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Abstract 

This study aims to discriminate between leucine-rich glioma-inactivated 1 (LGI1) antibody encephalitis and gamma-
aminobutyric acid B (GABAB) receptor antibody encephalitis using a convolutional neural network (CNN) model. 
A total of 81 patients were recruited for this study. ResNet18, VGG16, and ResNet50 were trained and tested separately 
using 3828 positron emission tomography image slices that contained the medial temporal lobe (MTL) or basal 
ganglia (BG). Leave-one-out cross-validation at the patient level was used to evaluate the CNN models. The receiver 
operating characteristic (ROC) curve and the area under the ROC curve (AUC) were generated to evaluate the CNN 
models. Based on the prediction results at slice level, a decision strategy was employed to evaluate the CNN models’ 
performance at patient level. The ResNet18 model achieved the best performance at the slice (AUC = 0.86, accu-
racy = 80.28%) and patient levels (AUC = 0.98, accuracy = 96.30%). Specifically, at the slice level, 73.28% (1445/1972) 
of image slices with GABAB receptor antibody encephalitis and 87.72% (1628/1856) of image slices with LGI1 anti-
body encephalitis were accurately detected. At the patient level, 94.12% (16/17) of patients with GABAB receptor 
antibody encephalitis and 96.88% (62/64) of patients with LGI1 antibody encephalitis were accurately detected. 
Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model 
focused on the MTL and BG for classification. In general, the ResNet18 model is a potential approach for discriminat-
ing between LGI1 and GABAB receptor antibody encephalitis. Metabolism in the MTL and BG is important for discrimi-
nating between these two encephalitis subtypes.
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Introduction
Autoimmune encephalitis (AE) is an immune-medi-
ated disease in which antibodies act against neuronal 
synapses and cell surfaces [1, 2]. Autoimmune limbic 
encephalitis (ALE) is a common type of AE. A dramatic 
reduction in neuropsychiatric functions is a hallmark 
of ALE [3]. ALE has many subtypes, and leucine-rich 
glioma-inactivated 1 (LGI1) antibody encephalitis and 
gamma-aminobutyric acid B (GABAB) receptor anti-
body encephalitis are two typical subtypes [4]. Approxi-
mately 10% of LGI1 antibody encephalitis cases are 
associated with various cancers, such as thymoma [3, 
5], and approximately half of GABAB receptor anti-
body encephalitis cases are associated with small-cell 
lung cancer [5], which is a common cause of death from 
cancer [6, 7]. Thus, early and accurate discrimination 
between LGI1 and GABAB receptor antibody enceph-
alitis can inform different cancer screenings, thereby 
facilitating individualized treatment decisions and 
improving clinical outcomes. The diagnosis of LGI1 
and GABAB receptor antibody encephalitis depends 
on antibody testing. However, antibody testing has two 
main shortcomings: it is time consuming and not easily 
accessible [5], which likely delays treatment. Previous 
studies have shown that early diagnosis and treatment 
can improve the clinical outcomes of patients with AE 
[8, 9]. A position study [5] stated that while waiting for 
the results of antibody testing, patients can initially be 
evaluated using commonly used diagnostic methods, 
such as magnetic resonance imaging (MRI), for prelim-
inary treatment [5]. Furthermore, the sensitivity of pos-
itron emission tomography (PET) is higher than that of 
MRI for detecting LGI1 [10, 11] and GABAB receptor 
antibody encephalitis [12]. Therefore, PET is a potential 
imaging technique for differentiating these two types 
of encephalitis. However, the abnormal metabolisms of 
LGI1 and GABAB receptor antibody encephalitis in the 
PET images were similar. Previous studies found that 
the metabolism of the medial temporal lobe (MTL) and 
basal ganglia (BG) was abnormal in patients with LGI1 
antibody encephalitis [13–15] and those with GABAB 
receptor antibody encephalitis [16–18]. Thus, it is dif-
ficult to discriminate between LGI1 and GABAB recep-
tor antibody encephalitis based on visual interpretation 
of PET images. In clinical practice, visual interpreta-
tion is the traditional method of diagnosis using medi-
cal images [19]. However, this method depends on the 
clinician’s experience, which is subjective and incon-
sistent among clinicians [19]. Some subtle abnormal 
metabolisms of patients with AE in PET images can be 
ignored [20]. Fortunately, machine learning (ML) has 
been increasingly employed to analyze medical images 
and improve diagnoses [21]. Thus, ML is a potential 

method for discriminating between LGI1 and GABAB 
receptor antibody encephalitis based on PET images.

