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Abstract

Neurodegenerative disorders are commonly characterized by atrophy of the brain which is caused by neuronal loss.
Ventricles are one of the prominent structures in the brain; their shape changes, due to their content, the
cerebrospinal fluid. Analyzing the morphological changes of ventricles, aids in the diagnosis of atrophy, for which
the region of interest needs to be separated from the background. This study presents a modified distance
regularized level set evolution segmentation method, incorporating regional intensity information. The proposed
method is implemented for segmenting ventricles from brain images for normal and atrophy subjects of magnetic
resonance imaging and computed tomography images. Results of the proposed method were compared with
ground truth images and produced sensitivity in the range of 65%–90%, specificity in the range of 98%–99%, and
accuracy in the range of 95%–98%. Peak signal to noise ratio and structural similarity index were also used as
performance measures for determining segmentation accuracy: 95% and 0.95, respectively. The parameters of level
set formulation vary for different datasets. An optimization procedure was followed to fine tune parameters. The
proposed method was found to be efficient and robust against noisy images. The proposed method is adaptive
and multimodal.
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Introduction
The brain gets affected by multiple factors; degenerative
disorders are one of them. Degenerative disorders could
be a result of environment changes, food habits, work
depression, hereditary, traumatic injury or caused from
the effect of other neurological disorders. Degenerative
disorders in the brain render the subject unable to per-
form their activities of daily living such as communica-
tion, movement, balancing their body while walking and
sometimes vital functions such as respiration and func-
tioning of the heart. Atrophy in the brain or cerebral at-
rophy is a symptom or a form or stage which is caused
by many diseases. In atrophy, the brain starts to shrink
because of neuronal loss [1, 2]. Atrophy affects all struc-
tures of the brain, but in different ratios. Therefore, for
the diagnosis of atrophy, certain regions or structures of

the brain are preferred by experts. Atrophy can be de-
tected by several ways: mini mental state exam, electro-
encephalography, using imaging modalities such as
computed tomography (CT), magnetic resonance im-
aging (MRI), positron emission tomography (PET) and
single photon emission computed tomography (SPECT),
measuring cerebrospinal fluid (CSF) pressure and biopsy
of the brain tissues. Imaging modalities give an advan-
tage of a clear view of the brain and helps in giving the
location and structure which has more atrophy in terms
of quantification [3, 4]. This will aid the physician in
early detection.
The ventricular system is one of the prominent struc-

tures in the brain, located in the mid-regions of the
brain, filled with CSF [5]. At different stages of degen-
erative disorders, atrophy in particular, the volume of
the CSF tends to increase due the shrinkage or loss of
neurons [5, 6]. As ventricles are filled with CSF, their
shape and size also keep changing due to the changes
occurring in the CSF and the subsequent progression of
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the disease [1, 4]. Thus, brain ventricles serve as a major
landmark or biomarker for detecting atrophy. Anandh
et al. [7] attempted a ventricular enlargement study to
differentiate between mild cognitive impairment (MCI)
and Alzheimer’s disease. This group employed shape de-
scriptors to study the shape differences of ventricles and
used it for the classification purpose. Wang et al. [8]
used the shape of the brain ventricles for improving the
classification accuracy of Alzheimer’s disease from nor-
mal subjects and other diseases using shape descriptors.
Bader et al. [9] performed volume estimation of CSF and
ventricles, to verify correlations between CSF oscillations
and ventricular dilatation, and how their variations are
indicated in brain disorders. An experimental based
structural mapping was employed by Carmichael et al.
[10] for distinguishing dementia and MCI in a large
community.
For landmark based diagnostic systems such as mor-

phometric and volumetric studies, the region of interest
needs to be either highlighted or separated from the
background [11–13]. Hence object segmentation is a
pre-processing step in a diagnostic system. The manual
segmentation process is labor intensive, time consuming,
and could be biased, and its accuracy is based on the in-
dividual’s training skills. Thus, computer-based segmen-
tation procedures are preferred by experts to minimize
manual errors. It is important that these computerized
algorithms are accurate, rapid, cost effective, automatic,
and robust [13].
There are different types of segmentation techniques

