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Alternative pathways for hydrogen sink 
originated from the ruminal fermentation 
of carbohydrates: Which microorganisms are 
involved in lowering methane emission?
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Abstract 

Agriculture is responsible for a great share of the anthropogenic sources of greenhouse gases that, by warming the 
earth, threaten its biodiversity. Among greenhouse gas emissions, enteric CH4 from livestock is an important target 
to slow down climate changes. The CH4 is originated from rumen fermentation and its concentration is affected by 
several factors, including genetics and nutrition. Ruminants have an extraordinary symbiosis with microorganisms 
(bacteria, fungi, and protozoa) that ferment otherwise indigestible carbohydrates, from which they obtain energy to 
grow and continue actively producing, among other products, volatile fatty acids, CO2 and H2. Detrimental ruminal 
accumulation of H2 is avoided by methanogenesis carried out by Archaea methanogens. Importantly, methanogen‑
esis is not the only H2 sink pathway. In fact, other bacteria can reduce substrates using metabolic hydrogen formed 
during carbohydrate fermentation, namely propionate production and reductive acetogenesis, thus lowering the 
CH4 produced. Although the complexity of rumen poses challenges to mitigate CH4 production, the emergence of 
sequencing techniques that allow the study of microbial communities, gene expression, and metabolome are largely 
contributing to unravel pathways and key players in the rumen. Indeed, it is now recognized that in vivo emissions of 
CH4 are correlated to microbial communities, and particularly with the abundance of methanogens, several bacterial 
groups, and  their genes. The goal of CH4 mitigation is to work in favor of the natural processes, without compro‑
mising rumen function, animal health, and productivity. Notwithstanding, the major challenge continues to be the 
feasibility and affordability of the proposed solutions.
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Introduction
Global warming threatens biodiversity alongside the life 
of humans. Among other gases, the release of CO2 and 
CH4 into the atmosphere contributes significantly to 
the greenhouse effect, a phenomenon that prevents the 
reflection of solar energy back from the earth’s surface, 

causing a rise in temperature [1]. Agriculture is respon-
sible for a great share of the anthropogenic sources of 
greenhouse gases (GHG) [1]. According to FAO (2013), 
GHG emission from livestock represents 14% of human-
induced emissions, being beef and dairy cattle the main 
contributors [2]. Within the livestock sector, feed pro-
duction, processing, and transportation account for ≈ 
45% of total GHG, followed by enteric CH4 emissions (≈ 
40%) [2]. Therefore, acting over this latter source consti-
tutes an opportunity to achieve the goals of the Green 
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Deal, which seeks for a 55% cut in GHG emission by 
2030, compared to 1990 levels [3].

Although animal farming is often cited as the cause 
of the problem, it can actually be part of the solution. 
If other anthropogenic activities (e.g., burning of fossil 
fuels) slow down the emission of CO2, mitigation of GHG 
emission, or at least the share from the livestock sector, 
might be achieved by sequestration of carbon in grass-
lands [4]. Carbon from the atmosphere (CO2) is fixed in 
the soil mainly through plant photosynthesis and thus 
converted into organic material (e.g., grasses and for-
ages), which is then consumed by grazing animals [5]. 
From the ruminal fermentation of carbohydrates, CH4 is 
produced at the expense of energy and released into the 
atmosphere, where after approximately 10 years, it is bro-
ken down and converted back into CO2, giving continuity 
to the natural carbon cycling, in a process called the bio-
genic carbon cycle (Fig.  1) [6]. Therefore, in theory, the 
reduction of animal production, which entails a decrease 
in protein availability, is not the only alternative to tackle 
GHG emission. Instead, enhancing animal productiv-
ity while decreasing CH4 might be a sustainable option, 
not compromising feed for a growing population. In the 
latest years, a lot of effort has been put into the study of 
animal breeding [7], vaccines [8], dietary management, 
and additives [9], as means to mitigate CH4 emissions. 
Despite positive results reported in some studies, there 
is still not a consensus at a global scale, mainly because 
the efficacy and feasibility of each proposed strategy are 
affected by several factors. Such include the farming sys-
tem, acceptability of both consumers and farmers, poli-
cies, and financial support [10].