As a recently developed ML methodology, deep learn-
ing (DL) has been extensively used in medical image 
analyses, including classification [22], segmentation [23], 
and image registration [24]. In particular, it exhibited 
excellent performance in the intelligent analysis of PET 
images of patients with brain diseases. For example, Ding 
et al. [25] applied a convolutional neural network (CNN) 
model based on PET images to improve the detection of 
Alzheimer’s disease. Shen et  al. [26] employed a modi-
fied group lasso sparse deep belief network model to dis-
criminate patients with Parkinson’s disease from healthy 
participants based on PET images. These studies suggest 
that DL methods based on PET images can aid in the 
precise diagnosis of brain diseases. However, it remains 
unclear whether LGI1 and GABAB receptor antibody 
encephalitis can be accurately discriminated using DL 
models based on PET images.

This study aimed to construct CNN models with dif-
ferent convolutional layers based on PET images to 
discriminate between LGI1 and GABAB receptor anti-
body encephalitis. When the PET image passes forward 
through the convolutional layers, the extracted image 
features are refined to reflect subtle changes in the PET 
image. Thus, given the strong ability of CNN models to 
mine crucial features and subtle information, these mod-
els may accurately characterize the properties of PET 
images of both LGI1 and GABAB receptor antibody 
encephalitis. It was hypothesized that these CNN mod-
els could detect abnormal metabolism in PET images of 
these two types of encephalitis and thereby accurately 
discriminate them from each other.

Methods
Participants
The Medical Ethics Committee of Beijing Tiantan 
Hospital approved this study, which complied with 
the Declaration of Helsinki. The study recruited 81 
patients, including 56 males and 25 females (mean ± SD 
age = 56.99 ± 12.70 years). Table 1 summarizes the patient 
demographics. The 81 patients fulfilled the following 
inclusion criteria: (1) antibody testing of cerebrospinal 
fluid (CSF) and/or serum was positive for LGI1 antibod-
ies or GABAB receptor antibodies; (2) patients present-
ing clinical symptoms, such as memory impairments, 
seizures, and cognitive dysfunction; (3) PET and CT 
images were available.

Patients with seizures resulting from brain structural 
lesions (such as traumatic lesions, tumors, and stroke) 
or other diseases (such as severe hypo/hyperglycemia, 
malignant hypertension, or renal/hepatic failure) were 
excluded.
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Antibody testing
In this study, all the patients underwent antibody test-
ing. The LGI1 antibody and GABAB receptor antibody 
in the CSF or serum were tested using cell-based assays 
and immunohistochemistry performed in the Labo-
ratory of Neurological Immunology of Peking Union 
Medical College Hospital.

Image acquisition and preprocessing
To acquire PET and CT images, all patients under-
went a 18F-FDG PET/CT scan. Firstly, each patient was 
required to fast for at least six hours. Secondly, 18F-FDG 
(0.10–0.15  mCi/kg) was intravenously injected after 
a normal blood glucose level was confirmed. Thirdly, 
the patients rested for 30 min with their eyes open in a 
dark room. Brain PET/CT images were obtained using a 
GE Discovery 690 scanner. The acquisition parameters 
for the PET images were as follows: matrix = 192 × 192 
pixels, voxel size = 1.5625 × 1.5625 × 3.2700 mm3, axial 
slides = 47.

Statistical parametric mapping software (SPM12; Well-
come Trust Center for Neuroimaging, London, UK) was 
used to preprocess all images. Firstly, for each patient, 
co-registration was performed between the CT and PET 
images. Secondly, a spatial normalization was performed 
from the co-registered CT images to the Montreal Neu-
rological Institute (MNI) template using the Clinical 
Toolbox, which is an extension of SPM12 (https://​www.​
nitrc.​org/​proje​cts/​clini​caltbx/) [27]. Thirdly, the spatial 
transformation of CT normalization was applied to PET, 
by which the PET images were adjusted to match the 
MNI template; then, the resolution of the PET images 
was changed to 2 × 2 × 2 mm3. Fourthly, a 6-mm isotropic 
full-width-half-maximum was used to smooth the nor-
malized PET images. Fifthly, for each PET image, the 
mean value of the intensities across the highest 20% of 
voxels of the corresponding PET image [28] was used to 
normalize the smoothed PET image, by which the inten-
sity of each voxel of the PET image was divided. Sixthly, 

the gray matter of the PET image was retained and used 
to extract image slices.

