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Peripheral blood mononuclear cells (PBMC) ")
microbiome is not affected by colon
microbiota in healthy goats
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Abstract

Background: The knowledge about blood circulating microbiome and its functional relevance in healthy
individuals remains limited. An assessment of changes in the circulating microbiome was performed by sequencing
peripheral blood mononuclear cells (PBMC) bacterial DNA from goats supplemented or not in early life with rumen
liquid transplantation.

Results: Most of the bacterial DNA associated to PBMC was identified predominantly as Proteobacteria (55%)
followed by Firmicutes (24%), Bacteroidetes (11%) and Actinobacteria (8%). The predominant genera found in PBMC
samples were Pseudomonas, Prevotella, Sphingomonas, Acinetobacter, Corynebacterium and Ruminococcus. Other
genera such as Butyrivibrivio, Bifidobacterium, Dorea and Coprococcus were also present in lower proportions. Several
species known as blood pathogens or others involved in gut homeostasis such as Faecalibacterium prausnitzii were
also identified. However, the PBMC microbiome phylum composition differed from that in the colon of goats (P <
0.001), where Firmicutes was the predominant phylum (83%). Although, rumen liquid administration in early-life
altered bacterial community structure and increased Tir5 expression (P = 0.020) in colon pointing to higher bacterial
translocation, less than 8% of OTUs in colon were also observed in PBMCs.

Conclusions: Data suggest that in physiological conditions, PBMC microbiome differs from and is not affected by
colon gut microbiota in small ruminants. Although, further studies with larger number of animals and covering
other animal tissues are required, results point to a common circulating bacterial profile on mammals being phylum
Proteobacteria, and genera Pseudomonas and Prevotella the most abundants. All suggest that PBMC microbiome in
healthy ruminants could be implicated in homeostatic condition. This study expands our knowledge about PBMC
microbiome contribution to health in farm animals.
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Introduction

The circulation is a closed system and the blood in
healthy organism was first believed to be a sterile envir-
onment [1]. However, the principle of the presence of
truly sterile blood in healthy individuals has been chal-
lenged, as operationally it does not mean that dormant
or non-culturable forms of organisms are absent [2].
Over the last few years, an increasing number of bacteria
blood culture isolates have been reported. Therefore the
concept of blood microbiome has been emerging al-
though is still under debate. Usually, the presence of a
blood microbiome has also been associated with a var-
iety of diseases. Indeed, the etiology of diabetes, cardio-
vascular disease, hematological disorders and cirrhosis
has been ascribed to the translocation of bacteria from
the intestinal tract, primarily via the intestinal epithelial
mucosa [3-7]. Consequently, the gut microbiome was
thought to be the main contributor of the blood micro-
biome, although the origin of these bacteria is still un-
known. Moreover, blood microbial DNA (plasma
derived, cell free microbial nucleic acids) was recently
proposed as a potential tool to discriminate between nu-
merous types of cancer and healthy individuals [8] pro-
viding more evidences of particular microbial DNA in
relation to health status.

The first evidence of microbial presence in the blood
was found nearly 20 years ago by Nikkari et al. [9] who
reported that healthy blood specimens can contain bac-
terial 16S rRNA gene. Detection of 16S rRNA gene does
not confirm the presence of viable microbes and external
DNA contamination could account for bacterial DNA
found in the hematic samples. Potgieter et al. [10], used
transmission electron microscopy analysis to show the
presence of bacteria internalized in erythrocytes provid-
ing further evidences of a blood microbiome. Later, the
presence of comparable bacterial phyla in different stud-
ies appears to support the existence of a healthy human
blood microbiome [2—-4, 11-16]. Then, more research
raised a new paradigm, proposing that healthy individ-
uals harbour a rich microbiota in their blood, including
known pathogens that can survive in a dormant form in
blood and inside red blood cells [17, 18]. However, the
distribution of microbial DNA among white blood cells
is unknown although could be also relevant in the
physiological transport of bacteria in circulation. Ac-
cording to recent studies from our group, symbiotic bac-
teria Lactobacillus plantarum used as probiotic and
found in extraintestinal sites such as blood or milk, was
able to survive inside healthy human’s monocytes up to
24'h [19]. Thus, it seems possible that bacteria from dif-
ferent origins may translocate into the systemic circula-
tion, but not being detected through standard culture
methods. Currently, the use of recently developed tools
to minimize contributions of contaminants to microbial
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signatures could be applied to blood from healthy indi-
viduals to identify the presence of bacterial DNA [20-
23]. Following specific protocols to control contami-
nants, Paissé et al. [12] showed that a diverse microbiota
was present in the blood of healthy human individuals.
Accordingly, it seems necessary to ascertain whether this
is also a trait of other mammals to better understand the
different microbiome and their relationships with health
in farm animals. In this study, we aimed to evaluate the
peripheral blood mononuclear cells (PBMC) bacterial
microbiome in healthy goats. In order to promote sub-
stantial changes in the microbial diversity in colon con-
tent with potential to translocate into blood cells, two
groups of ruminants were used. One group was orally
inoculated during early life with rumen liquid from
adults and the other without inoculation.

