / —2 Jddt
t Se t 9, dt
And the constraints we want to enforce can be rewritten as well
+1ym+l +1 5 I =~
n n n - .
- ¢V " TdD = ~ ft /F @V - njdldt
1 R 1 t+AL .
/A Vit vt = — /A V, - VejdQdt (25)
Qe At Jy Qe
dgit! N 1 [tHAr dbi
/ —L g = — f 9 i
6, dt At J; g, dt




Wang and Luo Advances in Aerodynamics (2021) 3:1

We require the following conditions hold at each Gauss quadrature point

el B 1 t+At
[¢Ve - W] = Az ¢V - njdt
t
1 t+At
[V, Vg™ = al Vg - VoyJdt (26)
d¢j n+1 1 t+At dqb,
= S dt
I

For the computation of the total time derivative of the basis functions, the finite differ-
ence could be used. After plugging these grid velocity terms into Eq. 14, the right-hand
side could be evaluated at time level # + 1.

For the higher-order ESDIRK temporal scheme (Explicit first stage, Single Diagonal
coefficient, diagonally Implicit Runge-Kutta) [27, 40, 41], we have similarly

1 S 1STS nnn r
= [/ U d — / U'p ]dQ:| § aS,/ [¢) (E—UV,) -nj] dT"
—§S o / [(F—Uv)~v¢«]]’d§—§ o / [Ud@]]rd?z:o s=1,2,..8

i sr 3. g 7 — sr a, dt 3 Ly eeey
(27)

where each stage corresponds to time t* = ¢” +c;At. Similarly, by comparing each stage of
the ESDIRK scheme with the space-time DG formulation, the following conditions could
be obtained, such that each stage will satisfy the GCL.

S . 1 [ireshe
Zasr [¢jvg : n]] = Az Vg - njdt
r=1 ¢
- 1 t+cs At
Y ey [Ve Vo] = 2, Vg - VyJdt s=12,.,S (28)
r=1
S
d¢] r 1 t+cs At d¢]
| == = — —=Jdt
;as[dt]} At J, Q"

Note that these conditions are required for each Gauss quadrature point. For the ESDIRK
scheme, this system of equations can be easily solved by forward substitution. We choose
the third order ESDIRK3 scheme for this work.

5 Mesh motion
In both the curved mesh generation and the pure mesh movement, the motion of the
boundary nodes is required to propagate to the interior ones properly, in order to avoid
invalid elements near the boundary and to maintain good mesh quality. That is, given the
displacements of the boundary nodes, it is desired to obtain the displacements for all the
interior nodes. With the motion of all the nodes in the mesh determined, one can then
move the mesh coordinates accordingly to accommodate the physics solver, e.g., the ALE
formulation for the fluid flow.

There are several types of methods in the literature dealing with the movement of the
interior nodes. Model based on physics (solid mechanics) is a popular one. Examples are
linear elasticity [7], non-linear elasticity [8], linear spring analogy [42] and torsion spring
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analogy [43]. This type of method requires the solution of a system of equations, ellip-
tic (Poisson-type) partial differential equations (PDE) in the case of the linear elasticity
model, thus is relatively computationally expensive. The second type is the interpola-
tion method or algebraic method, including radial basis function (RBF) interpolation [9],
explicit interpolation [44] and Delaunay graph mapping [12]. Kashi and Luo [10, 11] com-
pared the performance between RBF interpolation and some of the other methods. It is
found that the RBF method, based on the interpolation technique which is relatively fast,
can give good and robust results in general, especially for large or rotational deformations.