Image slices extraction and augmentation
Multiple studies have shown that the MTL and BG 
metabolism is abnormal in patients with LGI1 antibody 
encephalitis [13–15] and those with GABAB receptor 
antibody encephalitis [16–18]. Based on the Human 
Brainnetome Atlas [29], there are 30 axial image slices 
containing the MTL or BG. One of these axial image 
slices was excluded because in this slice, only one voxel 
belonged to the MTL and no voxels belonged to the 
BG. Thus, as Fig.  1 shows, 29 axial image slices were 
extracted from the preprocessed PET image of each 
patient. Because the number of patients with GABAB 
receptor antibody encephalitis was relatively small, ver-
tical and horizontal flips were used to augment the orig-
inal image slices of all patients with GABAB receptor 
antibody encephalitis. As Fig.  2(a) shows, for GABAB 
receptor antibody encephalitis, four types of augmen-
tation were performed for each original image slice: 
maintaining the original image, vertical flip, horizontal 
flip, and a combination of vertical and horizontal flips. 
Thus, the number of image slices with GABAB recep-
tor antibody encephalitis was increased to four times. 
To maintain the consistency of the augmentation opera-
tion between LGI1 and GABAB receptor antibody 
encephalitis, four types of augmentation were applied 
to the original image slices of all patients with LGI1 
antibody encephalitis. As Fig. 2(b) shows, for LGI1 anti-
body encephalitis, the image slices from bottom to top 
sequentially underwent one of four types of augmenta-
tion: maintaining the original image, vertical flip, hori-
zontal flip, and a combination of vertical and horizontal 
flips. The augmented image slices were used to replace 
the original image slices. Therefore, the number of 
image slices with LGI1 antibody encephalitis remained 
unchanged. After augmentation, 3828 image slices were 
produced.

Table 1  Clinical characteristics of patients

a Two-sample student test
b Pearson’s χ2 test
c The weight and height of one patient with LGI1 antibody encephalitis were unknown

LGI1 antibody encephalitis GABAB receptor antibody encephalitis p value

Age (year), mean ± SD 58.27 ± 12.62 (n = 64) 52.18 ± 12.19 (n = 17) 0.08a

Gender (male/female) 44/20 12/5 0.88b

Weight (kg), mean ± SD 70.28 ± 11.90 (n = 63)c 70.65 ± 10.06 (n = 17) 0.91a

Height (cm), mean ± SD 168.56 ± 7.15 (n = 63)c 169.06 ± 7.35 (n = 17) 0.80a

https://www.nitrc.org/projects/clinicaltbx/
https://www.nitrc.org/projects/clinicaltbx/
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CNN classification
In this study, 3828 image slices were used to construct 
the ResNet18 [30], VGG16 [31], and ResNet50 [30] 
models. The architectures of the ResNet18, VGG16, 
and ResNet50 models are shown (Fig. 3). For each CNN 
model, the number of input channels in the first convo-
lution layer was modified because the image slice was a 
gray image with only one channel. To match these CNN 
models in PyTorch (https://​pytor​ch.​org/​vision/​stable/​
models.​html), a zero-padding layer was added before the 
first convolution layer of each CNN model, so that the 
size of the image fed into the first convolution layer was 
224 × 224. Because the discrimination between LGI1 and 
GABAB receptor antibody encephalitis was a binary clas-
sification task, the output dimensions of the fully con-
nected layer were set to two.

Given that the number of patients was relatively small, 
each CNN model was evaluated using leave-one-out 
cross-validation (LOOCV) at the patient level. As Fig. 4 
shows, in each fold of LOOCV, the PET image slices of 
one patient were used as testing samples (Fig. 4, right), 
and those of the other 80 patients were used as training 
samples (Fig.  4, left). This study included 81 patients. 

Thus, this LOOCV fold was repeated 81 times, with 
each patient in turn used as the testing cohort and the 
other 80 patients used as the training cohort. In each 
LOOCV fold, to reduce overfitting and select the best 
model, the patients in the training cohort were divided 
into a training dataset (n = 56) and a validation data-
set (n = 24) in a ratio of 7:3. The image slices of 56 
patients in the training dataset were used to train the 
CNN model, whereas those of 24 patients in the valida-
tion dataset were used to select the CNN model with 
the best performance. Finally, the image slices from 
one patient in the testing cohort were used to test the 
selected CNN model.