that have been reported in the literature: thresholding-
based techniques, region growing and splitting algo-
rithms, clustering techniques, atlas-based models,
deformable models, and neural networks and classifiers
[14]. Baghdadi et al. [15] came up with the Bayesian
Generalized Fast Marching algorithm for segmenting
brain structures including the ventricles. Mishra et al.
[14] presented a hybrid segmentation procedure using
the watershed algorithm and distance regularized level
set evolution (DRLSE) algorithm for segmenting gray
matter, white matter and CSF from MR images of the
brain. Xia et al. [12] developed a knowledge-driven algo-
rithm for automatic segmentation of the ventricles from
MR images. Narr et al. [16] reported a 3D mapping of
temporo-limbic regions and ventricles for schizophrenic
subjects. Anandh et al. [17] incorporated Tukey’s bi-
weight edge indicator into a level set formulation to seg-
ment the ventricles in Alzheimer’s subjects and the
method was shown to be clinically significant. Angelini
et al. [18] implemented a four phase, 3D active contour
model on 3D images for partitioning brain MR images.
This group demonstrated that, the proposed framework
was efficient in segmenting the regions of interest and
flexible with the set of features. Aloui and Naceur [19]

proposed an approach based on level set method for de-
lineating tumor, followed by mesh simplification to sep-
arate them out.
Even though there are many techniques available, the

technique chosen varies between organs, region of inter-
est, depending on the disease, subject’s age, imaging mo-
dality (X-ray, CT, MRI, PET, SPECT), method of
visualization, features to be used from the segmented
image [1, 2]. Hence adaptive and multi-modal segmenta-
tion algorithms need to be developed [19]. This study
employs a modified DRLSE with optimized parameters
for segmenting ventricles from brain images [20, 21].
The objective of this study was to segment the ventricles
based on a modified level set technique to improve seg-
mentation accuracy and diagnosis involving ventricles.

Methods
The methods section is divided into two parts:
optimization of parameters and main segmentation
framework.

Level set formulation
The level set method was first introduced by Stanley
Osher and James Sethian in the 1980s [22]. It is based
on the active contour model concept, where the curves
are represented as zero level set, with a function of
higher dimension, which is called as the level set func-
tion (LSF) [22, 23]. The curve evolves, depending on cer-
tain energy functions from the image, which are derived
by partial differential equations. The energy functions
give the speed at which the curve evolves and result in a
smoothing process. The stopping point of the curve evo-
lution is the boundary of the object to be segmented [3,
24]. The extraction of the curve is dependent on the ini-
tial parameters chosen by the user. For this reason, LSF’s
performance relies more on the initialization of the pa-
rameters. There have been different re-initialization pro-
cedures, regularization procedures reported in literature
for making LSF efficient and accurate [25, 26]. It can
represent shapes having complex topology [27, 28]. The
LSF is defined as follows: parametric contour is given by
C1ðs; tÞ : ½0; t� � ½0;∞�→R2 , which defines the
parameterization of a point in the contour [22, 23, 26].
The curve evolution is defined by the following equation

∂C1 s; tð Þ
∂t

¼ FN ð1Þ

C1 is curve, F is speed function that controls the
motion of the contour, N is inward normal vector to the
contour. The level set surface needs to remain with the
same smoothness level; hence initialization has to be
given at regular intervals - this process is called as re-
initialization [29, 30].
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ϕt ¼ sign ϕ0ð Þ 1 − j∇ϕ0jð Þ ð2Þ

∇ is the gradient operator of the image and ϕ is the
LSF that needs to be re-initialized.

Optimization of parameters
Even though the level set method has many advantages,
it has a drawback in the form of re-initialization; which
leads to increased complexity in terms of user interven-
tion and execution time is more. Therefore, Li et al. [21,
22] proposed DRLSE method which eliminated the need
for re-initialization process. The set of input parameters
used in their study were not able to segment the brain
ventricles correctly for the dataset used in this study.
Therefore, a preliminary study of optimizing the param-
eters was implemented for input images. An
optimization procedure was followed for all the images
(n = 80 subjects): 20 atrophy CT subjects, 20 atrophy
MRI subjects, 20 normal CT subjects, and 20 normal
MRI subjects. In selective optimization images were in-
cluded randomly from the study groups (2 atrophy and
3 normal subjects from CT dataset, 3 atrophy and 2 nor-
mal subjects from MRI dataset). The parameters which
were tuned were alpha (α), lambda (λ), epsilon (ε), time
step (Δt), edge kernel (Gaussian, Average, Median), ker-
nel size and sigma value; whose significance will be ex-
plained later. As given in the algorithm the value which
produces highest accuracy value when compared with
ground truth image is considered to be the tuned value
for the respective parameter. This is explained in the re-
sults section with a sample table (Table 1). The tuned
parameters are common for both the datasets used in
this study; CT and MR images as the optimization pro-
cedure was carried out commonly for both the datasets
(mingling images from CT and MR, making it into a sin-
gle group and then carrying out optimization
procedure).
There are many optimization techniques available: lin-