Material and methods

All management and experimental procedures involving
animals were performed by trained personnel according
to the Spanish guidelines (RD 53/2013). Experimental
protocols were approved by the Ethical Committee for
Animal Research (EEZ-CSIC) regional government (09/
03/2017).

Animals and experimental design

Sixteen male goat kids were used in this experiment. All
kids were raised with milk-replacer (Sello azul, Lemansa,
Ledn, Spain) and randomly distributed into 2 treatments
(n =8): one group was orally inoculated with pooled
fresh rumen liquid transplantation (RLT) from 4 adult
goats whereas the control group (CTL) did not receive
inoculation. Details of the inoculation process were pre-
viously published [24]. Briefly, rumen inocula were ob-
tained from donor animals fitted with permanent rumen
fistula which were fed a diet based on a 70% of concen-
trate and 30% of forage. Rumen fluid was daily collected,
filtered through two layers of muslin and immediately
inoculated to the RLT animals by oral drenching of 2.5
ml/animal during week 1 and 5 ml/animal thereafter. In-
oculation was daily repeated from birth until 2.5 months
of age when they were fully adapted to a solid diet. Both
groups were separated from each other to avoid physical
contact and potential microbial transfer. Animals were
weaned at the age of 7 weeks and experimental groups
remained separated throughout the entire experiment.
At 6 months of age, blood samples were taken from the
jugular vein, animals were slaughtered and colon content
was sampled and snap frozen in liquid nitrogen. Samples
of the colon tissue were washed immediately after col-
lection with 0.01 M phosphate-buffered saline (PBS) buf-
fer (pH6.8). The samples of washed tissue were then
transferred to RNA later solution (Qiagen Ltd., West
Sussex, UK) and stored at — 80 °C until further analysis.
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Gene expression analysis in colonic tissue

Total RNA was extracted from colon tissue. They were
homogenized with 0.9 mm stainless steel bead and 1 ml
of TRIzol Reagent (Invitrogen) using a bullet Blender
homogenizer as previously described [25]. RNA integrity
number was measured using Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA). The extracted total
RNA was reversed transcribed using M-MLV reverse
transcriptase (Thermo) and the yielded cDNA was used
as template for real time quantitative PCR (RTqPCR)
analysis to evaluate the expression of T/r2, 4, 5 and 9, B-
defensin and peptidoglycan recognition protein 1 (PglrplI)
genes. RTqPCR amplification and detection was per-
formed on optical grade 384-well plates in a ViiA7 Real-
Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA) with PerfeCTa qPCR Tough Mix (Quantabio,
Beverly, MA, USA). Specific primers at their annealing
temperature were used as previously reported [25]. To
normalize mRNA expression, S-actin was used as house-
keeping gene. The mRNA relative quantification was cal-
culated using the AACt method. PCR efficiency was
always between 90 and 110%, and a negative control was
run for each set of primers.

Samples preparation and DNA extraction

Blood samples were collected into EDTA coated vacutai-
ner. Peripheral blood mononuclear cells (PBMC: lym-
phocytes and monocytes) isolation was performance
following ficoll density gradient method based on the
principle of differential migration of blood cells through
the media during the centrifugation (400xg for 40 min,
at room temperature and without break). Cells were pre-
served in Trizol. The DNA extraction from PBMC was
performed to minimize any risk of contamination ac-
cording to TRIzol reagent protocol (15,596,026.PPS) in a
laminar air-flow hood cleaned with 70% ethanol, and
UV-irradiated for 20 min before execution of sample
processsing. The quantity of extracted DNA was mea-
sured by Qubit (Thermofisher Scientific). DNA extracts
were stored at —20°C until further processing. An
empty vial was used as a template-free “negative blank”
into which each reagent (new and filtrated) used was
added and further processed with the same DNA extrac-
tion protocol and amplicon production method as the
experimental PBMC samples, and sequenced on the
same run to ensure the absence of artifacts such as bac-
terial DNA contaminants from reagents or nonspecific
amplification of eukaryotic DNA.