As the majority of CH4 is produced in the rumen, strat-
egies for mitigating CH4 emissions, necessarily affect 

the rumen microbiome and vice-versa. The rumen is 
harbored by a consortium of microorganisms including 
protozoa, bacteria, archaea, and fungi that conjointly 
enable the fermentation of otherwise indigestible carbo-
hydrates such as cellulose and hemicellulose into volatile 
fatty acids (VFA; e.g., acetate, propionate, and butyrate). 
Other products of carbohydrate fermentation include 
formate, ethanol, lactate, succinate, branched-chain vola-
tile fatty acids, ammonia, CO2, and H2 [11]. Dissolved H2 
and CO2 are utilized by methanogens, a group of micro-
organisms belonging to the Archaea domain, to form 
CH4. Despite being the main pathway to avoid the accu-
mulation of H2 in the rumen, methanogenesis constitutes 
a loss of energy, reflected in animal productivity (e.g., 
methane emission has been correlated to residual feed 
intake [12]) and is strongly affected by diet (e.g., the level 
of concentrate has been correlated to CH4 yield in graz-
ing cows [13, 14]). However, methanogenesis is not the 
only H2 sink mechanism in the rumen [15], being alter-
native pathways worth exploring. Therefore, the present 
work aims  to summarize mitigation of CH4 production, 
via alternative H2 disposal pathways, namely, propionate 
production and reductive acetogenesis.

Microbial composition of the rumen
The rumen is a foregut ecosystem that hosts an enormous 
number of microbes living in symbiosis with the host. It 
is estimated to harbor a concentration of archaea of 107 
to 109 cells/ml, bacteria of 1010 to 1011 cells/ml, protozoa 
of 104 to 106 cells/ml, and fungi of 103 to 106 cells/ml [16]. 
Putting these into perspective, the number of ruminal 
microbial cells of an adult dairy cow (estimated volume of 
50 to 200 L) [17] is 40 to 500 times the number of human 

Fig. 1  Simplified scheme of rumen methane production and emission and the biogenic carbon cycle. C designates carbon, fixated in plants from 
CO2 through photosynthesis, which is then consumed by animals as carbohydrates. VFA, volatile fatty acids; IC, intermediary compounds and/or 
other products
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cells constituting an adult body (assuming the estimation 
of 3.72 × 1013 total cells by Bianconi et al. [18]).

Archaea
Archaea in the rumen consist of methanogens belonging 
to the phylum Euryarcheota [19]. It is represented by four 
orders Methanobacteriales, Methanococcales, Metha-
nomicrobiales, and Methanosarcinales [20]. Methano-
bacteriales include the genera Methanobacterium and the 
dominant genus Methanobrevibacter, which is divided 
into two clades, (1) clade Methanobrevibacter gottschalki 
that also includes the species Mbb. thaueri and Mbb. 
millerae; and (2) clade Methanobrevibacter ruminantium 
that also includes Mbb. olleyae [21]. Most methanogens 
use H2 for the reduction of CO2 into CH4 [22], although 
formate might also be used instead of CO2 by Methano-
brevibacter, some strains of Methanobacterium spp., and 
Methanomicrobiales, such as genus Methanomicrobium 
[20]. In addition, methanogens of order Methanococ-
cales and Methanosarcinales can utilize methyl groups 
(e.g., genus Methanosphaera also uses methanol, whereas 
genera Methanosarcina and Methanimicrococcus also 
use methylamines), and acetate (e.g., Methanosarcina) to 
produce CH4 [20]. Methanol is originated from the dem-
ethyoxylation of dietary pectins, whereas mono-, di-, and 
tri-methylamines are mainly end-products of plant phos-
phatidylcholine degradation [23]. The structure of the 
methanogenic community at the species or strain level 
has been correlated with feed efficiency [24]. Moreo-
ver, some authors argue that feed efficiency is related to 
CH4 emissions [12, 25], although the link between both 
is complex and influenced by multiple parameters related 
to the rumen microbiome [26] and host factors (e.g., 
passage rate and nutrient absorption) [27]. Importantly, 
dominant archaea groups were found similar in samples 
collected from ruminants across the globe, which is likely 
an advantage to develop and implement worldwide strat-
egies to mitigate CH4 emissions targeting methanogens 
[19].

Bacteria
The rumen harbors cellulolytic and non-cellulolytic bac-
teria, being the first able to degrade cellulose and hemi-
celluloses. Primary cellulose fermenters are Fibrobacter 
succinogenes, Ruminococcus flavefaciens, and Ruminococ-
cus albus. These bacteria are non-motile, adhering exten-
sively to the fibers through the glycocalyx, and  having 
cellulases located on the cell surface [28]. They hydrolyze 
cellulose and other polysaccharides (e.g., hemicelluloses 
and pectin), producing cellodextrins to utilize as a source 
of energy and make available for cross-feeding [28]. This 
is important to provide nutrients for the growth of other 
bacteria and/or non-adherent cells of the same species 

that are poised to adhesion to new feed particles [29]. 
Secondary cellulose fermenters, including Butyrivibrio 
fibrisolvens, Clostridiurn longisporum, and Clostridium 
locheadii, might be motile or non-motile, adhering mini-
mally to fibers, and having extracellular cellulases [28]. 
Non-cellulolytic bacteria, able to degrade starch, hemi-
celluloses, or pectin, might include Prevotella rumi-
nantium, Eubacterium xylanophilum, Ruminobacter 
amylophilus, Succinimonas amylolytica, Succinivibrio 
dextrinosolvens, Selenomonas ruminantium, Selenom-
onas lactilytica, Lachnospira multiparus, Streptococcus 
bovis, and Megasphaera elsdenii [30].

