
RESEARCH Open Access

Fractal dimension analysis as an easy
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Abstract

Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast
cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a
concern. Fractal dimension analysis is a computational image processing technique that allows assessing the
degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for
introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A)
Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images
from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised
100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images
were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal
dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas
images on 400x did not present differences in their means. On set B, the mean Db values presented promissing
statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p <
0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data
corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided
diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in
diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to
understand the progression of the histological alterations in cancer.
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Introduction
Breast cancer is the most incident malignancy in women
across the world (Cardoso et al. 2017). Despite the great
variability at the molecular level, this cancer is curable in
70% to 80% of the early-stage cases (Cardoso et al. 2017;
Harbeck et al. 2019). The possibility of remission under-
scores the importance of correct and rapid diagnosis. Al-
though screening and initial detection rely on imaging
techniques and clinical features, the final diagnosis is
majorly reached upon needle biopsy followed by histo-
pathological analysis (Irwig et al. 2002; Harbeck et al.
2019).
Histopathology is a powerful tool in the diagnosis of

breast cancer, as well as it is the standard diagnosis in
the great majority of other malignancies. As for breast
alterations, pathological investigation and report have
been well-established; World Health Organization
(WHO) provides constant updates on the classification
of the pathological entities regarding breast cancers
(Sinn and Kreipe 2013). Furthermore, the histopatho-
logical diagnosis and further classification of breast can-
cer are at the core of prognosis and treatment decisions
(Sinn and Kreipe 2013). Nevertheless, despite training
and standardization, it is considered operator-dependent
and subject to errors (Nguyen et al. 2004; Chan and
Tuszynski 2016). Recent results have shown interob-
server classifications of breast cancer pathological
samples to be considerably good (Rabe et al. 2019);
but some discrepancies still may be found (Bueno-de-
Mesquita et al. 2010). Considering the possibility of
interobserver differences when diagnosing malignan-
cies, attempts to automate or employ algorithms to
aid diagnosis gain attention. Computer-aided diagno-
sis, thus, aims at maximizing the reliability of the
histopathological assessment (Chan and Tuszynski
2016). The ability to either fully diagnose or allow ex-
cluding images with specific features may be of great
interest to improve the final diagnostic made by the
pathology professional.
Image processing techniques have shown success in

improving cancer diagnosis through several mechanisms.
Recent advances have been made into classifying histo-
pathological images of malignancies (Mohammadzadeh
et al. 2015); machine learning algorithms have shown to
be promising tools (Benzheng Wei et al. 2017; Komura
and Ishikawa 2018; Dimitriou et al. 2019; Iizuka et al.
2020). Apart from microscopy, other sources of images
have also yielded possible means for diagnosing several
types of cancers, i.e.: radiological results (Li et al. 2017;
Adel et al. 2019; Hu et al. 2020). Emphasis should be
given to the recent results produced by Shen et al., who
successfully improved detection by analyzing mammo-
grams through their deep learning algorithms (Shen
et al. 2019).

The rationale underlying the automated or computer-
aided cancer detection involves, at least: 1) image pre-
processing; 2) extracting identifiable features; and 3) cor-
relating the features to the diagnostic. In this scenario,
the identification of parameters that could successfully
differentiate cancer images and, thus, aid in the diagno-
sis are of great interest (Chan and Tuszynski 2016;
Angel Arul Jothi and Mary Anita Rajam 2017). The frac-
tal dimension (FD) has been employed in several initial
works as a possible manner of differentiating malignant
tissue in microscopy images (Cross and Cotton 1992;
Tambasco et al. 2010; Braverman and Tambasco 2013;
de Arruda et al. 2013; Waliszewski et al. 2015; Maipas
et al. 2018). FD is, ultimately, a mathematical entity cap-
able of determining the complexity of two-dimensional
objects. The computation analysis of complex objects
largely benefits from being understood under the lenses
of fractal geometry (Nayak et al. 2019).
Carcinogenesis involves, as per definition, among other

characteristics, impaired cellular proliferation control
and the capacity of invading tissue (Hanahan and Wein-
berg 2000). These hallmarks imply that the formation of
a tumor generally progresses with distortion of the tissue
architecture, altering its complexity in comparison to the
healthy counterpart. Such notions, in addition to the
previous works in which FD was used, have guided us to
further study the utility of FD in diagnosing malignan-
cies in histopathological slides from different sources.
Although the fractal analysis involves a complex con-

cept, we aim here to provide a user-friendly computa-
tional protocol able to assess the presence of
malignancies in breast tissue slides. The underlying the-
ory of the present work is that the tissue architecture is
sufficiently altered during carcinogenesis to be detected
by fractal analysis, as the complexity of the tissue is
quantifiable with this technique.