The ResNet18, VGG16, and ResNet50 models were 
trained and tested using PyTorch on a Windows com-
puter system. The batch size and the number of epochs 
were set to 16 and 100, respectively. For ResNet18, the 
initial learning rate was set to 0.01. The learning rate was 
updated every five epochs. The new learning rate was 
calculated by dividing the old learning rate by 10. For 
VGG16 and ResNet50, the initial learning rate was set 
as 0.001. The learning rate was updated every 10 epochs. 
The new learning rate was calculated by dividing the old 

Fig. 1  An example of axial image slices extraction. For each patient, 29 axial image slices were extracted from each preprocessed PET image. The 
left image was a brain PET image in sagittal view. The right images were the examples of the extracted axial image slices. The Z values in the right 
images indicate the MNI coordinates of axial image slices

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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learning rate by 10. A stochastic gradient descent was 
used to optimize the model with a momentum of 0.9.

Performance evaluation at slice level
The number of image slices with GABAB receptor 
antibody encephalitis detected as GABAB receptor 
antibody encephalitis was referred to as true positive 
(TP). The number of image slices with LGI1 antibody 
encephalitis detected as GABAB receptor antibody 
encephalitis was referred to as false positive (FP). The 
number of image slices with LGI1 antibody encephali-
tis detected as LGI1 antibody encephalitis was referred 
to as true negative (TN). The number of image slices 
with GABAB receptor antibody encephalitis detected 

as LGI1 antibody encephalitis was referred to as false 
negative (FN).

A total of 81 patients were included. Therefore, the 
LOOCV consisted of 81 folds. The TPi , FPi , TNi and 
FNi were the TP, FP, TN and FN of the i-th fold of the 
LOOCV, respectively. i (i = 1, 2, 3 … 81) represented 
the i-th fold of LOOCV.

Therefore, accuracy was calculated by Eq. 1

sensitivity was calculated by Eq. 2
(1)

Accuracy =
81

i=1
(TNi + TPi)

81

i=1
(TNi + TPi + FNi + FPi)

× 100%

Fig. 2  Illustrations of image slices augmentation. a Image augmentation for the GABAB receptor antibody encephalitis. Four types of augmentation 
were performed on each original image slice, namely, maintaining the original image, vertical flip, horizontal flip, and a combination of vertical 
and horizontal flips; b Image augmentation for the LGI1 antibody encephalitis. One of four types of augmentation was performed on the original 
image slices from bottom to top sequentially, namely, maintaining the original image, vertical flip, horizontal flip, and a combination of vertical 
and horizontal flips. For (a) and (b), the images in top row were original image slices and the images in bottom row were augmented image slices. 
The Z values in the image slices indicate the MNI coordinates of axial image slices
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specificity was calculated by Eq. 3

In addition, the receiver operating characteristic (ROC) 
curve was plotted with 1-specificity and sensitivity on the 
x- and y-axis, respectively. The area under the ROC curve 
(AUC) was calculated to assess the performance of the 

(2)Sensitivity =

∑
81

i=1
TPi

∑
81

i=1
(TPi + FNi)

× 100%

(3)Specificity =

∑
81

i=1
TNi

∑
81

i=1
(TNi + FPi)

× 100%

CNN models at the slice level. In this study, the Delong 
test was used to compare the ROC curves at the slice 
level between ResNet18 and VGG16, as well as between 
ResNet18 and ResNet50.

Performance evaluation at patient level
As Fig.  5 shows, a patient-level diagnosis strategy was 
employed to evaluate the model performance at the 
patient level. In each LOOCV fold, the image slices of 
a patient were used as testing samples. If the number 
of image slices classified as LGI1 antibody encephalitis 
was larger than that of image slices classified as GABAB 