In order to understand the translocation mechanism
in ruminants, colon content was also analyzed. After
freeze drying and homogenizing, DNA from colon con-
tent was extracted using QIAamp DNA Stool Mini Kit
following manufacturer’s protocol and employing the
95 °C heating option. Concentrations of total bacteria in
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colon content were determined by quantitative PCR as
previously described [25]. Primer sets used were as fol-
lows: forward GTGSTGCAYGGYTGTCGTCA and re-
verse ACGTCRTCCMCACCTTCCTC [26].

16S rRNA gene sequencing and data processing

Microbial community composition of samples taken
from PBMC and colon was determined using amplicon
sequencing of the 16S rRNA gene of experimental
groups of kid (n =3 for CTR and n =4 RFT). Both,
PBMCs and colon content sequencing libraries were
prepared by an adapted procedure, based on the stand-
ard protocol “16S Metagenomic Sequencing Library
Preparation from Illumina” (Part # 15044223 Rev. A). In
this protocol, a first PCR to amplify template DNA using
region of interest-specific primers with overhang
adapters attached was carried out. Then, to add dual in-
dexes and Illumina sequencing adapters a second PCR
was performed using the Nextera XT Index Kit. Adapta-
tion of this methodology consists of the substitution of
the sequences targeting the amplification of the V3-V4
hypervariable region of the 16S rRNA gene proposed in
this protocol by more specific ones (5'-TCCTACGGGA
GGCAGCAGT-3" and 5'-GGACTACCAGGGTATCTA
ATCCTGTT-3" [27]). These sequences have been re-
ported to have high sensitivity (targeting 95% of the bac-
terial sequences found in the Ribosomal Database
Project) and 100% specificity (no eukaryotic, mitochon-
drial, or Archaea DNA targeted) [12]. Colon content li-
braries were obtained from 12.5ng of DNA (as
recommended) and PBMCs ones from 125 ng of DNA.
Region of interest was amplified by PCR (25 cycles) and
performed in 25 pl, containing 1x of KAPA HiFi Hot-
Start ReadyMix (Roche Molecular Systems, Inc., Cat.#
KK2601), 0.2 pM of specific primers and the mentioned
quantities of genomic DNA. To verify the correct ampli-
con size, 1 pl of PCR product was visualized on a Bioa-
nalyzer ~High  Sensitivity #DNA chip (Agilent
Technologies, Cat. # 5067—-4626) and after purification
with AMPure beads (Beckman Coulter, Cat.# A63881),
PCR product was eluted in 52.5pul of elution buffer.
Then, 5 pl of cleaned DNA were used in the second PCR
(8 cycles), where Nextera-XT adapters (Illumina Inc.,
Cat.# (FC-131-1001 or FC-131-1002) with dual indexes
were added. The second PCR was performed in 50 pl,
containing 1x of KAPA HiFi HotStart ReadyMix (Roche
Molecular Systems, Inc., Cat# KK2601), 5pul of each
[lumina Inc.’s adapter and the 5 pl of the purified first
PCR product. To verify the performance of the second
PCR, 1 ul of each reaction was visualized on a Bioanaly-
zer High Sensitivity DNA chip. Finally, libraries were
cleaned up using AMPure beads, eluted in 25pl of
water, and then quantified using Qubit dsDNA HS DNA
Kit (Thermo Fisher Scientific, Cat. # Q32854). The
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amplicons sequencing was performed on a MiSeq (Illu-
mina Inc.) platform following a standard protocol for
paired-end reads of 300 nucleotides.