ear, nonlinear, grid search, Bayesian, random search, and
gradient based to make this parameter tuning general-
ized. Generalization means, parameter optimization for
the segmentation framework such that, it performs well
on all the datasets - irrespective of the geographical re-
gion, age and gender of the subject, imaging properties
and imaging modality (The optimization carried out in

this paper is specific for the datasets used for this study).
However, this involves the appropriate selection of the
optimization technique based on the data and dimension
of the parameters, training and testing of the parameters,
cross validation, etc. This will make the selection of the
parameter computationally complex. The objective of
this study was to improve the DRLSE method; the pro-
posed modification was made to make it suitable for seg-
menting the input images. Moreover, the parameters
used in the original DRLSE study for their synthetic data
were found to be unsuitable for the input data used in
this study, thereby leading to failure of the segmentation
procedure or improper segmentation. Therefore, this
study used a simple optimization procedure for selecting
suitable values for the parameters as shown in Fig. 1. If
we need to go for a generalization of the parameter se-
lection that will make the entire algorithm complex, as
the segmentation algorithm itself takes up to 2 min for
execution. The algorithm is as follows (Fig. 1). The
tuned parameter values are: alpha-2, lambda-1, epsilon-
2, time step-1.5, edge kernel-Gaussian, sigma for Gauss-
ian kernel-2.5, size of the kernel-15.

DRLSE
Li et al. [20, 21] proposed the DRLSE method to over-
come the trouble of re-initialization. In DRLSE the sur-
face regularity of the LSF is intrinsically maintained by a
regularizing term. Hence with the surface fitting energy
term, there will be a regularization term in the LSF [31].
The initial LSF, gradient operator and signed distance
function are the same as the conventional level set
method and have been adapted in DRLSE. Due to space
constraint only; the relevant equations are given here.
The remaining equations and their derivations can be
referred from refs. [20, 21, 31]. The energy term is given
as follows

εε ∅ð Þ ¼ μ
Z

Ω
p j ∇∅ j dxþ λ

Z
Ω
gδε ∅ð Þ j ∇∅ j dxþ α

Z
Ω
gHε − ∅ð Þdx

ð3Þ
Where, εε (∅) is energy functional, ε is a constant, the

first term is level set regularization term and μ > 0 is a
constant, p is potential function, λ > 0 coefficient of the
area term: the second term in the equation, α is coeffi-
cient of weighted area term, it should be positive so that

Table 1 Average and SD values of similarity measures between ground truth and segmented results (n = 40)

Epsilon DI JI Sensitivity Specificity Accuracy

0.5 0.55 ± 0.0148 0.38 ± 0.0112 87.8 ± 0.61 96.4 ± 0.72 96.2 ± 0.62

1 0.53 ± 0.0217 0.41 ± 0.0254 88.6 ± 0.45 96.5 ± 0.5 96.3 ± 0.62

1.5 0.52 ± 0.0356 0.39 ± 0.034 90.4 ± 0.78 96.5 ± 0.52 96.3 ± 0.72

2 0.59 ± 0.0294 0.46 ± 0.029 90.6 ± 0.86 96.59 ± 0.73 96.39 ± 0.54

2.5 0.56 ± 0.0378 0.39 ± 0.034 90 ± 0.6 96.5 ± 0.63 96.3 ± 0.42
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zero level contours can shrink in the level set evolution.
The role of g in the energy term (area term) is to slow
down the shrinking and expanding of the zero level con-
tours when it arrives at object boundaries where g takes
smaller values. The last term is the line integral, δ and H
are Dirac delta function and Heaviside functions respect-
ively [20, 24, 32]. Applications to image segmentation
using edge information are obtained from the image

g≜
1

1þ j ∇Gσ�I j ^2 ð4Þ

G stands for Gaussian kernel, I is the image and σ is
the standard deviation (SD) of the kernel, which defines
the blurring of Gaussian kernel. The convolution is used
for smoothening the image to reduce noise.