Fig. 3  Architecture of the ResNet18 (a), VGG16 (b) and ResNet50 (c). For each of the CNN models, a zero-padding layer was added before the first 
convolution layer, so that the size of the image fed into the first convolution layer was 224 × 224. The number of the input channel in the first 
convolution layer was set to one. The output dimension of the fully connected layer was set to two. Conv: Convolution layer; ReLU: Rectified linear 
unit
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receptor antibody encephalitis, the patient was classified 
as LGI1 antibody encephalitis; otherwise, it was classified 
as GABAB receptor antibody encephalitis (Fig. 5). After 
all the LOOCV loops, the prediction results were gener-
ated for all patients. Thus, the accuracy was calculated 
by dividing the number of correct patient predictions by 
the total number of patients. Sensitivity was calculated 
by dividing the number of correct predictions in patients 
with GABAB receptor antibody encephalitis by the total 
number of patients with GABAB receptor antibody 

encephalitis. Specificity was calculated by dividing the 
number of correct predictions in patients with LGI1 
antibody encephalitis by the total number of patients 
with LGI1 antibody encephalitis. In addition, the ROC 
curve of the patient level was plotted with 1-specificity 
and sensitivity of the patient level on the x- and y-axis, 
respectively. The AUC at the patient level was generated 
to assess the performance of the CNN model at patient 
level. In this study, the Delong test was used to compare 

Fig. 4  Training and testing of one-fold of LOOCV for the ResNet18, VGG16 and ResNet50 models. In each LOOCV fold, the PET image slices 
of a patient were used as testing samples (right) and those of the other 80 patients were used as training samples (left)

Fig. 5  Patient level diagnosis strategy. For a patient, if the number of image slices detected as LGI1 antibody encephalitis (i.e., LGI1_num) was more 
than that of image slices detected as GABAB receptor antibody encephalitis (i.e., GABAB_num), the patient was detected as LGI1 antibody 
encephalitis, otherwise detected as GABAB receptor antibody encephalitis. A red rectangle indicated that an image slice was detected as GABAB 
receptor antibody encephalitis. A green rectangle indicated that an image slice was detected as LGI1 antibody encephalitis
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the ROC curves at the patient level between ResNet18 
and VGG16, as well as between ResNet18 and ResNet50.

Visual explanation of model using gradient‑weighted class 
activation mapping
The best CNN model was selected based on the AUC. 
Gradient-weighted class activation mapping (Grad-
CAM) was used to identify the regions that played 
important roles in the best CNN model [32]. The gradi-
ent of the output of the last fully connected layer with 
respect to the output (i.e., feature maps) of the final con-
volution layer was first calculated. Then, the feature maps 
were multiplied by the average gradient of the corre-
sponding channels. Finally, the summation of all channels 
of the feature maps was activated using a rectified linear 
unit function to obtain a heatmap. Because LOOCV was 
applied, the final heatmap of each image slice was gener-
ated from the average of the heatmaps of the image slices 

across all loops. In this study, the output of the last con-
volution layer of the best CNN model was employed as 
the final feature map.

Results
Patient demographics
Table  1 summarizes the patient demographics. In 
total, 81 patients were enrolled in this study. Among 
these 81 patients, 64 patients with LGI1 antibody 
encephalitis (58.27 ± 12.62  years, 44 males) and 17 
patients with GABAB receptor antibody encephalitis 
(52.18 ± 12.19  years, 12 males) were verified using anti-
body testing. However, the weight and height of one 
patient with LGI1 antibody encephalitis were unknown. 
Thus, the weight and height of the remaining 63 patients 
with LGI1 antibody encephalitis were used for sta-
tistical analysis. None of the age, gender, weight, and 
height of patients with LGI1 antibody encephalitis was 

Table 2  The classification results of ResNet18, VGG16 and ResNet50 at slice level

For the slice level, the sensitivity and specificity refer to the ratio of successfully identifying the image slices with GABAB receptor antibody encephalitis and that 
successfully identifying the image slices with LGI1 antibody encephalitis, respectively

Delong test AUC​ Accuracy Sensitivity Specificity

ResNet18 Reference 0.86 80.28% (3073/3828) 73.28% (1445/1972) 87.72% (1628/1856)

VGG16  < 0.0001 0.67 62.77% (2403/3828) 77.43% (1527/1972) 47.20% (876/1856)

ResNet50  < 0.0001 0.74 67.40% (2580/3828) 52.23% (1030/1972) 83.51% (1550/1856)

Fig. 6  The performance of ResNet18, VGG16 and ResNet50 at slice level (a) and patient level (b). For the slice level, the sensitivity and specificity 
refer to the ratio of successfully identifying the image slices with GABAB receptor antibody encephalitis and that successfully identifying the image 
slices with LGI1 antibody encephalitis, respectively. For the patient level, the sensitivity and specificity refer to the ratio of successfully identifying 
the patients with GABAB receptor antibody encephalitis and that successfully identifying the patients with LGI1 antibody encephalitis, respectively
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significantly different from that of patients with GABAB 
receptor antibody encephalitis with the p values of 0.08, 
0.88, 0.91, and 0.80, respectively.