Quality control of the reads was carried out using
FASTQC software (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads were filtered
from the adapter sequences and their quality score using
trim_galore software (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) and only are
retained those with at least 20 phred quality score.
Trimmed sequences were merged via FLASH [28] to
create amplicons of approximately 460 bp. Amplicons
were analysed using QIIME: Quantitative Insights Into
Microbial Ecology software package [29]. Sequences
were clustered as operational taxonomic units (OTUs)
of 97% similarity using uclust [30]. Taxonomic assign-
ment of sequences was performed against the Green-
genes database (version 13-8) [31]. The significances of
grouping in the PCA plots were tested by analysis of
similarity (ANOSIM) with 999 permutations using vegan
R-package [32, 33]. The sequences obtained in this study
were deposited in the European Nucleotide Archive
(ENA) under the project number PRJEB39180.

Then, the relative abundance of each OTU present in
the negative-blank was removed from each PBMC li-
brary results using R programming language (https://
stackoverflow.com/questions/51514356/how-to-subtract-
values-of-a-first-column-from-all-columns-by-function-
in-r). In the absence of further studies, bioinformatic
software (PICRUSt2) was used to investigate functional
differences between PBMC and gastrointestinal micro-
bial ecosystem. After normalizing the OTU table
through Cumulative Sum Squares (CSS), KEGG Path-
ways were predicted by PICRUSt algorithm (level 3)
[34]. Figure represents differential PICRUSt predicted
KEGG pathways between bacterial communities found
in PBMC samples compare to colon ones detected by
STAMP software [35].

Statistical analysis

Statistical analyses represented in Fig. 1 (nonparametric
Mann-Whitney’s tests) were conducted using PRISM
(Version 8.05, GraphPad, Inc., La Jolla, CA). The signifi-
cant fold change of OTU’s was performed using DESeq2
[36]. The STAMP [35] statistical comparison between
groups was performed by two-sided Welch’s t-test
within 95% confidence interval. Spearman’s correlation
test was used to assess the relationships among bacterial
composition from colon and PBMC. Only OTUs present
in both type of samples, in more than 3 goats and which
abundance was higher than 20 OTUs per animal were
used for the analysis. Only correlations with a value of
P <0.05 were considered as significant and were
represented.
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Results

Early-life intervention with rumen liquid transplantation
did not affect body weight (26 + 3.21 Kg), colon weight
(893.7 £ 97.95 g) or colon pH (6.29 + 0.54) from the ex-
perimental groups.

Gene expression in colon

The expressions of genes related to host response to
microbiota in the colon of goats was measured using
RT-qPCR relative to f-actin expression using the AC,
value. Expression of Pglypri, pdefensin, Tir2, Tlr4, and
Tlr9 were not modified by rumen fluid transplant. How-
ever, TIr5 used by the mucosal immune system of the
gut to detect flagellin showed higher expression (P =
0.02) in the colon from goats transplanted with rumen
fluid early in life (Fig. 1a).

PBMC and colon content microbial profile

To evaluate the potential impact of colon microbiota on
blood bacterial composition in goats, the taxonomic di-
versity and profile of the bacterial DNA present in
PBMC and colon samples were analysed by high-
throughput 16S rRNA gene amplicon sequencing. A
total of 3,387,331 high-quality sequences (reads) were
obtained ranging from 193,826 to 222,762 in colon and
from 177,386 to 330,387 in PBMC samples. After clus-
tering, 31,421 £+ 900 OTUs in colon and 12,904 + 1042
OTUs in PBMC samples were used for microbial ana-
lysis. Good’s coverage was over 99% in all experimental
samples. Taxonomic assignment, observed species and
Shannon diversity indices (illustrated at the OTU level
in Fig. 2a) displayed that colon presents a higher bacter-
ial diversity than PBMC (P =0.001). Then, PCA showed
that the supplementation with rumen fluid in early life
affected (ANOSIM, p =0.028) ecosystem structure in
colon samples (Fig. 2b). In addition, the quantity of bac-
terial DNA present in the colon was also affected with
lower numbers (P =0.03) in goats supplemented with
rumen fluid (Fig. 1b). However, in agreement with alpha
diversity, when all samples were compared together,
PBMC ones were significantly different (ANOSIM,
P < 0.001) from colon samples (Fig. 2c).

