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Abstract

To minimize radiation risk, dose reduction is important in the diagnostic and therapeutic applications of computed
tomography (CT). However, image noise degrades image quality owing to the reduced X-ray dose and a possible
unacceptably reduced diagnostic performance. Deep learning approaches with convolutional neural networks
(CNNs) have been proposed for natural image denoising; however, these approaches might introduce image
blurring or loss of original gradients. The aim of this study was to compare the dose-dependent properties of a
CNN-based denoising method for low-dose CT with those of other noise-reduction methods on unique CT noise-
simulation images. To simulate a low-dose CT image, a Poisson noise distribution was introduced to normal-dose
images while convoluting the CT unit-specific modulation transfer function. An abdominal CT of 100 images
obtained from a public database was adopted, and simulated dose-reduction images were created from the
original dose at equal 10-step dose-reduction intervals with a final dose of 1/100. These images were denoised
using the denoising network structure of CNN (DnCNN) as the general CNN model and for transfer learning. To
evaluate the image quality, image similarities determined by the structural similarity index (SSIM) and peak signal-
to-noise ratio (PSNR) were calculated for the denoised images. Significantly better denoising, in terms of SSIM and
PSNR, was achieved by the DnCNN than by other image denoising methods, especially at the ultra-low-dose levels
used to generate the 10% and 5% dose-equivalent images. Moreover, the developed CNN model can eliminate
noise and maintain image sharpness at these dose levels and improve SSIM by approximately 10% from that of the
original method. In contrast, under small dose-reduction conditions, this model also led to excessive smoothing of
the images. In quantitative evaluations, the CNN denoising method improved the low-dose CT and prevented over-
smoothing by tailoring the CNN model.
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Introduction

Computed tomography (CT) is widely used for repetitive
screening diagnostic scans, such as scans for cancer,
lung nodules, and bleeding internal organs. High-
exposure scans can cause patients to suffer from several
biological effects that increase the risk of cancer [1, 2].
To minimize exposure doses, reducing the number of X-
ray photons via tube-current modulation is a viable solu-
tion. However, this method is limited because low-dose
CT triggers image-quality degradation. Hence, lower
doses of X-ray photons provide noisier reconstructed
CT images, which may reduce the diagnostic perform-
ance to an unacceptable level [3].

To address this image degradation, several techniques
have been proposed to improve the quality of low-dose
CT images. Sinogram domain filtration and iterative re-
construction methods combine the statistical properties
of the data in the image domain and projection space to
optimize the objective function. Although these methods
can eliminate image noise, they depend on the specifica-
tions of the manufacturer, thereby limiting their clinical
applications. Computational costs are also required;
hence, the reconstruction process is relatively slow [4,
5]. Moreover, image-space denoising methods, such as
median, Gaussian, and Wiener filters, do not require
projection data and aim to reduce image noise without
requiring an understanding of the structures of interest.
Therefore, they are exposed to the risk of either generat-
ing new image artifacts or losing original structural in-
formation during post-processing, which limit their
clinical applications [6].

Deep learning approaches have been widely used for
image denoising, and convolutional neural networks
(CNNs), which are based on extensive data and powerful
graphics-processing units, have achieved substantial suc-
cess [7, 8]. Several CNN-based methods have been pro-
posed for natural image denoising and low-dose CT.
However, these CNNs are often inhibited by disappearing
gradients and the introduction of image blurring, which
leads to difficulties in training [9]. A denoising network
(Dn), known as DnCNN, incorporates residual learning
and batch normalization (BN), and can yield better im-
provements for Gaussian denoising tasks with unknown
noise. In this technique, residual learning can be realized
by improving the training efficiency when the input and
output are close to each other, such as a noise image [10].
Moreover, BN facilitates the application of significantly
higher learning rates by stabilizing the training process,
which can address the vanishing gradient challenge in
these deeper learning processes [11].

However, this method has been demonstrated to be
inferior to more realistic and complicated noises [10,
12]. Several CNN-based methods have been evaluated
for clinical low-dose CT denoising. Chen et al. [13]
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demonstrated the potential of a CNN-based framework
for artifact reduction and structure preservation in low-
dose CT imaging. Deep learning algorithms that adopt
residual encoder-decoder networks have been evaluated
and validated for CT denoising, and these networks have
exhibited significant potential for noise suppression,
structural preservation, and lesion detection at a high
computational speed [14]. However, the dependence of
the incident dose reduction in the CNN-based denoising
method has not been elucidated, and dose reduction
levels for the effective operation of the CNN model need
to be validated.