Material and methods
Datasets used for analysis
In the present work, we aimed at establishing the per-
formance of FD as a feature capable of distinguishing
breast carcinomas from normal tissue and benign alter-
ations. With that purpose, we employed images from
two different databases: a) Breast Cancer Histopatho-
logical Database (BreakHis – available at: https://web.inf.
ufpr.br/vri/databases/breast-cancer-histopathological-
database-breakhis/) (Spanhol et al. 2016); and b) Grand
challenge on breast cancer histology images (BACH –
available at: https://iciar2018-challenge.grand-challenge.
org/download/) (Aresta et al. 2019). Both sets were gen-
erated from clinical specimens stained with hematoxylin
and eosin and are available on the respective websites
for download and consultation. All slides received previ-
ous histopathological diagnostic as described by the
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authors who made them available (Spanhol et al. 2016;
Aresta et al. 2019). Tables 1 and 2 summarize the diag-
nostics. Characteristics regarding the composition and
peculiarities of each database will be discussed in the re-
sults section.

Computational environment and box count fractal
dimension measurement on ImageJ
We performed all measurements using the FracLac algo-
rithm on ImageJ. This computational environment al-
lows for easy measurement of the fractal characteristics
of the images while not requiring expertise in program-
ming. Furthermore, the FracLac plugin allows analyzing
images as a batch. The FracLac algorithm was operated
on the batch mode with the following setup: sampling
sizes 3 pixels; minimum pixel size 1 pixel; the maximum
percentage of the image 5%. The images were previously
converted into binary by using a customized macro
function on ImageJ.
So as to understand the process, results are obtained

through the following path:

1) The slide images from each group and database are
initially simplified into binary images;

2) The edges in the images are detected;
3) FracLac defines boxes of progressive sizes with

which it gathers data and yield the box-counting
fractal dimension (Db).

Considering the direct correlation between FD and the
complexity of two-dimensional images, we aimed at
assaying the alterations regarding complexity assumed
by tissues that underwent malignant transformation.
The Db was, then, our variable of interest when making
all statistical comparisons.

Statistical analysis
All calculations and graphics were produced on the
GraphPad Prism 9. One-way Welch ANOVA was
employed to interrogate statistical differences on all
means. We compared the results within each set. A
ROC curve was also calculated from both sets, so as to
establish the plausibility of cut-off values (of Db) for
good sensitivity and specificity. We assumed differences

to be statistically significant at p < 0.01, however, p-
values will be displayed for each comparison.

Results and discussion
Characteristics of the datasets
Both sets contain an impressive number of images de-
rived from clinical specimens of breast cancer as well as
benign alterations. The BACH set also possesses normal
breast tissue slides. Thus, in our analyses, we were able
to fully compare the histological status to their Db.
Considering the BreakHis set had been previously

studied on the work of Chan et al. (Chan and Tuszynski
2016) with prominent results for the slides captured
under 40x magnification, we have only analyzed the im-
ages on 40x and 400x magnifications. All images on the
BACH set were captured under 200x magnification. The
composition of each set is summarized in Tables 1 and 2
– only the images analyzed are displayed on the tables.
The images on BreakHis set were derived from

samples of 24 patients with benign alterations and 58
cancer patients. BreakHis images were captured with
the resolution of 700 × 460 pixels, while the ones on
the BACH set had the resolution of 2048 × 1536
pixels.
Although both sets only had images captured from

slides produced in a single laboratory (Spanhol et al.
2016; Aresta et al. 2019), the images on the BreakHis set
were less homogenous. Upon visual inspection, the im-
ages on the BACH set displayed a more homogenous
staining (Fig. 1). No direct measure for that is currently
possible, however, we hypothesized it had some impact
on our capacity of employing the fractal dimension to
differentiate the images.