The distribution of reads assigned at the phylum level
(Fig. 3) reveals that the PBMC contain bacterial DNA
mostly from the Proteobacteria phylum, which repre-
sents on average 55% of the reads, followed by Firmi-
cutes phylum (24%) and a lower proportion of
Bacteroidetes (11%) and Actinobacteria (8%) phyla with-
out differences due to rumen fluid supplementation. At
a deeper taxonomic level, the predominant family was
Oxalobacteracea followed by Pseudomonadaceae, Lach-
nospiraceae, Ruminococcaceae, Sinobacteraceae and En-
terobacteriaceae (Fig. 4a). Although Oxalobacteraceae,
Pseudomonadaceae and Sinobacteraceae were also
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Fig. 1 a Gene expression level in colon tissue. b Total bacterial DNA in colon content determined by gPCR. Experimental groups: CTL (Control)
and RLT (rumen liquid transplantation)

observed in negative blank, their relative abundances
were removed from all PBMC samples. Microbial distri-
bution at family level in PBMC and colon content is
fully described in supplementary figure 1.

At genus level, the 20 most abundant OTUs in
colon and PBMC microbiome were represented in
Fig. 4b. Predominant genera found in PBMC were
Pseudomonas, Prevotella, Ruminococcus, Sphingomonas
and Acinetobacter. Other genera such as Corynebac-
terium, Butyrivibrio, Bifidobacterium, Dorea, Copro-
coccus or Blautia, were also present in both microbial
environments. Among the taxa present in higher
abundance in almost all PBMC samples, it was ob-
served  that  several  genera (Acinetobacter,

Corynebacterium, and Pseudomonas) containing spe-
cies that are pathogens with known capacity to infect
blood. On the other side, other leading players in the
maintenance of the homeostasis in the gut such as
Faecalibacterium prausnitzii (Firmicutes phylum) con-
sidered one of the main butyrate producer in the gut
and Lachnospiraceae members (Butyrivibrio, Dorea,
Coprococcus, Blautia and Ruminococcus) among the
main producers of short chain fatty acids, were also
observed. In general, less than 8% of OTUs detected
were shared between PBMC and colon environment.
In this regard, colon content was mainly composed of
Firmicutes (83%), followed by Actinobacteria (8.2%),
Bacteroidetes (4.8%) and Proteobacteria (1.3%).



Pena-Cearra et al. Animal Microbiome (2021) 3:28 Page 6 of 11
P
A Observed ‘Shannon
2500 000058 0.00058
701 =
20001 !
2 6.5
H
T 1500
> ! “ colon
Kl 6.0 9 PBMC
$
4 1000 T
55
500 =
i 5.0
O O
& & & &
Colon.37 @ o - PBMC8 @
PBMC.37
PBMC.12 PBMC.14
v peviC.18 @
o PBMC.69°
N - PBMC.55 @ Colon.14
‘i\: § Colon.37 @
> S .
8 @ Colon.18 5 Colon.12 @
o o
° 7 @ Colon.12 1
@ Colon69 Colon.8 ®
¢« CTR ® Coions .| * colon
¢ |RT Colon.55 @ ¢ PBMC Colon.18 @
Colon.14 @ A )
0 J w0 0 . ©
PC1(32.1%) PC1(36.3%)
Fig. 2 a Alpha diversity measurement, observed species and shannon indices in PBMC and colon content samples. b PCA plot from control (CTL)
and rumen fluid transplantation (RFT) groups (ANOSIM; p = 0.028) colon content. ¢ PCA plots comparing PBMC and colon microbiome (ANOSIM,
p =0.0005) from experimental goats

J

phylum
B Acidobacteria
B Actinobacteria
M Bacteroidetes
M Elusimicrobia
M Fibrobacteres
M Firmicutes
Gemmatimonadetes
[ ] Nitrospirae
M Proteobacteria
[ spirochaetes

Relative abundance
o
[5
o

Tenericutes
0.25 ™7
Verrucomicrobia
0.00
< N
N )
® ®

Fig. 3 a PBMC and colon content phylum distribution in
experimental goats

To further investigate how differences in the micro-
biome composition could impact the functionality of
microbiota, we performed predictive analysis of func-
tional pathways and compared the pathway representa-
tion between colon content and PBMC. The mean
proportion of predicted KEGG pathways (at level 3) of
the metagenome functional content (bacterial genes)
and significantly augmented in the PBMC of goats com-
pared to colon content were illustrated in Supplemen-
tary Figure 1. Most of them were associated to anti-
inflammatory profile of immune cells.