In this study, to better understand the dose-dependent
properties of the CNN-based method, DnCNN was imple-
mented to denoise low-dose CT images, and compared
the image quality with that of other noise-reduction
methods on unique CT noise simulation images. Collect-
ing real human images obtained at various incident dose
levels to train a deep learning model significantly increases
the cost of the learning process. To address this challenge,
the aim of this study was to simulate virtual low-dose im-
ages at several dose-reduction levels, and apply physical
evaluation metrics of image quality to quantitatively com-
pare the noise-reduction performance of different denois-
ing methods on simulated images.

Methods

Network architecture

The network structure of the DnCNN was adopted as the
general CNN model [10]. This model was pretrained on
400 Gy-level images with a Gaussian noise level o =25 for
natural image denoising. The input image size for training
was 50 x 50 pixels, the convolution layers were set to 20,
and 64 convolutional filters were used at a size of 3 x 3
pixels to generate the feature maps. Residual learning and
BN were used to enhance denoising performance and
learning speed. Moreover, defined as the positive part of its
value, rectified linear units (ReLU) were adopted for faster
training of deep neural networks. DnCNN learns residual
map data and generates a noise-reduced image, which can
yield more efficient training and accurate results within
very deep networks. BN was applied between the convolu-
tion filters, and ReLU was used in all middle layers to en-
able higher learning rates with the normalization of each
sub-sample set. The architecture of the DnCNN network is
illustrated in Fig. 1.

Transfer learning

The concept of the proposed transfer learning is to up-
date the pretrained model of the DnCNN for adapting
CT-specific dose-reduction images. In this study, 100 ab-
dominal CT images obtained with a sufficient original
dose were adopted for transfer learning. These CT im-
ages were obtained from a publicly available dataset
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Fig. 1 Overall architecture of the DnCNN with simulated-noise images. This network learns residual mapping for noise image. The main modules
include convolutional filtering, ReLU and BN
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(The Cancer Imaging Archive), which is an open-access  CT noise-simulation images

information resource created by the US National Cancer =~ The dominant CT noise statistics in X-ray reduction are
Institute [15]. Simulated dose-reduction images were known to follow a Poisson distribution. Therefore, to
generated within these abdominal images, with a 10-step  simulate a low-dose CT image, a Poisson noise distribu-
dose reduction rate from the original dose to 1/100. tion was introduced while convoluting the CT unit-
Therefore, the number of training images in the pro-  specific modulation transfer function (MTF) [16]. Figure 2
posed transfer learning was 1000. Subsequently, these presents the MTF curve applied during the noise simula-
images were selected in two cases, and 5% of the data  tion process. By adding these simulated CT specific noises,
were used to validate the denoising performance during statistical pixel value deviation images were created ac-
the training. Training images were cropped in 350 x 250  cording to the incident dose reduction levels. Here, simu-
pixels (350 x 500 mm?) in the center of the image and  lated noise were created with standard deviations of 1.3, 2,
randomly divided into small patches of 50 x 50 pixels, 10, and 20 times the original image to create 75%, 50%,
with 15 patches per image. Furthermore, the input image  10%, and 5% dose-equivalent images. Accordingly, unique
was rotated randomly from 0° to 90°, horizontally. These = reduced-dose images reflecting the CT unit noise charac-
learning methods can prevent overfitting using training teristics were created for this denoising study.

datasets. The Adam optimizer was used for training at a

learning rate of 10~ >, and the networks were trained in  Evaluation of image quality

150 epochs. A Quadro RTX 5000 GPU graphics proces- To evaluate the image quality of denoised images using
sor (NVIDIA Corporation) was adopted for training and DnCNN, and compare its performance with that of
evaluation. The total training time was approximately  other noise-reduction methods, the CT value intensity

10 h. was measured, and the structural similarity index (SSIM)
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Fig. 2 CT unit-specific modulation transfer function
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and peak signal-to-noise ratio (PSNR) were calculated
for the denoised images [17]. The SSIM was calculated
as follows:

(2ﬂxﬂy + Cl) (Zo'xy + C2)