Despite the great diversity of bacterial species in the 
rumen, an extensive study reported the existence of 30 
most abundant bacterial groups comprising ≈ 89% of 
total sequences found on livestock species [19]. Among 
them, Prevotella, Butyrivibrio, and Ruminococcus, 
unclassified Lachnospiraceae, Ruminococcaceae, Bacte-
roidales, and Clostridiales were predominant, having an 
abundance of ≈ 67%. Later works analyzing metagen-
ome-assembled genomes (MAGs) revealed the existence 
of new genomes from the Actinobacteria, Fibrobacteres, 
and Proteobacteria phyla, also highlighting the abun-
dance of genus Succinivibrio [31].

The existence of a core ruminal bacterial microbiome 
has been suggested, despite a clear variation associated 
with host and diet [19]. Indeed, a study reported that 
the breed is more determinant for metabolites and bacte-
rial communities of bovines than diet and life-stage [32]. 
Even though the age and time of weaning significantly 
affect the diversity and abundance of rumen microbial 
communities [33], it has been suggested that coloniza-
tion of rumen starts in utero, as samples collected in goat 
fetuses allowed the identification of sequences mainly 
belonging to the phylum Proteobacteria [34]. Also, three 
moments were shown to produce important shifts in 
rumen bacteria: delivery, milk intake, and weaning [34]. 
Moreover, it was reported that the rumen microbial 
colonization is affected differently by natural or artificial 
milk feeding systems [35], and the inoculation of young 
ruminants with fresh rumen fluid from adult animals 
enhanced microbial colonization, likely improving rumen 
development [36]. Furthermore, early life modulation 
of the rumen microbiome has been a matter of study 
regarding its effectiveness when compared to later inter-
ventions for the improvement of rumen fermentation 
and reduction of CH4 emission [37].

Protozoa
Contrary to archaea and bacteria, ciliate protozoa vary 
across ruminants of different species as well as indi-
viduals of the same species [19]. A study in cattle indi-
cated that Entodinium, Diplodinium, Eremoplastron, 
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Ostracodinium, Eodinium, Epidinium, Isotricha, and 
Dasytricha were among the most abundant genera (> 1%) 
of a total of 13 identified in the ruminal fluid by micro-
scopic identification and counting [38]. Conversely, in 
sheep and goats, 12 and 8 genera were identified, being 
Dasytricha, Entodinium, Eudiplodinum, Diplodinium, 
Isotricha, and Metadinium the more abundant (> 1%) 
in both species, and Enoploplastron, Ophryoscolex, and 
Polyplastron only in sheep [39].

Protozoa attach to the surface of partially digested 
feed particles, in which other microorganisms exert 
high fibrolytic activity, allowing them to take advantage 
of monosaccharides (e.g., glucose, cellobiose, and cel-
lodextrins) that they use as their source of energy for 
growth and metabolism [40]. Also, protozoa predate 
bacteria from which they obtain amino acids for growth 
and maintenance [41]. Non-surprisingly, ciliate pro-
tozoa affect the diversity of ruminal bacteria [42] and 
end-fermentation products. However, protozoa are not 
essential for ruminal fermentation and removal of pro-
tozoa from the rumen, also called defaunation, does not 
seem to significantly impact animal health, although 
feed digestibility might be affected [41]. The potential 
of defaunation to mitigate CH4 emission has been stud-
ied [43, 44]. The external surface of protozoa is a site for 
methanogen attachment (ectosymbionts) or intracellular 
colonization (endosymbionts), which are attracted by the 
H2 produced in protozoan hydrogenosomes [41]. This 
symbiosis enhances methanogenesis and favors protozoa 
as it reduces the levels of H2, enabling them to continue 
the fermentation of monosaccharides left by bacteria. 
Indeed, the protozoan-associated methanogens are esti-
mated to be responsible for 37% of CH4 emission [45], 
and a meta-analysis including several in vivo studies con-
cluded that a reduction of protozoa concentration was, in 
most cases, associated with a reduction of CH4 emission 
[46]. Nevertheless, as noted by some authors, defauna-
tion has implications on other metabolic pathways (e.g., 
fatty acids), which likely justifies a holistic view of the use 
of this strategy for CH4 mitigation [47]. Ionophore addi-
tives were suggested for reduction of CH4 emission, due 
to their positive [48] and transient effects [49] on reduc-
tion of protozoans and methanogens. However, envi-
ronmental contamination with still active antibiotics is 
detrimental for the environment and needs to be consid-
ered [50]. Other strategies targeting rumen protozoans 
include the supplementation of plant metabolites, such as 
essential oils, which disrupt protozoal membrane, indi-
rectly reducing methanogens [51–53].