Table 1 Summarized composition of the number of images on the BreakHis set

BreakHis (40x and 400x)

Benign Malignant

Adenosis Fibroadenoma Tubular
Adenoma

Phyllodes
Tumor

Ductal
Carcinoma

Lobular
Carcinoma

Mucinous
Carcinoma

Papillary
Carcinoma

114 (40x)/106
(400x)

253 (40x)/237
(400x)

109 (40x)/115
(400x)

149 (40x)/130
(400x)

864 (40x)/788
(400x)

156 (40x)/ 137
(400x)

205 (40x)/ 169
(400x)

145 (40x)/ 138
(400x)

Total 625 (40x)/588 (400x) 1370 (40x)/1232 (400x)

Table 2 Summarized composition of the number of images on
the BACH set

BACH (200x)

Normal Breast Tissue Benign Malignant

In situ Invasive

100 100 100 100

Total 100 100 100 100
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Box count fractal dimension analysis
On Fig. 2, we display a schematized evolution of how
the images (at 40X and 200X) are analyzed with the
protocol described. Note that at a higher magnifica-
tion, the edges detected are mostly from the nuclei,
while the 40X image depicts the tissue architecture
better. Figure 3 shows representative images

associated with the box count fractal dimension (Db)
associated with them.
Figure 4 summarizes the distribution of Db associated

with each image.
In order to start analyzing, we compared each possible

group with a one-way ANOVA protocol, the main re-
sults are summarized in Table 3.

Fig. 1 Representative images of sets BreakHis and BACH. A’-A”’) Breast tissue images from the BreakHis set captured under 40x magnification; B′-B
″’) Breast tissue images from the BACH set captured under 200x magnification

Fig. 2 Analysis protocol with a representative image from the BACH set. a Benign slide from BreakHis set (40X); b Binarized image (40X); c Edge
detection (40X); d-f Depict the protocol applied to a higher magnification image, 200X
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Statistical analysis revealed that with the BreakHis
dataset, slides captured under 40x presented different
mean Db when comparing benign and malignant results,
whereas the 400x images did not allow this differenti-
ation. This initial result corroborates with the study per-
formed by Chan et al. (Chan and Tuszynski 2016). On
our data, the BACH set was analyzed and presented
noted statistical differences when comparing both nor-
mal and benign tissue images to malignant ones. Our
primary consideration regarding the BreakHis data is
that when analyzing a greater proportion of the tissue
(40x), fractal analysis was able to better infer malignancy.
Thus, the 400x magnification images did not yield sig-
nificant differences in mean Db. Although these results
are in accordance with the literature, we had consider-
ably more promising results even when analyzing the
BACH set images under 200x magnification. From that,
we may hypothesize that the greater resolution and the
considerable staining homogeneity (visually) among
these images might be the reason for such better results.
Refer to Table 3 for all p-values.
While malignant and benign images captured under

400x magnification in the BreakHis were not statistically
different, we still noted mean Db differences between
benign images and those from ductal and lobular carcin-
omas (p = 0.0030 and p = 0.0047, respectively). These are

particularly interesting results. We may conclude that
the fact that ductal and locular carcinoma implies in
deeper tissue architectural alterations yielded this out-
come even under 400x magnification. Figure 5 displays a
graphical representation of the mean differences.
When considering only the BACH data, we had differ-

ences in the comparison between normal, benign, and
both types of malignant breast alterations, in all possible
combinations. Interestingly, mean Db could not differen-
tiate normal and benign-altered tissue, which further
corroborates with the notion that the fractal analysis al-
lows for a computational-aided investigation of the tis-
sue architecture (Klonowski et al. 2010; Chan and
Tuszynski 2016). Slides assigned normal and benign re-
sults do not display important alterations on the
organization of the tissue. Of note, the mean Db values
for normal and benign slides on BACH had lower values
than the in situ and invasive counterparts. That logic
was inverted in relation to the BreakHis (40x), probably
due to the higher magnification, resolution, and
consistency.
So as to assign diagnostic power to the Db results, we

performed a receiver operator characteristic (ROC) curve
analysis of the data derived from the BACH set (Fig. 6).
The area under the curve was of 0.7742, with p <

0.0001(C.I. 99%: 0,7140 to 0,8343).