SSIM (x,y) =
(uzx + 42, + Cl) (0% + 02y + Cs)

(1)

where g, 0, C, and x, y represent the signal mean, variance,
C regularization constant, and each evaluation image, re-
spectively. Furthermore, the PSNR was calculated as:

M i NZEZIZ?[Zl[x(i’ j)—y(l'7]')}2,

max|x(i, j)|*
MSE

MSE =

PSNR = 10 log;, (2)
PSNR is the maximum value in the input image data
[x (i, )] divided by the mean squared error (MSE) be-
tween image x (denoised low-dose image) and image y
(original full-dose image). In addition, M and N repre-
sent the width and height of the images, respectively.

In this study, the performance of DnCNN was com-
pared with other noise-reduction methods using median,
Gaussian, and Wiener filters. In the median filter
method, the output value is the median value of the 3 x
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3-neighboring pixels. In the Gaussian filter method, an iso-
tropic Gaussian smoothing kernel with a standard deviation
of 1.0 is applied to a two-dimensional image. In the Wiener
filter method, smoothing kernels in the mean and variance
of 5 x 5-neighboring pixels were adopted in the denoising
process. Moreover, post-transfer-learned DnCNN was
compared with these noise-reduction methods, including
the original DnCNN. To compare image quality by adopt-
ing the indices of PSNR and SSIM, 10 abdominal CT im-
ages composed of 350 x 250 pixels (350 x 250 mm?) with 3-
mm slice thicknesses were used for the quantitative evalu-
ation. These CT images were obtained from a publicly
available dataset, from the Cancer Imaging Archive [13].
The simulated noise images were created in 75%, 50%, 10%,
and 5% equivalent doses relative to the original dose. The
difference between the results of each noise reduction
method and the original DnCNN method was considered
statistically significant (two-tailed t-test, p < 0.05).

Results

Denoised images

Figure 3 presents one of the results of the denoised im-
ages obtained using each filtering and CNN-based
method. Figure 3b compares the enlarged images of one
region (indicated by the red rectangle) in Fig. 3a. More-
over, a vertical CT value profile of each image with
equivalent dose levels of 50% and 10% are plotted in Fig. 4.

(b)

Normal dose 75% dose 50% dose 10% dose

Winner filter

DnCNN_Tra

5% dose

Fig. 3 Denoised image with contaminating noise artifacts, which was simulated to minimize dose exposure in the image at four different dose
levels. a Results of noise reduction in the entire abdominal image; b Enlarged images of the region indicated by the red region of interest; all
images are presented with the same window width and level. Median, Gaussian, Wiener, original DNnCNN, and optimized DnCNN (DnCNN_Tra)
techniques were applied for noise reduction at each dose-reduction level

Normal dose 75% dose 50% dose 10% dose 5% dose

Median filter

Gaussian filter

Winner
filter

DnCNN_Tra
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Fig. 4 Comparison of the vertical profiles in each image. a Profile position; b-f CT value profiles along the red arrow in (a) with each noise
reduction method in the 50% dose equivalent image; g-k CT value profiles along the same line in the 10% dose equivalent image. Red line
depicts the normal dose image, yellow lines represent the dose reduction images, and each black dashed line denotes the denoised images by
the Median, Gaussian, Winner, original DnCNN and DnCNN_Tra techniques, respectively
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In these results, DnCNN_Tra represents the application of
transfer learning for the original DnCNN model. Regarding
the ultra-low-dose levels (equivalent to 10% and 5% doses),
significant image degradation was triggered by the simulat-
ing the reduction in incident photons. The image quality
improvement obtained by the filter-denoising methods at
ultra-low doses was insufficient. In contrast, it was also ob-
served that the CNN-based methods effectively reduced the
noise at these ultra-low doses. Figure 5 presents a compari-
son of visual inspection via denoising with the DnCNN
method. In the results of the original DnCNN method, al-
though the noise had been eliminated, image blurring was
introduced at ultra-low-dose levels. Conversely, denoising
using the DnCNN_Tra was adopted to preserve the image
edge sharpness, and the hepatic sickle mesentery was visu-
alized, as depicted by the white arrows in Fig. 5. Moreover,
the profile of the CT value in the 10% dose equivalent
image was similar to that of the normal dose image, as illus-
trated in Fig. 4k. Nevertheless, excessive smoothing at dose-
reduction levels of 75% and 50%, and inaccurate blackout
regions at dose-reduction levels of 5% were observed, as in-
dicated by the red arrows in Fig. 5.