Fungi
More than 90% of fungi sequences isolated in the rumen 
remain unclassified [54], however, the presence of 

anaerobic fungi belonging to phylum Neocallimastigo-
mycetes (genera Neocallimastix, Caecomyces, Piromyces, 
Anaeromyces, Orpinomyces, and Cyllamyces) is acknowl-
edged [55]. Fungi are infrequently found in strained 
rumen fluid because zoospores attach and colonize 
(encyst and germinate to produce the fungal thallus) the 
plant fragments suspended in the rumen natural digesta, 
being only then released by the sporangia [56]. This may 
have contributed to a greater unawareness of the impor-
tance of their fibrolytic activity. Nonetheless, fungi have 
enzymes to degrade plant cell wall carbohydrates [55] 
and are indeed more efficient in degrading lignin than 
bacteria [57]. In co-culture with methanogens, Neocal-
limastix exhibited high lignocellulose-degrading activity 
with the production of CH4 and acetate [58]. Other stud-
ies support the importance of fungi as substrate and elec-
tron donors for methanogenesis [59], which makes fungal 
metabolic pathways an attractive subject for study in the 
context of the mitigation of CH4 emission.

Ruminal carbohydrate digestion
Plant cell wall polysaccharides are arrangements of gly-
cosidic linkages (e.g., mono-, di-, and oligosaccharides) 
and noncarbohydrate moieties [60], and might be ana-
lytically grouped into cellulose, hemicellulose, and pec-
tin [30]. Cellulose, the most abundant component of cell 
wall plants, is formed by β-glucose and other hexoses. 
Whereas, hemicellulose, mainly composed of pentoses 
with linear xylose chains and variable linkages of ara-
binose, uronic acids, and galactose, is the second most 
abundant [61]. Pectin is present in the primary cell wall 
and has d-galacturonate in its structure [30]. Moreover, 
starch, a non-structural carbohydrate, is composed of 
α-glucose, constituting the major carbohydrate storage in 
plants and an important source of energy for ruminants 
[62]. Ruminal microorganisms cleave complex glyco-
sidic bonds mainly through glycoside hydrolases. Indeed, 
the enrichment in those enzymes observed in Bacteroi-
dales, including Prevotellaceae, Fibrobacteres, and some 
Clostridiales [63], affords them a competitive advantage 
justifying its higher abundance in the rumen.

Chewing and rumination are important for carbohy-
drate digestion carried out by ruminal microorganisms, 
as it facilitates the adhesion of bacteria to plants, hydrat-
ing and disrupting the protective cuticular layer of plants 
[29]. After specific adhesion, in which bacterial-substrate 
linkages and adhesins are developed, the proliferation 
and colonization of plant tissues are initiated [29]. This 
is possible because the fermentation of sugars leads 
to the formation of ATP, the main source of energy for 
microorganisms [61]. Microbial enzymes degrade the 
hexoses primarily  through the Embden-Meyerhof path-
way, originating NADH and pyruvate. Hemicellulose 
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has two pathways for degradation, the transketolase and 
transaldolase reactions of the pentose cycle or phos-
phoketolase, with the products originated entering the 
Embden-Meyerhof pathway [61]. Continuation of the 
metabolism of the intermediate compound pyruvate is 
dependent on the oxidation of cofactors (e.g., NADH) 
through pathways that lead to the formation of lactate, 
succinate, acetate, propionate, butyrate, ethanol, and 
valerate [64]. The several reactions that occur in rumen 
fermentation entail the formation and incorporation 
of metabolic hydrogen [H]. Formation corresponds to 
the transfer of electron donors of metabolic intermedi-
ates to oxidized intracellular cofactors (highlighted in 
pink in Fig.  2). Conversely, incorporation corresponds 
to the transfer from reduced intracellular cofactors to 
metabolic intermediate electron acceptors (highlighted 
in green in Fig.  2) [65]. This electron transfer is carried 
out by hydrogenases and originates H2. Furthermore, H2 
and CO2 might also be originated from the conversion of 
formate in the pyruvate-ferredoxin oxidoreductase [64]. 
Hydrogen is then transferred between producing species 
(bacteria, protozoa, and fungi) and hydrogenotrophic 
microorganisms, mainly methanogens.