Model performance at slice level and patient level
Table  2 summarizes the performance of ResNet18, 
VGG16, and ResNet50 for the classification between 
image slices with LGI1 antibody encephalitis and those 
with GABAB receptor antibody encephalitis. Figure 6(a) 
shows the ROC curves of these models at the slice level. 
As Table  2 indicates, ResNet18 outperformed VGG16 
and ResNet50 at the slice level (p < 0.0001). Specifically, 
the AUC, accuracy, sensitivity, and specificity were 0.86, 
80.28%, 73.28%, and 87.72% for ResNet18; 0.67, 62.77%, 

77.43%, and 47.20% for VGG16; and 0.74, 67.40%, 52.23%, 
and 83.51% for ResNet50.

To evaluate the performance of these network mod-
els at the patient level, a decision strategy was employed 
(Fig.  5), which successfully distinguished between 
patients with GABAB receptor antibody encephali-
tis and those with LGI1 antibody encephalitis. Table  3 
summarizes the performance of ResNet18, VGG16, and 
ResNet50 for the classification between patients with 
LGI1 antibody encephalitis and those with GABAB 
receptor antibody encephalitis, and Fig.  6 (b) shows 
the ROC curves of these models at the patient level. As 
Table  3 indicates, ResNet18 outperformed VGG16 and 
ResNet50 at the patient level (p < 0.01). Specifically, the 

Table 3  The classification results of ResNet18, VGG16 and ResNet50 at patient level

For the patient level, the sensitivity and specificity refer to the ratio of successfully identifying the patients with GABAB receptor antibody encephalitis and that 
successfully identifying the patients with LGI1 antibody encephalitis, respectively

Delong Test AUC​ Accuracy Sensitivity Specificity

ResNet18 Reference 0.98 96.30% (78/81) 94.12% (16/17) 96.88% (62/64)

VGG16 0.0003 0.73 55.56% (45/81) 88.24% (15/17) 46.88% (30/64)

ResNet50 0.0097 0.86 86.42% (70/81) 52.94% (9/17) 95.31% (61/64)

Fig. 7  Visual explanation of model using Grad-CAM. The final heatmap of each image slice was generated from the average of the heatmaps 
of the image slices across all loops. The hot color overlaps on the MTL and BG. The intensity of the hot color indicates the degree with which 
the model focused on the corresponding region for the discrimination between LGI1 and GABAB receptor antibody encephalitis. The Z values 
in the image slices indicated the MNI coordinates of axial slices
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AUC, accuracy, sensitivity, and specificity were 0.98, 
96.30%, 94.12%, and 96.88% for ResNet18; 0.73, 55.56%, 
88.24%, and 46.88% for VGG16; and 0.86, 86.42%, 52.94%, 
and 95.31% for ResNet50, respectively.

The visual explanation for the model using Grad‑CAM
Based on the AUC values, ResNet18 outperformed 
VGG16 and ResNet50 at the slice and patient levels. In 
this study, the ResNet18 model was interpreted using 
Grad-CAM. In Fig. 7, the hot color of a region indicated 
that the model focused on this region to discriminate 
between LGI1 and GABAB receptor antibody encepha-
litis. As Fig.  7 shows, the hot regions overlapped in 
the majority of the MTL and BG regions, suggesting 
that the metabolic differences reflected by these two 
regions might play a more important role in discrimi-
nating between LGI1 and GABAB receptor antibody 
encephalitis.

Discussion
In this study, ResNet18, VGG16, and ResNet50 models 
were used to discriminate between LGI1 and GABAB 
receptor antibody encephalitis. The ResNet18 model 
achieved the best performance at both slice and patient 
levels. This study demonstrated that the ResNet18 
model could be a prospective approach for discrimi-
nating between LGI1 and GABAB receptor antibody 
encephalitis.