Quantitative evaluation of image quality
In Figs. 5 and 6, the image qualities of the original
DnCNN and DnCNN_Tra methods were compared in

terms of SSIM and PSNR, respectively, over different
dose-reduction levels among noise-suppression filters.
For the SSIM values, the DnCNN method tended to
provide improvements at all dose reduction levels. How-
ever, no significant difference was observed with respect
to the results of the Gaussian filter method. In contrast,
PSNR results were significantly improved in the 75% and
50% equivalent-dose images when compared with the re-
sults of the Gaussian filter method. However, at ultra-
low-dose levels, the DnCNN method could not obtain
significantly higher PSNR values than the other noise-
reduction methods. For DnCNN_Tra, the SSIM was im-
proved by approximately 10% relative to that of the ori-
ginal DnCNN method in the 5% and 10% dose-
equivalent images. In contrast, in the results for the 75%
and 50% dose-equivalent images, SSIM and PSNR were
significantly degraded relative to the results for the ori-
ginal DnCNN method.

Discussion

In this study, the ability of general pre-trained CNN
image denoising to discard noise triggered by the lack of
incident photons in CT images, was assessed. For diag-
nostic and radiation therapy purposes, denoised images
should exhibit sufficient quality to facilitate clinically
sound decisions. Therefore, the quantitative evaluation
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75% dose

Normal dose

excessive smoothing triggered by the denoising
.

50% dose

Fig. 5 Comparison of the visual inspection by denoising, between the original DnCNN and trained DnCNN methods. White arrows depict the
hepatic sickle mesentery, which can be visualized by the denoising effect using the trained DnCNN method. Conversely, red arrows represent

10% dose 5% dose

of image quality is based on its similarity to normal dose
images when comparing noise-reduction methods.

The denoising performance in terms of image SSIM
and PSNR was significantly better for DnCNN than for
the other image-space denoising methods. In the results
presented in Fig. 3, the DnCNN method effectively

reduces noise at all dose reduction levels. The results of
the image-space filtering methods at ultra-low levels of
10% and 5% dose equivalents were insufficient. These re-
sults were triggered by the extremely large deviation in
the image pixel values, thus suggesting the limitations of
denoising using a reconstructed image space.
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Fig. 6 SSIM results for different noise-reduction methods for each dose-reduction simulated image. * indicates p < 0.05, which represents a
significant difference in the SSIM value relative to the results of the original DnCNN method
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As illustrated in Fig. 6, the DnCNN method tended to
increase the SSIM value at all dose levels; therefore, an
improvement in the overall image similarity is expected.
Although the DnCNN model was pretrained on 400
grayscale images and a Gaussian noise level of 25 for
natural image denoising [10], its potential effectiveness
for denoising low-dose CT was also validated in our
study. However, there were no significant differences in
the SSIM values between the results of the DnCNN and
Gaussian methods. A virtual dose-reduced image was
simulated according to Poisson distribution. Accord-
ingly, the Gaussian filter method was effective in remov-
ing noise in this study. In contrast, because the DnCNN
model also learned a Gaussian distribution, effective re-
sults were obtained when removing noise statistics from
low-dose CT images.

The results in Fig. 7 indicate that the DnCNN method
realizes significantly better results than those of the
Gaussian model at the 75% and 50% dose-equivalent
levels. However, at ultra-low-dose levels, no significant
improvement was observed relative to the other noise-
reduction methods. The PSNR value is calculated as the
noise component divided by the MSE of the pixel values
of the normal-dose and denoised images. Therefore,
both insufficient denoising and excessive smoothing trig-
ger deviations in pixel values from the original image. In
this case, PSNR is degraded. PSNR values obtained by
the DnCNN method were influenced by the excessive
smoothing, and these results can be visually observed in
Fig. 6. In contrast, because a significant improvement
compared with the results of the Gaussian method can
be demonstrated, the DnCNN method eliminates noise
more naturally in CT image denoising than other
methods. However, it has been observed that this over-
smoothing behavior is associated with the original
DnCNN in denoising very low-dose CT data. This is the