Methanogenesis and CH4 emission
Rumen methanogenesis is known to occur by three dif-
ferent pathways: hydrogenotrophic (A), acetoclastic (B), 
and methylotrophic (C) [20]:

(A)	4H2 + CO2 → CH4 + 2H2O

	 4HCOOH → CH4 + 3CO2 + 2H2O

(B)	CH3COOH → CH4 + CO2

(C)	4CH3OH → 3CH4 + CO2 + 2H2O

	 4CH3 − NH2 + 2H2O → 3CH4 + CO2 + 4NH3

	 2(CH3)2 − NH + 2H2O → 3CH4 + CO2 + 2NH3

	 4(CH3)3 − N + 6H2O → 9CH4 + 3CO2 + 4NH3

Hydrogenotrophic methanogenesis is largely the most 
frequent, which likely occurs because the energetics 
involved is more favorable, resulting in slower growth 
rates and lower cell yields for microorganisms involved 
in the other methanogenesis pathways [22]. The genus 
Methanobrevibacter, a highly abundant hydrogenotroph, 
has been correlated with high CH4 emissions in steers 
[66], heifers [67], and dairy cows (more particularly Mbb. 
gottschalkii and Mbb. ruminantium) [68]. In turn, Metha-
nosphaera (methylotroph) was negatively correlated with 
CH4 emission in heifers [67] and dairy cows [69, 70]. This 
might be explained by the stoichiometric of the reaction, 
as one mole of CO2 is required to produce one mole of 
CH4 (A), while four moles of methanol are required to 
produce three moles of CH4 (B) in the methylotrophic 
pathway [69]. Interestingly, the methylotrophic pathway 
appears to be more significant in young calves compared 

to mature cows [71]. Even though methylotrophs might 
have a lower CH4 yield, they release NH3 to add to the 
amount already produced by proteolytic bacteria [72]. 
Importantly, methyl-coenzyme M reductase, which cata-
lyzes the final step of methanogenesis is common across 
the different methanogenesis pathways [73], which is 
likely an advantage for strategies intending to target 
directly methanogens. An example is 3-nitrooxypro-
panol, a molecule that was shown to inhibit methanogen-
esis by oxidizing the active site Ni(I) of methyl-coenzyme 
M reductase [74].

Despite the differences reported in microbial abun-
dances, metagenomic and metatranscriptomic sequenc-
ing studies showed that the increased expression of 
methanogenesis pathway genes explains the increase in 
CH4 emissions, which might itself be regulated by a sub-
strate effect [75]. The diversity of methanogens in the 
rumen has been correlated to CH4 emission. A study 
using co-abundance analysis of rumen microorganisms of 
cows reported that low-CH4 emitting animals had a more 
diverse community of methanogens involved in the three 
methanogenic pathways, compared with high-CH4 emit-
ting ones, which had low numbers of hydrogenotrophic 
methanogenic genera [76]. This shows that methanogen 
diversity is correlated to CH4 emission and highlights 
the interaction between communities and competition 
among methanogens for H2. Also, low-CH4 cow emitters 
exhibited a more complex microbial network composed 
of a diverse microbiome, more specifically, bacterial and 
fungal genera and their genes [76]. Indeed, differences 
in the microbiome of low- and high-CH4 emitters are 
not limited to methanogens, which is not surprising as 
the availability of precursors for methanogenesis is dic-
tated by the fermentative microbial consortium. Experi-
mentally, S. dextrinosolvens in co-culture enhanced a 
member of Methanomassiliicoccales and inhibited the 
activity of a member of the Mbb. gottschalkii clade [77]. 
An in  vivo study showed that low-CH4 emitting sheep 
were associated with an elevated abundance of l-lactate 
dehydrogenase genes, an enrichment of genus Sharpea 
(family Erysipelotrichiacaea), and decreased abundance 
of families Lachnospiraceae and Ruminococcaceae [78]. 
These results were confirmed by another study using 
MAG on microbial sequences collected in high and low 
CH4 emitting sheep, allowing the identification of dif-
ferential abundance of other genera and microorganisms 
at the species level [31]. Low-CH4 emitting sheep had, 
in addition to previously mentioned, a high abundance 
of Kandleria, Fibrobacter, and Selenomonas at a genus 
level, whereas at a species level, Fibrobacter succinogenes 
and several species of Bifidobacterium, Olsenella, Des-
ulfobrivio were more abundant [31], compared to high 
emitting sheep. In dairy cows, the abundance of genera 
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Fig. 2  Scheme of rumen carbohydrate fermentation pathways into volatile fatty acids (bold lined boxes) and other intermediate metabolites. The 
rumen H2 sink pathways are displayed: reductive acetogenesis (1), methanogenesis (2), sulfate reducers (3), and nitrate reducers (4)
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Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivi-
brio, Shwartzia, and Treponema was associated with low 
CH4 emission in one study [69] and with genus Eubacte-
rium in another, in which rumen samples of heifers were 
analyzed [67]. It is important to consider that effects of 
the host (e.g., ruminant species), diet as well as meth-
odologies (e.g., sequencing technique and/or 16S rRNA 
hypervariable region selected) might preclude a direct 
comparison of microbial composition across studies.