The convolution layer of the CNN models extracted 
complex and abstract features using a convolution opera-
tion between the convolution kernel and the input image. 
As the number of convolution layers increased, the 
extracted metabolic features were continuously enhanced 
and abstracted, which was helpful for identifying sub-
tle changes in medical images. However, as the number 
of convolution layers in the CNN model increased, the 
number of parameters increased, requiring more sam-
ples to train the corresponding CNN model. Although 
the number of samples was increased at the slice level, it 
might not be sufficient to train the ResNet50 model with 
more parameters than ResNet18. This might be one of 
the potential explanations for the inferior performance 
of ResNet50 compared with that of ResNet18. In addi-
tion, different from the VGG16, the ResNet18 model 
employed a “skip connection” (i.e., residual block) to 
speed up the model training process and improve the 
accuracy of the classification. A “skip connection” could 
add features extracted from the previous residual block 
to the next residual block, preserving as many effective 
features as possible to discriminate between LGI1 and 
GABAB receptor antibody encephalitis. Therefore, com-
pared to VGG16, the ResNet18 model achieved better 
classification performance.

In this study, one of the advantages of using image 
slices was that the number of samples used to train the 
models increased. In addition, the 2D ResNet18 model 
had fewer parameters than the 3D ResNet18 model. 
Therefore, given the relatively small number of patients, 
the 2D ResNet18 model with 2D image slices as the input 
images were trained more easily than the 3D ResNet18 
model with 3D images. Therefore, this study employed 
axial image slices to construct a 2D ResNet18 model to 
discriminate between LGI1 and GABAB receptor anti-
body encephalitis. The present study showed that the 
method using axial image slices achieved a good perfor-
mance in the classification between patients with LGI1 
antibody encephalitis and those with GABAB receptor 
antibody encephalitis.

Based on the classification results of the ResNet18 
model, it was found that the heatmap generated by 
Grad-CAM included the MTL and BG, indicating that 
this model focused on the MTL and BG to discriminate 
between LGI1 and GABAB receptor antibody encepha-
litis. Multiple studies have revealed that the MTL and 
BG are common abnormal metabolism regions for LGI1 
[13–15] and GABAB receptor antibody encephalitis 
[16–18], consistent with the findings of this study. Pre-
vious studies have attempted to explore the characteris-
tics of PET images to aid in differentiating ALE subtypes. 
Wegner et  al. [33] explored the different metabolic pat-
terns of LGI1 antibody encephalitis from anti-NMDAR 
encephalitis and found that the BG was hypermetabolic 
in LGI1 antibody encephalitis. Vedeler and Storstein [34] 
reported that ALE predominantly affected the MTL, in 
which hypermetabolism could be detected using FDG-
PET. In addition, another study applied a semi-quanti-
tative analysis method for the MTL and BG to increase 
the detection sensitivity for patients with AE, including 
patients with LGI1 antibody encephalitis and those with 
GABAB receptor antibody encephalitis [20]. In this study 
[20], compared with healthy participants, the metabo-
lism of both the MTL and BG was abnormal in patients 
with LGI1 antibody encephalitis and those with GABAB 
receptor antibody encephalitis. This evidence implied 
that the metabolic pattern was similar for LGI1 and 
GABAB receptor antibody encephalitis. Thus, it was dif-
ficult to discriminate between LGI1 and GABAB recep-
tor antibody encephalitis by the visual assessment of PET 
images. However, the ResNet18 model could identify 
subtle differences in the MTL and BG in the PET images.

Notably, the heatmap generated by Grad-CAM did 
not perfectly focus on the MTL and BG. ResNet18 
could learn effective information using a convolution 
operation between the convolution kernel and image 
slices. Thus, the method in this study used the global 
effective information of each image slice to make a 
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decision, highlighting the strength of DL and implying 
that the method of ‘looking’ medical images was different 
between DL algorithms and clinicians.

The relatively small number of samples was the main 
limitation of this study because the incidence of AE was 
relatively low [35, 36]. Further studies should include 
more patients with LGI1 antibody encephalitis and those 
with GABAB receptor antibody encephalitis, particularly 
prospective cases, to enhance the performance of the DL 
model. In addition, further studies should focus on iden-
tifying the other subtypes of AE.

Conclusions
In conclusion, the ResNet18 model was a potential 
approach for discriminating between LGI1 antibody 
encephalitis and GABAB receptor antibody encephali-
tis. Metabolism in the MTL and BG was important for 
discriminating between LGI1 and GABAB receptor anti-
body encephalitis.
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