(2021) 4:21

Page 7 of 9

same tendency as described in a previous study [8]. The
CT value of the internal body was overestimated by ap-
plying the original DnCNN method (Fig. 4j). Conversely,
the DnCNN_Tra was able to eliminate noise and main-
tain image sharpness at the 10% and 5% dose-equivalent
levels; therefore, the clinical anatomical structure (hep-
atic sickle mesentery) could be visualized (white arrows
in Fig. 5). Moreover, the CT profile agreed well with that
of the normal-dose image (Fig. 4k). Therefore, SSIM and
PSNR results were significantly increased relative to
those of the original DnCNN. Therefore, the current
denoising model, which was pre-trained on natural/syn-
thetic images using Gaussian noise, can be updated by
simulating dose-reduction images. However, at dose-
equivalent levels of 75% and 50%, the results of the
DnCNN_Tra images also exhibited excessive smoothing
(red arrows in Fig. 5). This excessive smoothing trig-
gered pixel value deviations from the original dose
image; therefore, SSIM and PSNR values decreased in
75% and 50% dose-equivalent images compared to those
in 10% and 5% images. Moreover, several inaccurate
blackout regions occurred in the results for the 5% dose-
equivalent image (red arrows in Fig. 5). Accordingly,
low-dose CT with dose-reduction levels of < 50% is suf-
ficient when using the original DnCNN method, and
50% to 10% dose-equivalent images are adequate for
adopting the trained DnCNN model for image denois-
ing. Moreover, CNN-based denoising of images at dose
equivalent levels of <10% has a high risk of generating
new image artifacts. Therefore, CNN-based denoising
for images with dose-equivalent levels of < 10% from the
original dose cannot create accurate noise reduction im-
ages. The proposed transfer learning could not have per-
formed well at all dose reduction levels. The distribution
of high-noise components is possibly significant for the
training data. Moreover, residual learning of Poisson

45 0375% dose

®50% dose

10% dose  ©5% dose

*

15 “—

Dose reduction  Median

Gaussian
Fig. 7 PSNR results for different noise-reduction methods of each dose-reduction simulated image. * indicates p < 0.05, which represents a
significant difference in PSNR value relative to the results of the original DnCNN method

Winner DnCNN

DnCNN_Tra
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distribution-based CT-specific noise features may have
resulted in excessive smoothing. In the transfer learning
process, the pre-trained learning model with prior data
was maintained, and only the last fully connected layer
was updated for the new data. Therefore, the CT noise
became excessive, thus resulting in over-smoothing,
which occurred in the high-dose region with less noise
areas. The deeper the layer, the more abstract the
learned feature. This can be attributed to the lack of
new networks for extracting important features from
training images, which is a result of the small amount of
noise variation data used in training them [18, 19]. In
previous studies, the reconstruction of the learning
mechanism for a specific purpose was achieved by opti-
mizing the learning model by transfer learning [20-22].
In these studies, training data were experimentally cre-
ated using human image and phantom data; therefore,
the accuracy of their noise features was realistic and of
high quality. Moreover, adjustments in the noise distri-
bution of the training data and improvements in the
CNN architecture are required to reduce noise at any
dose level in clinical CT images.

The limitations of this study include the need to train
and evaluate the denoising accuracy of the DnCNN
method in actual low-dose exposure images. However, it
is impossible to obtain CT images with the same organ
positions without any misalignment obtained at various
dose levels for model learning. In this study, the noise-
removal capability of the DnCNN method can be quan-
titatively demonstrated using unique CT noise-
simulation images. In contrast, the accuracy of this CT
noise simulation will influence the results of CNN-based
denoising, and realistic CT noises will increase the ac-
curacy of the deep learning model.

Conclusions

The proposed DnCNN-based denoising method ad-
equately denoised the CT-specific noise resulting from
low-dose X-ray exposure. Furthermore, the denoising
properties of the proposed method are more suitable
than those of other noise-reduction methods, particu-
larly at ultra-low-dose levels. Transfer learning with tai-
lored DnCNN facilitated the elimination of image noise,
and prevented over-smoothing at ultra-low doses. In
addition, it improved image similarity by approximately
10%. However, dose-equivalent levels of <10% of the
original dose could not create accurate noise reduction
images. Developing a generally applicable denoising net-
work via optimal network design and training data
modification is required for appropriate noise reduction
at all noise levels.
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