Age and physiological states affect the rumen micro-
biome composition and thus CH4 yields, as shown in a 
study in heifers, in which the interaction of genera Prevo-
tella and Methanobrevibacter was associated with the 
CH4 yield, while in older cows, the significant interac-
tion was between Methanobrevibacter and Succinivibrio 
[79]. Interestingly though, a study reported that early 
and late lactation stages were correlated with different 
levels of CH4 emissions not accompanied by changes in 
the rumen microbiome [80]. In a study with Colombian 
buffalos, the genus Prevotella was associated with low 
CH4 emissions [81]. Despite the differences reported in 
archaea composition between buffalo and cattle [82], 
this bacterial group seems relevant for CH4 emission of 
both species. As some authors pointed, the host geno-
type affects the phenotype of CH4 emission, in addition 
to its microbial community [81]. Indeed, one study indi-
cated that H2-producing bacteria explained up to 24% of 
CH4 phenotypic variance, and host genome, 14% [70]. In 
another study, the CH4 emission had a cumulative effect 
of archaea and bacteria of 13% and 21% of host genetics 
[83]. Despite the percentage difference, both studies sug-
gest that targeting the rumen microbiome of low-CH4 
emitting animals (through breeding programs) is possible 
and likely more effective than not considering the host 
genome and heritability of the trait.

Alternative pathways to H2 sink
As previously stressed, the concentration of H2 deter-
mines the CH4 produced, while the production of H2 
is determined by the prevailing pathways of glucose 
fermentation. The fermentation into butyrate (D) and 
acetate (E) entails a potential production of one mole of 
H2 (per mole of glucose), whereas propionate (F) entails 
a net incorporation of one mole of H2 (per mole of glu-
cose) [65]. This balance considers the reducing equiva-
lents [2H] produced and incorporated through several 
reactions (Fig.  2). Microbial cells able to change their 
fermentation patterns and better adapt to certain condi-
tions are likely more active degrading the available sub-
strates, thus managing to expand [84]. The concentration 
of H2 conditions the fermentation pathway, affecting the 
free energy change between reactants and products in 
which the  microbial biomass thrives. Summarily, high 

concentrations of H2 favor the productions of propionate, 
whereas low concentrations of H2 favors the production 
of acetate [11]:

(D)	C6H12O6 → 2CH3CH2CH2COO
−
+ CO2 + 2H2 +H

+

(E)	C6H12O6 + 2H2O → 2CH3COO
−
+ 2CO2 + 2H

+
+ 4H2

(F)	C6H12O6 → CH3CH2COO
−
+ 2H2O + 2H

+

A recent study analyzing MAGs of the microbiota of 
gastrointestinal ruminants reported that 48% encoded 
enzymes for fermentative H2 production, 1.5% for 
H2-uptake hydrogenases and the methyl-coenzyme M 
reductase (mcrA genes) related to hydrogenotrophic 
methanogenesis, while 11% encoded both hydroge-
nases and the required terminal reductases of alterna-
tive methanogenesis pathways. Acetogenesis constituted 
3% of MAGs, fumarate 1.9%, and sulfate reduction 0.8% 
[26]. It has been proposed that the microbial hydro-
genases and fermentation pathways are differentially 
regulated through direct H2 sensing by putative sensory 
[FeFe]-hydrogenases [15]. Indeed, sensory hydrogenases, 
as well as fermentative and bifurcating hydrogenases, 
are highly expressed in Clostridiales, Bacteroidales, and 
Selenomonadales, whereas methanogenic hydrogenases 
are present, by order of expression, in Methanobacteri-
ales > Methanomassiliicoccales > Methanosarcinales [15]. 
Moreover, low-CH4 emitting sheep were reported to have 
higher hydrogenase and terminal reductase transcripts 
from alternative H2 uptake pathways, which might even 
serve as a larger H2 sink than methanogenesis, compared 
to high-CH4 emitters [15]. This highlights the preponder-
ant role of the bacterial consortium in determining H2 
metabolism  and the strategies of methanogens to com-
pete and affect H2 utilization, and thus CH4 emission.

