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Abstract

For the general case of a spatial isoenergetic flow of ideal gas, Helmholtz’s theorems
are generalized and the speed with which vortex tubes move is found, keeping the
intensity. It is shown that along the streamline without stagnation point, vorticity
either is equal to zero everywhere, or it is non zero at all. The pattern of vortex lines
behind the three-dimensional detached bow shock wave is specified.
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1 Introduction
At flow with a uniform supersonic stream, the detached bow is formed in front of

a body with the blunted nose part or with a high angle in a forward angular point,

exceeding the marginal value up to which the attached shock is possible. For the

specified reasons, the surface of such a shock is curved and generates vortex gas

flow behind them. Properties of vorticity on the surface of curved shock waves

near bluff bodies are rather well studied (see Refs. [1, 2]). For the flow behind the

shock, the main known result consists that in a plane case the ratio of vorticity to

pressure I1 =Ω/p is constant along streamlines, and in axisymmetric case the

analogous invariant is I2 =Ω/(pr), r being the distance from axis of symmetry [3].

In Ref. [4], it was shown that for any fluid or gas flow, along with the real flow

velocity u, there is a speed U of some imagined environment whose particles

transfer vortex tubes (that is vector tubes of the vorticity field) with maintaining

their intensity. Classical theorems of Helmholtz [5] show that for barotropic ideal

fluid fictitious speed U coincides with the real flow velocity u.

In Ref. [4], the method of determination of the speed U for any flow is also suggested.

But this approach is not local, because calculation of the velocity field U requires integra-

tion of hydrodynamic functions along vortex lines. So far local methods to calculate U

were known only for two types of flows. The first one – already mentioned barotropic

ideal fluid flows, where U = u. The second type – the plane-parallel and axisymmetric

nontwisted flows of viscous incompressible fluid, for which according to Refs. [6, 7]

U ¼ u−ν½Ω� ½∇�Ω��=Ω2;

where ν is kinematic viscosity coefficient. The new class of flows for which it is pos-

sible to offer a local method to calculate U is found in this paper.
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Helmholtz’s theorems aren’t valid for non barotropic flows. In particular, such flows

may be isoenergetic that is supposed further. Flows behind detached shock waves in

front of blunted bodies in a uniform supersonic stream belong to this class. Since the

surface of detached shock is curved, the entropy of gas crossing it gains various entropy

values on different streamlines, making a flow non barotropic and, according to Crocco

theorem [8], − vortex. However, it has turned out that for such flows, analogs of Helm-

holtz theorems are valid. Expression of speed of vortex tubes motion with maintaining

their intensity is found in this paper, and it is shown that all vortex lines behind the

shock are closed and once cover the streamline, beginning in the shock point where

the tangent plane is orthogonal to the free stream direction.

2 Equations of gas motion
The relationship between gas pressure p and density ρ has the form p = σρk, where – k

is the ratio of specific heats, σ is entropy function which is constant along streamlines

and for the flows considered, has different values on various streamlines. At the same

time, such flow is isoenergetic, that is, the total enthalpy (energy) k(k − 1)−1pρ−1 + u2/2

is constant everywhere. Crocco theorem [8] being in our case

Ω� u ¼ k−1ð Þ−1pρ−1∇ lnσ; ð1Þ

is supplemented with the continuity equation

div ðρuÞ ¼ 0: ð2Þ

Gas dynamic functions u, ρ and p, are supposed to be twice continuously differenti-

able on spatial coordinates.

3 Vortex alternative
Equation (1) may be written as

p−1Ω
� �� ρuð Þ ¼ k−1ð Þ−1∇ lnσ:

Applying the rotor operation to both parts of this equation, taking into account eq.

(2) and equality div Ω = 0, valid since vorticity Ω = rot u, gives

ρðu � ∇Þ ðp−1ΩÞ − ð ðp−1ΩÞ � ∇ÞðρuÞ − ρuð ðp−1ΩÞ � ∇lnpÞ ¼ 0:

The flow velocity is represented in the form u = ue, ∣e ∣ = 1. Under the condition

u ≠ 0, the last equation is equivalent to the following one

e � ∇ð Þ p−1Ω
� �

− p−1Ω
� � � ∇� �

e−e p−1Ω
� � � ∇ ln pρuð Þ� � ¼ 0: ð3Þ

Let’s consider an arbitrary streamline with the vorticity Ω =Ω(l), where l is variable

arc length along this streamline. Then we may write

e � ∇ð Þ p−1Ω
� � ¼ d

dl
p−1Ω
� �

: ð4Þ

Denote ex, ey, ez and Ωx, Ωy, Ωz unit vector e and vorticity vector Ω components in

some Cartesian coordinate system Oxyz, F = ln(pρu). Using these notations and equality