Fig. 3 Representative comparison of Db obtained from images produced from the BACH set. A and A’: normal breast tissue; B and B′: invasive
breast carcinoma
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Taking only the BACH data into consideration,
we may detect Db cut-off values suitable for both
considerable specificity and sensitivity. From the
ROC curve analysis, the Db value of 1.530 yields
98% sensitivity. Sensitivity remains above 90% until
Db = 1.619.

Conclusion
Data produced from box count fractal dimension ana-
lysis produced mean values of Db that were statistically
significant when comparing malignant tissue and benign
(as well as normal) of both the BreakHis set (on 40x
magnification) and the BACH set.

Fig. 4 a Db distribution between benign and malignant images from BreakHis under 40x magnification; b Db distribution between benign and
malignant images from BreakHis under 400x magnification; c Db distribution between normal tissue, benign and malignant images from
set BACH
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Table 3 Summary of the statistical analysis between each group inside each set and magnification

Set and Magnification Group Compared p-value Statistical Significance

BreakHis – 40x Benign vs. Malignant 0.0003 Yes

Benign vs. Ductal CA 0.0895 No

Benign vs. Lobular CA 0.0089 Yes

Benign vs. Mucinous CA < 0.0001 Yes

Benign vs. Papillary CA < 0.0001 Yes

Malignant vs. Tubular Adenoma 0.2993 No

Malignant vs. Adenosis 0.4519 No

Malignant vs. Fibroadenoma < 0.0001 Yes

Malignant vs. Phyllodes Tumor 0.1533 No

BreakHis – 400x Benign vs. Malignant 0.1452 No

Benign vs. Ductal CA 0.0030 Yes

Benign vs. Lobular CA 0.0047 Yes

Benign vs. Mucinous CA 0.4533 No

Benign vs. Papillary CA 0.4031 No

Malignant vs. Tubular Adenoma 0.0187 No

Malignant vs. Adenosis 0.9419 No

Malignant vs. Fibroadenoma 0.0001 Yes

Malignant vs. Phyllodes Tumor 0.5604 No

BACH – 200x Normal vs. All Malignant < 0.0001 Yes

Normal vs. in situ CA < 0.0001 Yes

Normal vs. Invasive CA < 0.0001 Yes

Normal vs. Benign 0.0852 No

Benign vs. in situ CA < 0.0001 Yes

Benign vs. Invasive CA < 0.0001 Yes

All malignant vs. Normal + Benign < 0.0001 Yes

Fig. 5 a One-Way ANOVA analysis results reported as mean with 95% confidence interval of the benign and malignant images from BreakHis
under 40x magnification; b One-Way ANOVA analysis results reported as mean with 95% confidence interval of the benign and malignant images
from BreakHis under 400x magnification; c One-Way ANOVA analysis results reported as mean with 95% confidence interval of all comparisons
performed on set BACH
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The notion that fractal analysis succeeds in detect-
ing the degree of complexity on images allows proper
interpretation of some of our results: e.g.: 1) there
was no statistical difference between normal tissue
and benign breast alteration samples; and 2) on the
400x magnification slides from the BreakHis set, we
still had some statistically significant difference be-
tween benign alterations, and lobular or ductal carcin-
omas. Nevertheless, we could not achieve classifying
tumors with our technique. The capacity of differenti-
ating samples regarding their complexity appears as
an important.
The capacity of differentiating images regarding the

complexity of the tissue captured figures is an important
parameter for histopathological analysis. The uncon-
trolled proliferation and cell-to-cell signalization result
in progressive architectural changes with the malignant
transformation (Tambasco et al. 2010; Hanahan and
Weinberg 2011). Taking all together, these results cor-
roborate with the possibility of employing the fractal
analysis as one parameter for computer-aided histo-
pathological analysis. The fact that one of the sets
yielded results calls our attention to the possibility of
producing algorithms to be employed inside each labora-
tory, which may be fed and progressively enhanced with
the addition of images. Furthermore, the fractal analysis
seems to be an important parameter to be observed in
other cancers, both for diagnosis and for better under-
standing the progression of the histopathological
features.

We have performed all analyses under considerably dir-
ect and user-friendly computational conditions. Our aim
here was to show this technique as a viable and useful tool
for the future clinical practice of histopathology. Further
studies will still be performed in order to fully standardize
this technique to achieve its potential for clinical settings.
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