In the following moving airfoil test cases, the displacement or grid velocity of the wall
boundary are provided in advance. The RBF interpolation method is then used to com-
pute the deformation of the interior nodes, such that the nodes on the airfoil are in a rigid
motion, and those far away from the wall are kept static. We note that if a curved mesh is
to be used, then the high order nodes (e.g., midpoint of an edge in 2D) will also come into

play.
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 NNNENRENNSNNRNNSNNERNSNNTNNRN 0 L L
0 0.2 0.4 0.6 0.8 170 0.2 0.4 0.6 0.8 1
(a) t=0 (b) t=0.3T
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
o REAN! ‘ 0 ‘ VAV
0 0.2 0.4 0.6 0.8 170 0.2 0.4 0.6 0.8 1
(c) t=0.7T (d) t=1.0T
Fig. 2 Mesh deformation for the uniform flow test case
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Fig. 3 Initial mesh and density distribution for the isentropic vortex problem

Here we briefly recall the methodology of the RBF method. Interested readers are
encouraged to refer to [10, 11] and references therein for more information. The RBF
method states that, given N, boundary points in the mesh, we require the displacement
at any point x (both boundary nodes and the interior nodes) in the mesh satisfy

Njp
s00 = ) a6 (Ix — xpll) (29)
j=1

where ¢ (r) is the basis function, s represents the displacement vector field with 2 compo-
nents x- and y- in 2D ( x-, y- and z- in 3D), and a; are the coefficients to be determined.
Note that the RBF method will be applied to a scalar field, i.e., to each component indi-
vidually. In this work, we choose the modified Wendland’s C2 function [45] as the basis

0.8 092| 0.8

0.6 0.82| 0.6
0.4

072| 0.4

0.2 062) 02

0 0.2 0.4 0.6 0.8 0 0.2 0.4

(a) final-DG(P1) (b) final-rDG(P1P2)
Fig. 4 Computed density for DG(P1) and rDG(P1P2) discretizations of the isentropic vortex problem

0.6 0.8

Page 11 of 28
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function

o) = 51 ~#) (15 +1) r=n (30)

r>r

where 7 is called the support radius, indicating how far the boundary deformation will
propagate to the interior. Given the displacement of the boundary nodes, by substituting
these known coordinates and displacements into Eq. 29, we can construct a linear system
of equations for the coefficients a; in each dimension in space

Np
s(pi) = Y i (IIxpi — xp51)) (31)

j=1

or rewritten as
Aa=s (32)

When using Wendland’s C2 function, the resulting symmetric system is claimed to be
positive definite [45], thus can be easily solved by conjugate gradient (CG) or Choleskey
decomposition methods, or even direct methods. After solving the linear system, we can
evaluate the displacement for any interior nodes using Eq. 29.

6 Numerical examples

In all the following test cases, the 3rd-order accurate temporal discretization ESDIRK3
scheme is used, and the curved elements (Q2) are chosen for all the grids, in order to test
the applicability of the rDG-ALE method.

6.1 Uniform flow
The first test case is the uniform flow on deforming grids. The initial mesh is uniform on
a square domain defined in 0 < %,y < 1.0, and the mesh motion is prescribed by

x(t) = xo + dx(¢)

where

AxL t
dx(t) = —Zsin e sin ATt sin 5y
T T Ly Ly
AyL t
dy(t) = Y sin e sin ided sin %y
T T Ly Ly

where Ly = Ly = 1.0 and T = 1.0 are the reference length and time, A, = A, = 0.025 is
the deformation amplitude, 7, = n, = 4 and n; = 0.5 are for the deformation frequency

in space and time. The mesh deformation process is illustrated in Fig. 2. The Ly norm
of the numerical error is measured and observed to be around 10712, thus verifying the
Geometric Conservation Law (GCL).

6.2 Convection of an isentropic vortex

The convection of a 2D inviscid isentropic vortex is considered in this test case. All the
three spatial discretization methods, DG(P1), rDG(P1P2) and DG(P2) are employed in
the computations. The square domain 0 < x,y < 1.0 is considered for this test case as
well, with the same mesh deformation configuration as in the uniform flow case.
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The mean flow is set as (0oos Uoos Voos Poos Loo) = (1.0,0.5,0.0,1.0,1.0). At £y = O, the
flow is perturbed by an isentropic vortex centered at (xo, y0) = (0.25,0.25) with

2
ST = _wew(l—ﬂ)
16¢py 2

b= ===y’ 1), (33)

’

Sv = i(x — x0)e? (1=,
21

where r = \/(x — x0)2 + (y — yo)2 and ¢ = 1.0, = 4.0,y = 1.4.
The other conservative variables can be determined by the follows:
p=(Too+8T)V7D,
U= U + dU,
(34)
V= Vs + 31,
p=r".