Dietary manipulation of H2 production has been 
attempted to reduce CH4 emissions, and it is highly asso-
ciated with changes in ruminal microbiota. Higher con-
centrations of H2 are associated with high starch content 
diets, likely because H2 release outgrows the capacity of 
H2-consuming microorganisms, leading to an accumu-
lation [85]. Hydrogen accumulation was also associated 
with diets containing tannin-rich peanut skin provided 
to beef cattle due to the reduction of H2-using microor-
ganisms, including populations of Bacteroidetes phylum, 
total methanogens, Methanobrevibacter, and protozoa, 
concomitantly reducing methanogenesis [84]. Supple-
mentation of non-fermentative sources, such as Mg, was 
shown to increase ruminal dissolved H2, which affected 
the microbiota, decreasing the copy number of fungi in 
goats [86].

In addition to diet effects, host factors and 
H2-producing microorganisms interact, conditioning 
H2 production. Indeed, a study in sheep reported that 
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animals with a smaller rumen volume emitted propor-
tionally less CH4, presumably because their higher feed 
rate passage selected microorganisms able to grow on 
soluble sugars that can be quickly degraded [78], thus 
increasing H2.

Directly targeting methanogens and potentiating other 
H2-using microorganisms (e.g., propionate pathway, 
reductive acetogenesis, nitrate, and sulfate reduction) 
have been proposed as strategies to mitigate CH4 emis-
sions. Sulfate-reducing bacteria (e.g., nitrate-reducing 
propionibacteria, Wolinella succinogenes, and Veille-
nolla parvula) can reduce nitrate and nitrocompounds 
into N2O and NH4 [87], and although studies [88] have 
proven it effective in decreasing methanogenesis, con-
cerns over toxicity have hindered its use and motivated 
further research to develop safer additives (e.g., encap-
sulated nitrite [89]). Sulfate-reducing bacteria (e.g., 
Desulfovibrio) reduce sulfate into H2S, competing with 
methanogens for H2 and reducing methanogenesis if 
ruminal levels of sulfate increase [90]. Despite thermody-
namics and matrix affinity favors sulfate reduction over 
methanogenesis, as seen in marine sediments [90, 91], 
the product is highly toxic to the animal.

Propionate pathway
Ruminal propionate originates mainly from succinate and 
acrylate pathways. The fermentation of carbohydrate-
rich diets with high levels of soluble sugars promotes the 
proliferation of amylolytic microorganisms such as S. 
bovis [92], Lactobacillus, and Bifidobacterium [93] that 
reduce pyruvate into lactate. In physiological conditions 
(no acidosis), microorganisms such as M. elsdenii and 
Coprococcus catus produce propionate from lactate via 
the acrylyl-CoA, using the acrylate pathway [94]. Indeed, 
both M. elsdenii and C. catus were correlated to higher 
feed efficiency and lower CH4 emissions in dairy cows 
[95].

The production of propionate from lactate can also 
occur with a first oxidation to pyruvate, followed by car-
boxylation to oxaloacetate, reduction to malate, dehy-
dration to fumarate, reduction to succinate, and a final 
decarboxylation to propionate (Fig.  2) [96]. This, also 
called the ‘randomizing’ pathway, might be carried out 
by microorganisms such as S. ruminantium [97] and Suc-
ciniclasticum ruminis (unable to ferment substrates other 
than succinate) [98]. According to an in vitro study, the 
addition of fumarate-reducing bacteria, Mitsuokella jala-
ludinii, lowered methanogen DNA copies and occurrence 
through competition for H2 [99]. Similarly, supplementa-
tion with enterococci (E. faecalis and E. faecium) exhib-
ited fumarate reductase activity, with an increase of 
propionate and a decrease of CH4 [100]. Another in vitro 
study reported the potential effects of propionic bacteria 

on ruminal feed degradation by showing a reduction of 
CH4 from 8 to 20% associated with one strain of Propion-
ibacterium jensenii and two of Propionibacterium thoe-
nin [101]. Lactiplantibacillus plantarum was also shown 
to decrease in vitro CH4 production and increased propi-
onate [102]. In turn, an in vivo study showed that, when 
provided for 4  weeks to lactating primiparous cows fed 
contrasting high-starch or high-fiber diets, Propionibac-
terium freudenreichii, Lactiplantibacillus pentosus, and 
Lactobacillus delbrueckii subsp. bulgaricus did not affect 
CH4 emissions [103]. This highlights the need to further 
study the in vivo effects of lactic acid bacteria to elucidate 
any potential correlation with the in vitro positive results. 
The use of lactic acid bacteria requires finding delivery 
options that have already been implemented in the global 
farming system (e.g., silage inoculants and direct-fed 
microbes), a challenge that must be addressed [104].