In order to understand whether the wide range of
OTUs found in colon microbial composition were re-
lated to circulating microbiota, Pearson correlation ana-
lyses were performed. Variation in bacterial community
composition detected in colon and PBMC samples
showed a significant correlation (Fig. 5). The presence of
Acinetobacter and Streptococcus in colon microbiome
correlated (P <0.01) with the same OTU in circulating
microbiome. A positive correlation between Butyrivibrio
in colon and Bifidobacterium, Campylobacter, Faecali-
bacterium and Parabacteroides in PBMC samples was
observed. On the other hand, the presence of Bifidobac-
terium in colon showed a negative correlation with
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Butyrivibrio, Prevotella and Ruminococcus in PBMC bac-
terial environment. Parabacteroides also showed a nega-
tive correlation with Butyrivibrio, Coprococcus and
Pseudomonas.

Discussion

Many studies have reported the successful culture and
microscopic observation of numerous bacteria from
blood of healthy individuals, especially in humans [12].
However, no exhaustive analysis has been performed of
the blood microbiome in ruminants and even less in
their circulating immune cells. Thanks to the evolution
of sequencing technologies and the optimization of the
processes, we have successfully characterized the taxo-
nomic profile of the PBMC present in young healthy ru-
minants in the absence of any pathological condition. As
expected, colon gut microbiota was modified by the
rumen fluid transplantation, showing different microbial
community according to experimental groups. However,
its impact in dry matter colon content was not observed.
Differences in the colon microbiota could rely on two

aspects: i) a change in the microbial colonization pattern
in early life with some persistency later in life [37-39]
and ii) an indirect effect driven by a higher rumen mi-
crobial fermentation of the feed in RLT animals, mostly
associated with the presence of rumen protozoa, which
could limit the availability of fermentable substrate in
the hindgut [38]. In a recent study we have demon-
strated that inoculation of young goat kids with rumen
fluid from adult goats accelerated the rumen microbial
development favouring the presence of rumen protozoa,
a higher bacterial diversity and increased abundances of
certain bacterial taxa (e.g. Firmicutes and Fibrobacteres)
[40]. Our results are in agreement with previous studies
[25] where gene expression levels at the rumen epithe-
lium of newborn goats were not affected although feed-
ing management (maternal versus milk replacer) during
the first month of life promoted different rumen micro-
bial colonization. In that case, only TIr5 expression in
rumen varied. In the present study, a higher transloca-
tion of bacteria in supplemented goats was suggested as
Tlr5 is expressed mostly on the basolateral side of
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intestinal epithelial cells for detecting whether bacteria
have crossed the gut epithelia. Although, in general it is
accepted that bacteria can pass into tissues originating
from the gut, in this study, it was revealed that in stand-
ard physiological conditions, only a low proportion of
microbiota was shared between colon and PBMC. Re-
sults in this study suggest non-intestinal sources as main
contributors to microbial DNA in circulating PBMC.
Several sources can potentially contribute to add external
contamination: bacterial contaminants collected during the
sampling in the experimental farm, the manipulation of the
samples and the reagents in the laboratory during extrac-
tion and sequencing library preparation pipeline could lead
to the artificial identification of PBMC microbiome which
add a background to the analysis of the blood microbiome
and can be misinterpreted as bacteria present in the sam-
ples [20, 21, 23, 41]. Hence, in this study negative controls
were run all over the process to track potential contamin-
ation during the manipulation and sequencing of the sam-
ples. In this sense, Poore et al. [8] reported that in silico
decontamination did not appear to differentially affect the
types of samples under study, validating gold-standard
microbiology practices for low biomass studies.