Region-scalable fitting model
The region-scalable fitting (RSF) model uses the region
based active contour model to provide information on
the low-intensity pixels. A fitting energy is obtained
from the region of interest in the image based on pixel
intensities [33]. This fitting energy is divided into two
functions: one defines the intensity information inside
the boundary and the other approximates the region
outside the boundary [34–36]. Due to space constraint
only, the relevant equations are given here as it will be a
repetition of what is already present in ref. [35]. The
remaining equations and their derivations can be re-
ferred from ref. [35]. For an image I(x, y), the energy
functional is

FMS u;Cð Þ ¼
Z

Ω
u − Ið Þ2dxþ μ

Z
Ω=c

∇uj j2dxþ v Cj j ð5Þ

|C| is the length of contour C, I is the input image, u
approximates the image I, μ is a constant, Ω is the image

domain and ν is a constant. The energy function is de-
rived by minimizing Mumford –Shah function for a
curve. It can be rewritten as follows for a given point
x ∈Ω

ε f itx½C; f 1ðxÞ; f 2ðxÞ� ¼
X2
i¼1

λi

Z
Ω
Kσðx − yÞjIðyÞ − f iðxÞj2�Mi½∅ðyÞ�dy

ð6Þ

εfitx= fitting energy, λ1 and λ2 are positive constants,
f1(x) and f2(x) are two values that approximate image in-
tensities in domains Ω1 and Ω2. I(y) = image intensities
involved in the above fitting energy. Kσ is non negative
kernel function.

Modified DRLSE
DRLSE has many advantages compared to the conven-
tional level set method, in terms of initialization. How-
ever, it lacks in one feature that it uses only the edge
information from the input image. This leads to incor-
rect segmentation of the ventricles, as it has both sharp
and weak boundaries present at different regions of the
ventricles as shown in Fig. 2. Even with the optimized
parameter, it fails to converge sometime as shown in
Fig. 3. Wherever a weak boundary is present with small
change in the intensities, it was not well detected by the
edge indicator as it considers only gradient changes,
eventually leading to incorrect segmentation. DRLSE
needs to have a term that accounts for pixel wise inten-
sity information from the images which will detect very
small changes in the intensity such as weak boundaries.
Therefore, this study proposes the incorporation of the
RSF concept into DRLSE for better segmentation.
RSF-based segmentation works well in case of weak

boundaries as it accounts for regional (pixel wise infor-
mation in a particular region) intensity information but

Fig. 1 The flowchart for parameter optimization
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suffers from re-initialization [34–36]. RSF does not ac-
count for any edge information; sometimes it fails to
converge and suffers from re-initialization. A study has
been reported in the literature where DRLSE was applied
first on the image, followed by RSF; which merely in-
creases the computational complexity and time [37].
Therefore, this study proposes to incorporate re-

gional intensity approximations of two regions from
the RSF to the DRLSE framework which already has
edge indicator and the regularization term. This way,
the LSF will have region based and boundary based
fitting energy term and a regularization term to avoid
the complex re-initialization process. This reduces the
computational complexity as there is only intensity
information incorporated into the DRLSE equation in-
stead of merely adding it to the framework, less com-
putational time and efficient segmentation. This
proposal is made to overcome the limitations of the
DRLSE method. The proposed framework is given as
follows (only the final equations combining both the
frameworks are presented here as other equations and
terms have been presented in the previous sections):

Energy Functional equation is obtained by combining
DRLSE and RSF. The RSF term is

εð∅Þ ¼ λ1

Z
Ω
Kσðx − yÞjIðyÞ − f 1ðxÞj2�M1½∅ðyÞ�dy

þ λ2

Z
Ω
Kσðx − yÞjIðyÞ − f 2ðxÞj2�M2½∅ðyÞ�dy

ð7Þ

The DRLSE equation for LSF

εε ∅ð Þ ¼ μ
Z

Ω
p j ∇∅ j dxþ λ

Z
Ω
gδε ∅ð Þ j ∇∅

j dxþ α
Z

Ω
gH ε − ∅ð Þdx ð8Þ

Approximations for line and area term in the DRLSE
framework

λ1

Z
Ω
K σðx − yÞjIðyÞ − f 1ðxÞj2�M1½∅ðyÞ�dy≅λ

Z
Ω
gδεð∅Þ j ∇∅ j dx

ð9Þ

Fig. 2 Resultant images of segmentation using the conventional DRLSE method. The incorrect segmented regions are marked in green
color circles

Fig. 3 Resultant images of segmentation using the conventional DRLSE method with optimized parameters. Without the regional information,
the DRLSE framework fails to converge to the actual boundary
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λ2

Z
Ω
K σðx − yÞjIðyÞ − f 2ðxÞj2�M2½∅ðyÞ�dy≅α

Z
Ω
gH εð −∅Þdx

ð10Þ
The final equation by combining (8), (9) and (10).