Manipulation of fiber content, namely by the replace-
ment of forage fiber by non-forage fiber sources, pro-
moted an expansion of Firmicutes over Bacteroidetes and 
of Methanobrevibacter over Methanomassiliicoccus, and 
a successful shift of H2 flow towards the propionate path-
way [105]. Furthermore, feed supplementation with sapo-
nin (which causes cell rupture and lysis of protozoan) was 
shown to shift fermentation products, lowering butyrate 
and increasing propionate [106].

In vivo studies associated other bacteria such as gen-
era Succinivibrio (family Succinivibrionaceae), Roseburia, 
and Blautia (family Lachnospiraceae) with the increase 
of propionate, when testing diets that differed in the corn 
processing techniques [107]. Furthermore, family Succin-
ivibrionaceae were effectively associated with high propi-
onate and low CH4 yield [66, 108].

Adding to its potential as a methanogenesis competi-
tor, the increase of propionate production is advanta-
geous for cows’ health and efficiency. The major share 
(50 – 75%) of propionate produced is absorbed into the 
portal vein [109]. Propionate is the main precursor of 
hepatic gluconeogenesis and essential to supply glucose 
to the mammary gland,  thus contributing to support 
milk production [110]. Furthermore, infusions of propi-
onate led to greater plasma progesterone concentrations 
post-ovulation, which can affect follicular development 
and pregnancy rates, and thus improve reproductive effi-
ciency [111].

Reductive acetogenesis
Acetogenesis has been documented as an alternative to 
methanogenesis, in which via the acetyl-CoA pathway, 
two moles of CO2 and four moles of H2 are incorporated 
per one mole of acetate produced (G), in a thermody-
namically feasible set of reactions.
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(G)	 4H2 + 2CO2 → CH3COOH + 2H2O.

Acetogens degrade multiple substrates (e.g., pentoses, 
hexoses, alcohols, formate, and methyl groups) in addi-
tion to H2, and in the rumen of cows and sheep, the dom-
inant microorganisms are members of Lachnospiraceae, 
Clostridiaceae, and Ruminococcaceae families [112, 113]. 
The threshold value for H2 utilization is lower for metha-
nogens than it is for acetogens, which renders reduc-
tive acetogenesis a disadvantage. Therefore, increasing 
H2 pressure would remove methanogenesis thermody-
namic advantage [114]. An in  vitro study reported that 
supplementation of acetogen Eubacterium limosum was 
able to produce acetate when methanogens were sup-
pressed concomitantly, but a minimal change in CH4 
production was observed when methanogenesis was not 
inhibited [115]. Similarly, in  vitro supplementation with 
E. limosum and Proteiniphilum acetatigenes decreased 
CH4 concentrations, increased acetate, whereas in  vivo, 
P. acetatigenes was associated with high milk protein, 
lower somatic cell counts, and lower decline of milk pro-
duction over 60 days [116].

Conclusions
Several in vivo studies employing sequencing techniques 
have revealed distinct ruminal microbial communi-
ties between high- and low-CH4 emitting animals. That 
knowledge has recently been prompted by metagen-
omics and transcriptomics that allow not only studying 
the rumen microbial composition but also its function, 
unraveling genes and pathways involved in the metabo-
lism of H2. The goal of successful interventions is likely 
shifting H2 from methanogenesis, exploiting natural pro-
cesses, without compromising rumen physiology. That 
depends upon the interaction between microbial com-
munities, including several orders of bacteria, archaea, 
and eukaryotes that encode and express enzymes [15], 
thus mediating ruminal fermentation pathways. The 
propionate pathway competes with methanogenesis, 
improving efficiency. Using additives including probiotics 
to promote propionate production showed good results 
in  vitro, yet in  vivo studies are still required to confirm 
its efficacy as well as its suitability for widespread use. 
Dietary management, namely the use of concentrates and 
high rich-carbohydrate diets that naturally select micro-
organisms involved in the propionate pathway make this 
a more suitable strategy for intensive production systems. 
However, the carbon footprint of diet production and 
transportation must be placed in the equation. Reduc-
tive acetogenesis is suitable for grazing animals, in which 
degradation of fibrous diets originates H2 that can be uti-
lized by acetogens, though a combined strategy to reduce 
methanogens is required.

Even though knowledge on the ruminal microbiome 
has expanded, there are still several genes and microor-
ganisms whose characterization and function remains 
unknown, particularly protozoan and fungi. Recent 
works have recovered archaeal and bacterial MAGs from 
metagenomic data, from which new, previously unno-
ticed, pathways and networks have been discovered. This 
indicates that the ruminal microbiome study is a work in 
progress and may provide us new prospects for finding 
solutions for lowering livestock enteric CH4 emissions, 
thus addressing the role of cattle in the current climate 
emergency.
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