The initial mesh and density distribution are shown in Fig. 3, and the computed solution
is shown in Fig. 4, for DG(P1) and rDG(P1P2), respectively. A mesh refinement study is
performed, in order to evaluate the convergence rate for different spatial discretization
schemes. The computed Ly norm for density is shown in Fig. 5. We can see the desired
orders of accuracy are achieved, and by comparing rDG(P1P2) with DG(P1), we can see
rDG(P1P2) not only has higher convergence rate, but the absolute error for rDG(P1P2) is
also smaller than the counterpart of DG(P1). Figure 6 presents the spatial error versus the
number of degrees of freedoms (dofs) for DG(P1) and rDG(P1P2). One can see that for a
given number of dofs, the numerical error of rDG(P1P2) is smaller than that of DG(P1),
which indicates that rDG(P1P2) is computationally more efficient.

To demonstrate the temporal order of accuracy of the ESDIRK3 scheme, we perform a
time-step refinement study, and compute the numerical errors. The results are shown in

Fig. 7. We can see that the designed 3rd-order of convergence has been achieved.

—&— DG(P1)
DG(P1P2)
—a— DG(P2)
-weweeeeee 2nd-order
------------ 3rd-order

Bz
=

logD(L2 error)

-3.5

-1.8 1.7 -1.6 15 14 1.3 12 -1.1 -1

log(h)
Fig.5 Spatial convergence rates for DG(P1), rDG(P1P2) and DG(P2) discretizations of the isentropic vortex
problem
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— =" DG(PI)
DG(P1P2)
—a— DG(P2)

25 e

log(Lz-em)r)

/

-3.5

1000 10000
log(DOFs)

Fig. 6 Degrees of freedom versus spatial error for DG(P1), DG(P1P2) and DG(P2) discretizations of the
isentropic vortex problem

6.3 Oscillatory NACA0012 airfoil

Pitching and heaving are typical motions for an airfoil. In this test case, we consider the
flow over a NACAO0012 airfoil harmonically pitching about the quarter chord length, in
order to show the capability of the rDG-ALE method. The Mach number of the freestream
condition is Ma = 0.755, Reynolds number Re = 5.5 x 10° and the specific heat ratio
y = 1.4. The mesh motion is dictated by the time-dependent angle of attack (AoA) of the
airfoil: @ () = oy, + apsin(wt), where oy, = 0.016 degree is the mean incidence, op = 2.51
degree the pitching amplitude, and the reduced frequency wc/(2Uy) = 0.0814, with ¢
the chord length and Uy the magnitude of the freestream velocity. The computational
domain is a circle region with radius R = 20, and the leading edge of the airfoil is at the

—=— ESDIRK3
"""""" 3rd-order

-35 / ,.,,,«, ,....,...,_

45

log(L2 error)
IS

-6.5 -
-2.6 24 22 -2 -1.8 -1.6 -1.4 -1.2 -1

log(dt)

Fig. 7 Temporal convergence rate for ESDIRK3 scheme on the isentropic vortex problem
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Fig. 8 Initial mesh for the pitching NACA0012 case

-20

origin (%o, y0) = (0,0), thus pitching axis at (xp,y,) = (0.25,0). The initial mesh and
zoomed-in grids near the airfoil at two different angles of attack are shown in Figs. 8 and
9, respectively. Given the above harmonic motion for the points at wall boundary and
the static points at the far-filed boundary, the movement of the interior nodes is inter-
polated from the RBF method. With the airfoil motion and the flow field being periodic,
the unsteady solutions after a reasonably long time of computation should be used for
analysis.

As in the experiments by Landon [46], the normal force coefficients C,, and pitching

moment coefficients C,, are defined as

Cp = /01 (c; — c;’) d(x/c)

1
C, — / (Cﬁ _ C;’) (0.25 — (x/))d(x/c)
0

where

5 B INOTN
0.5 0.5 m"’éﬁ%
. : . : K]
-0.5 v PO N -0.5 COSISRXD 47‘5
ALY ' - SERORRK
PR PR
15 ; Av“> V 1.5F ' ‘ 4“"'
LINE B S VAVA I VAV VAN

o 2
(@ a=0.0 (b) @ = am + o

Fig. 9 Zoomed-in mesh near the airfoil. left: initial mesh; right: mesh at maximum angle of attack
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Cp = f — po;
5 Poo us,

is the pressure coefficient, and the subscript co denotes the freestream quantity, while
superscript L and U denote the lower and upper surfaces respectively.