εð∅Þ ¼ μRpð∅Þ
þ λ

Z
Ω
gjIðyÞ − f 1ðxÞj2�M1½∅ðyÞ�dy

þ α
Z

Ω
gjIðyÞ − f 2ðxÞj2�M2½∅ðyÞ�dy ð11Þ

Where M1 and M2 are the equivalents of Heaviside
and Dirac delta functions presented in the second and
third terms of Eq. (8), which were applied in the final
computation. In Eq. (11), the edge indicator term g is
from the DRLSE framework, g|I(y) − f1(x)|

2 ∗M1[∅(y)]dy
is the regional intensity approximation from the RSF
framework from domain 1 (inside the boundary), and
g|I(y) − f2(x)|

2 ∗M2[∅(y)]dy is the regional intensity ap-
proximation from the RSF framework from domain 2
(outside the boundary) along with the edge indicator.
The edge indicator of the DRLSE model is used here
(g = edge indicator). Figure 4 shows the segmented ven-
tricles using the proposed method. Step by step imple-
mentation of the proposed algorithm is shown in
flowchart in Fig. 5.

Kσ x − yð Þ ¼ g ð12Þ

Results
Twenty CT images and twenty MRI T1 weighted images
of healthy subjects were considered. Twenty CT images
and twenty MRI T1 weighted images of atrophy subjects
were included in the dataset. The CT images chosen
were of axial slices with slice thickness 5 mm and size of
512 × 512 pixels. The MRI images used were of axial
slices with slice thickness 5 mm and size of 256 × 256

pixels. The images were collected from Calcutta Medical
College, Kolkata, West Bengal, in digital imaging and
communications in medicine format. The atrophy sub-
jects were chosen by the expert radiologist and were
confirmed by a clinical diagnostic process. Each brain
volume was skull stripped using an algorithm which in-
volves binarization, labeling, finding region properties
and morphological operations. The segmented results
were validated with ground truth images, made with the
help of an expert radiologist. The brain images of re-
spective slices were edited using image editing software;
the borders of the ventricles were traced manually. After
drawing the borders manually, the images were shown
to the radiologist to verify the accuracy. Then, the re-
gions inside the borders were extracted using MATLAB
coding. These were used as ground truth images for
comparison with the segmented images. Then the modi-
fied DRLSE method was applied as shown in Fig. 5.

Results of optimization of parameters
Table 1 shows the results of the optimized parameter for
the input images. The segmented results were compared
with the ground truth images using sensitivity, specifi-
city, accuracy, Dice index, and Jaccard index. The aver-
age values of sensitivity, specificity, accuracy, Dice index,
and Jaccard index for the input images were obtained
and that producing higher values was chosen to be the
optimized value of that parameter for segmentation. The
Jaccard similarity index between two images A and B
was defined as

JI ¼ A∩Bj j
A∪Bj j ð13Þ

The Dice similarity coefficient between two images A
and B was defined as

Fig. 4 Resultant images of segmentation using the proposed method with optimized parameters. With the regional information, the proposed
method evolves to the actual boundary of the object
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DI ¼ 2� A∩Bj j
Aj j þ Bj j ð14Þ

In case of the parameter epsilon which is used in the
Heaviside function, epsilon-2 produced better results
than other values for all the five measures (0.5 to 2.5) as
highlighted in the table.

Segmentation results
Statistical analysis
Sensitivity, specificity and accuracy, peak signal to noise
ratio (PSNR) and structural similarity index measure
(SSIM) were used as performance measures. The formu-
lae for these measures are as follows

sensitivity ¼ TP
TP þ FP

ð15Þ

specificity ¼ TP
TN þ FP

ð16Þ

accuracy ¼ TP þ TN
TPþ FN þ TN þ FP

ð17Þ

PSNR ¼ 10 log10
peakvaluve2

meansquarederror

� �
ð18Þ

True negative (TN) is pixels correctly detected as
background, true positive (TP) is pixels correctly seg-
mented as foreground, false negative (FN) is pixels
falsely detected as background, and false positive (FP)
is pixels falsely segmented as foreground. Figure 6
shows the resultant images of segmentation using the
proposed method. Figure 6a shows the initial bound-
ing box around the ventricles in the input image.