(4) it is possible to write vector eq. (3) along the streamline considered in the matrix

form:
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The matrix elements depend on both gasdynamic functions themselves and on their

first derivatives, and are continuous (and limited) functions along arbitrary streamline,

where velocity value u ≥ u0 > 0 with any arbitrary positive amount u0 > 0. If we consider

the matrix elements to be given functions of the variable l, matrix eq. (5) represents the

system of scalar ordinary differential equations for the vector p−1Ω components. This

system is linear, its coefficients being continuous and limited. Hence, from the theorem

of existence and uniqueness for systems of ordinary differential equations, it follows

that along all the streamline considered either |p−1Ω| ≡ 0, or |p−1Ω| ≠ 0. Since the

above reasoning is valid for an arbitrary value u0 > 0, we come to the following conclu-

sion named vortex alternative:

If velocity value isn’t zero along some streamline of steady isoenergetic flow, then the

vorticity value |Ω| either identically equals zero or |Ω| ≠ 0 along all the line.

4 Speed of vortex tubes transfer

Using the expression for entropy function we rewrite eq. (1) as follows Ω� ð
ðρ=ρ0Þ1−kuÞ ¼ ðk−1Þ−1ρk−10 ∇σ ,

where ρ0 is some reference gas density (for instance, in free supersonic stream). Ap-

plying rotor operation of the both sides, bearing in mind vorticity field solenoidal prop-

erty (divΩ = 0), we find that the function

U ¼ ρ=ρ0
� �1−k

u

satisfies the following condition ∇ × [Ω ×U] = 0.

According to Zorawski criterion (Ref. [9]), we obtain the following generalization of

classical Helmholtz theorems:

In nonbarotropic isoenergetic gas flow vortex lines and vortex tubes move at the

speed U, and the intensity of vortex tubes is preserved.

Note that vortex lines are immovable in the steady flow considered, and the function

U should be considered as the speed of imaginary environment particles. Its particles

which constitute vortex tube at some time moment and move at the speed U will con-

stitute the vortex tube of the same intensity at every subsequent moment. Thus choos-

ing different ρ0 values we shall “observe” motion of fictitious particles at different

speeds, while the steady vorticity field pattern naturally will be the same.

5 Vortex lines behind detached shock wave
We consider a smooth convex body in a uniform supersonic stream with the formation

of detached shock wave. We arrange the rectangular Cartesian system of coordinates

Axyz having the origin in some point on the shock so that its z axis coincides with a

normal to the shock surface. Considering that the shock also has the smooth form and

a condition of continuity of a tangent velocity component, it is simple to be convinced
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that the normal vorticity component has the same property of continuity. As the

vorticity in uniform free supersonic stream is equal to zero, the normal vorticity

component on both sides of the shock is also equal to zero, that is, vortex lines lie

on the shock.

It follows from the eq. (1) that vortex lines lie on isentropic surfaces σ = const.

Entropy function on the shock surface has the same value on the line along which

the normal to jump makes the same angle with a vector of free stream speed. Such

lines lying on the shock of a smooth convex shape, are closed and encompass the

only point in which the vector of a normal is parallel to the free stream speed (see

Fig. 1).

Further for brevity this point is called leading point. It is obvious that the stream

surfaces beginning on the above mentioned closed lines, represent isentropic sur-

faces σ = const, on which, as also noted above, vortex lines lie. The result obtained

in the previous section allows to specify vision of vortex lines pattern. Really, parti-

cles of the imagined fluid which make the closed vortex lines lying on the shock

in some time moment move downstream with a speed U = (ρ/ρ0)
1 − ku and continue

to make vortex lines (see Fig. 2).

Owing to the continuity of the speed U, we come to the following conclusion:

Behind the curved shock wave all vortex lines are closed and encompass the stream-

line beginning at the shock leading point.

This property is valid for both subsonic and supersonic flow domains behind the shock.

One more important property follows from a vortex alternative (see Section 3). Since

the leading point vorticity is zero, it is equal to zero on the whole streamline leaving

the leading shock point.

Fig. 1 Closed vorticity lines on the shock surface

Golubkin and Sizykh Advances in Aerodynamics            (2019) 1:15 Page 4 of 6



6 Conclusion
Based on the analysis of the full 3D Euler equations of steady non barotropic isoener-

getic flows of ideal gas, generalization of Helmholtz theorems is obtained and expres-

sion for the speed of vortex tubes motion with maintaining their intensity is founded.

It is shown that on each streamline without stagnation points, vorticity either is identi-

cally equal to zero, or doesn’t equal to zero at all (a vortex alternative). It is also shown

that in the general spatial case, the field of vorticity behind the curved shock wave hav-

ing the leading point is characterized by the following properties:

1. Vortex lines are closed and only once cover the streamline beginning in the shock

leading point.

2. Vorticity is zero along the streamline leaving the shock leading point.
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