The computed normal force coefficients and pitching moment coefficients, with respect
to the angles of attack and time, respectively, are shown in Figs. 10 and 11. The numerical
solutions are in good agreement with the experimental data by Landon [46]. Note that
while the experiment is viscous, we treat this problem as an inviscid one, which may lead
to some difference between the numerical solution and the experimental data.

0.5 ‘
rDG-ALE ———
04 | Experiment  x
03 ; /ﬁ
0.2 // = /
_ ol 7 Y4
5, a4
-0.1 / /
02 F /
03 é//
-0.4
3 2 -1 0 1 2 3
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(a) Normal force coefficient
0.02 e
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0.01 / TN
0.005 % \\\
Q N
0
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-0.02 \‘Q\E@
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Experiment

-0.025

-0.015 \\X \/
4
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AoA

(b) Pitching moment coefficient

Fig. 10 Normal force coefficients (a) and pitching moment coefficients (b) versus angles of attack (in degree)
of the pitching NACA0012 case
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Fig. 11 Time history for normal force coefficients (a) and pitching moment coefficients (b) of the pitching
NACA0012 case

6.4 Pitching NACAO0015 airfoil

The laminar flow around a rapidly pitching NACAO0015 airfoil is considered in this test
case. The freestream has a Mach number Ma, = 0.2 with specific heat ratio y = 1.4. The
Reynolds number based on the chord length and the freestream condition is Re = 10, 000.
The pitching axis is at a quarter chord length from the leading edge, and the mesh motion
is prescribed by the pitching rate of the airfoil: w(£) = wo(1.0 — exp(—4.6¢/tp)) rad/s,
where ) = ¢/Ux is the reference time, wy = 0.6Us /¢, with ¢ being the chord length and
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U the freestream velocity. The flow field computed at zero angle of attack is used as the
initial condition for this unsteady simulation.

The computational domain is (—15,15) x (—15, 15), with the airfoil located at the cen-
ter. The initial mesh and the zoomed-in mesh near the airfoil at three different angles of
attack are shown in Fig. 12. As usual, the RBF method is used to compute the movement
of the interior mesh nodes, i.e., the nodes on the airfoil move according to the above vari-
ation of the angle of attack, while those at far-field are kept static. It can be seen that the
mesh quality near the wall is well maintained, even at a large angle of attack. Two sets of
curved grids are used in this numerical experiment. For the coarse mesh, the minimum
and maximum wall normal spacings are 0.005 and 0.008, respectively, with 180 nodes
on the airfoil, while for the fine mesh, the minimum and maximum normal spacings are
0.00037 and 0.0006, with 200 nodes on the airfoil.

In Fig. 13, the instantaneous normalized vorticities w,c/ Uy at three different angles of
attack are presented. It can be seen the vorticities near the wall of the airfoil formed and
transported towards downstream. In Fig. 14, the computed lift coefficients and drag coef-
ficients are compared with the simulation data from Visbal et al. [47] and Ren and Xu
et al. [38]. From the comparison we can see that the computed results with coarse mesh

I~
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VAV Y oo et
0 VAVAVAV. S
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R N <] NZAN
F U DIRPRINA
10F %%’ - VEE@E?VAVA'

S
AN

o
FroTr rorT

£

SYAZAVAN
SEAS

15 -10

(c) a = 45 degree (d) o = 57 degree

Fig. 12 Initial mesh and mesh at three different angles of attack for the pitching NACA0015 case
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Fig. 13 Normalized vorticity contour at three different angles of attack for the pitching NACA0015 case
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are in good agreement with the reference data, while those on the fine mesh have rela-
tively large discrepancies with the references, especially for the lift coefficients. In general,
fine mesh should better capture the flow structures due to its finer resolution. While the
reason for the occurrence of this phenomenon is not quite clear and is still under investi-
gation, there could be a number of factors that might contribute, for example, as pointed
out in [38], how to compute the mesh velocity at the cell interface has a significant effect
on the numerical solution, and a variable mesh velocity along cell interface is necessary
for a high order method, after comparing the results from a piecewise constant grid veloc-
ity and a variable mesh velocity [38]. In the current work, a quadratic interpolation from