While evidence for the existence of a blood-
microbiome in various domesticated mammals and birds
do exist [42-44], this study was the first to track the
major part of PBMC microbiome in healthy ruminants
by 16S rRNA gene amplicon sequencing. Here, higher
abundance of OTUs assigned to Proteobacteria phylum
(more than 50%) was found in PBMC compared to the
colon microbiome (Firmicutes more than 80%). In
addition, rumen composition also differed from circulat-
ing bacterial profile, being Bacteroidetes the predomin-
ant phylum showing significant differences according to
treatment, representing 41 and 60% in CTL and RLT
groups, respectively (p = 0,01) [45]. Relative abundance
was followed by Proteobacteria and Firmicutes although
they did not show differences between groups. Other po-
tential source of bacteria to circulating microbiome
would be oral cavity as daily activities including chewing
or when the barriers between oral environment and the
circulatory system are compromised, result in the trans-
location of oral bacteria into the bloodstream [11, 46].
However, results described in oral secretion did not
agree between both ecosystems being the most abundant
phylum  reported  Firmicutes (50%), followed by
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Proteobacteria (29%), Actinobacteria (3.5%) and Fuso-
bacteria (1%) [47]. Our results are in agreement with dif-
ferent studies aiming to investigate blood microbiome in
healthy human donors where Proteobacteria was found
over 80%, followed by Actinobacteria (between 7 and
10%) and Firmicutes (from 3 to 6%) [12-16, 48, 49].
However, the characterization of blood bacterial diver-
sity varies between studies [50]. The abundance of Pro-
teobacteria in PBMC comprises both obligate and
facultative anaerobic bacteria genera therefore could be
related to their ability to tolerate a range of oxic condi-
tions. They are highly present in the gut of neonatal
goats [25], specifically in rumen, and other mammals,
which are abundant in oxygen immediately post-partum
contributing to the homeostasis of the anaerobic envir-
onment. In general, these results suggest a common cir-
culating bacterial profile on mammals.

Bacterial translocation from gut was described several
years ago but mostly related to pathological conditions.
However, nowadays more evidence supports bacterial
translocation in physiological context. The difference of
bacterial profiles between the gut and PBMC could be
explained by the role of filter played by the intestinal
barrier and immune cells, which limits the translocation
of a specific portion of the gut microbiota to the periph-
ery [51-53]. Other compartments of the digestive tract,
tissues and organs, such as skin, oral cavity, nasal, and
lung mucosa probably are making a significant contribu-
tion to the bacterial DNA present in PBMC. It appears
that maternal origin would be also accepted. In agree-
ment, Whittle et al. [15] demonstrated that blood-
microbiome closely resembles the skin and oral micro-
biomes and differs substantially from the intestinal
microbiome. Due to the low number of animals used in
this experiment, it was not sufficient to assert whether
PBMC bacterial composition was affected by rumen
fluid transplantation. However, results indicated that the
bacterial environment inside PBMC is quite stable in
time and comprise a core set instead of a dynamic and
adaptive group of microorganisms. Probably the specifi-
city and stability of the bacterial DNA is linked to the
function that has to perform in such location and only
the ones that play a role are the only ones allowed to
use PBMC as “vehicles”. As previously mentioned, Poore
et al. [8] could discriminate among samples from
healthy, cancer-free individuals and those from patients
with multiple types of cancer (prostate, lung, and melan-
oma) using only plasma-derived, cell-free microbial nu-
cleic acids exhibiting a relevant role of blood
microbiome in health and disease. Although its bio-
logical significance remains to be further explored, the
discovery of a PBMC microbiome in ruminants might
represent an important step toward a better understand-
ing of the microbial relationships with health.
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The information provided here opens the possibility to
support different hypothesis in ruminants such as
entero-mammary route. However, living, nonviable, or
dormant bacteria were not addressed in this study.
Therefore, the understanding of the PBMC microbiota
will require further investigations in the future. Never-
theless, to provide evidence to the theory of travellers’
microorganism in the blood immune cells, we have re-
cently described the survival capacity of Akkermansia
muciniphila [54] in healthy human monocytes for more
than 3 h.

To conclude, our results demonstrate the presence
of a highly diversified PBMC microbiome in healthy
ruminants that differs from that in the colon com-
munity. The rumen fluid transplantation in early life
modified the bacterial community structure in the
colon providing a wide range of microbes. However,
these microbial differences were not observed in the
PBMC. Our results suggest that in healthy physio-
logical conditions, the intestinal barrier plays a crit-
ical role limiting the bacterial groups able to reach
circulating immune cells. Proteobacteria was the
most abundant phylum, and Pseudomonas and Prevo-
tella were the dominant genera in the PBMC micro-
biome. In this study, a positive correlation between
Butyrivibrio found in the colon and genera such as
Bifidobacterium and Faecalibacterium detected in
PBMC samples was observed. However, this observa-
tion does not necessarily implies causality since the
origin and role of the physiological PBMC micro-
biome, and its interaction with the host remains to
be elucidated.
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