10 . ‘
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Fig. 16 Lift coefficients (a) and drag coefficients (b) versus normalized time for the plunging SD7003 case
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the three nodes of an interface (two end nodes and one midpoint) is used to obtain the
variable mesh velocities.

6.5 Plunging SD7003 airfoil
The flow over a moving SD7003 airfoil has been investigated both experimentally and
numerically in the literature. McGowan et al. [48, 49] conducted a set of experiments on
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Fig. 17 Comparison of normalized vorticities with experiment at t = 0T for the plunging SD7003 case
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the purely plunging or pitching SD7003 airfoil, using particle image velocimetry (PIV)
in a water tunnel, besides, the numerical solutions from both CFL3D and an immersed
boundary method are compared with the experimental data. Visbal et al. [50] performed
the computations in which the grid is moved in a rigid fashion, as opposed to the
smoothing or interpolation approaches, e.g., the RBF method.
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Fig. 18 Comparison of normalized vorticities with experiment at t = 1/4T for the plunging SD7003 case
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In this work, the flow over the high-frequency plunging SD7003 airfoil is simulated
using the rDG-ALE method. The Reynolds number based on the chord length and the
freestream velocity is Re = 10,000, and the specific heat ratio y = 5/3. The airfoil is set
at a static angle of attack o9 = 4 degree. The plunging motion is prescribed as /() =
hosin(2kUsot/c) where hg = 0.05c¢ is the plunging amplitude and k = 3.93 is the reduced
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Fig. 19 Comparison of normalized vorticities with experiment at t = 2/4T for the plunging SD7003 case
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frequency, with ¢ the chord length and U, the freestream velocity. Although the motion-
induced angle of attack could be as high as 21.5 degree which leads to unsteady separation
and the generation of dynamic-stall-like vortices at the leading edge, the transition effects
are observed to be minor for this low Reynolds number (Re = 10, 000) [50]. To show the
compressibility effect for this test case, we choose two Mach numbers, Ma = 0.2 and
0.05, as in Ren and Xu’s paper [38].
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The computational domain is a circle region with radius R = 20. Figure 15 shows the
initial mesh and zoomed-in mesh. The number of nodes on the airfoil is 200 and the wall
normal spacing is approximately 0.0006. The time-dependent lift coefficients and drag
coefficients are compared with the experimental data from McGowan et al. [48, 49]., and
shown in Fig. 16. We can see that at Ma = 0.05 the lift coefficient has an excellent agree-
ment with the experimental data, while a phase lag is observed for both the lift and drag
coefficients at Ma = 0.2. The computed vorticities are also compared with the experi-
mental data, shown in Figs. 17, 18, 19 and 20, respectively, for two time instances. We can
see they agree well with each other.

7 Conclusions

A reconstructed discontinuous Galerkin method has been presented for solving the
unsteady compressible Navier-Stokes equations in an arbitrary Lagrangian-Eulerian
(ALE) formulation on moving and deforming curved grids. The Taylor basis functions
used in the rDG method are defined on the time- dependent physical space, where the
GCL condition is ensured by modifying the grid velocity terms on the right-hand side of
the discretized equations. The radial basis function (RBF) interpolation method is devel-
oped to provide the mesh motion for the interior nodes, given the motion of the boundary
nodes. A third order ESDIRK3 integration method is used to advance solutions in time.
The developed rDG method has been assessed for a number of benchmark test cases. The
numerical results obtained by the rDG method are compared with the available experi-
mental data and reference solutions in the literature, demonstrating that the developed
rDG-ALE method is able to achieve the designed spatial and temporal orders of accuracy
and provides an effective approach for solving moving or deforming domain problems.
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