Figure 6b shows the LSF for the initial bounding box.
Figure 6c shows the final zero level contour of the
object of interest after 236 iterations. Figure 6d shows
the final LSF for the segmented object from the
image after 236 iterations. This figure was included in
the paper to show the steps involved in the segmen-
tation process in terms of figures for the image and
LSF.
Figures 7 and 8 show the measures used for assessing

segmentation performance metrics such as sensitivity,
specificity and accuracy for normal and atrophy subjects
of CT and MR images respectively. It could be seen that
the segmentation specificity (98%–99%) and accuracy
(95%–98%) values were found to be higher for CT and
MR images of normal and atrophy subjects. The image
segmentation sensitivity values were found to be 90% for
normal and atrophy subjects as shown in the Figs. 7 and
8. Further, it was observed that the lowest range of sen-
sitivity for image segmentation was found to be low
(46%).
Figure 9 shows the results of PSNR estimated by com-

paring the segmented images with the ground truth im-
ages. The mean and SD for normal and atrophy groups
of CT and MR images are shown in Fig. 9. Both MRI
and CT images for normal and atrophy subjects resulted
in PSNR mean value of 95%.
Figure 10 shows the results of the SSIM calculated be-

tween the segmented images and the ground truth im-
ages. The similarity index is measured between 0 and 1.
If the SSIM is 0 there is no similarity and if it is 1 there
is 100% similarity between the images. Mean and SD for
normal and atrophy groups of CT and MR datasets are
shown in Fig. 10. Both normal and atrophy groups of
CT and MRI datasets yielded SSIM values of 0.95 with
varying SDs.

Fig. 5 Flow chart explaining the numerical implementation of the proposed method
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Table 2 presents the comparison of results with recent
papers, based on statistical analysis measures such as
sensitivity, specificity and accuracy. In this study, few
segmentation methods based on level set formulation
and few based on other segmentation frameworks such
as fuzzy based method, hybrid algorithm, and self-
organizing map-based methods were included for com-
parison. The conventional DRLSE method was also im-
plemented for the images and the results are presented
in the Table 2.
It is evident from Table 2 that, the proposed

DRLSE with RSF framework has yielded better results
than other methods (overall based on all the three

measures). Moreover, the proposed method is multi-
modal; performs well on CT and MR images. Accur-
acy (95%–98%) and specificity (98%–99%) are higher
than all the other methods compared in this study.
The sensitivity also falls in close range with other
studies. The proposed modification was made in the
external energy part that is derived from the image
information (edge and regional intensity). Since the
regularization term is not modified there will be no
changes in the stability and re-initialization of the
level set framework as DRLSE does not require re-
initialization. All the methods shown in the table
were applied on MR images.

Fig. 6 Resultant images of the proposed level set segmentation showing a initial bounding box, b initial LSF, c segmented ventricles; boundary
marked in red color after iterations and d LSF of the segmented ventricles
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Discussion
Computer-aided diagnostic systems are required to
perform quantitative characterization of medical im-
ages. This needs enhanced visualization which could
be used for differential diagnosis. It is a common pro-
cedure to first extract the object of interest from
these images to get a better visualization of the re-
gion of interest.
This paper presents a segmentation framework

based on the modified DRLSE formulation for seg-
menting the ventricles from brain images of normal
and atrophy subjects. Optimization was performed for
the parameters that are involved in the segmentation
algorithm for the given dataset. Figures 7 and 8 illus-
trate the segmentation results for CT and MRI data-
sets of normal and atrophy groups. Consistent results
were obtained for both MRI and CT images contain-
ing normal and atrophy subjects. The specificity had

the most consistent results across normal and atrophy
subjects for CT and MRI dataset, with a SD of 0.1%
to 0.3% while accuracy was the second most consist-
ent with a SD in the scale of 0.4% to 0.9%. The sensi-
tivity yielded the lowest values with a wide variation
of 5% to 9%.
In addition to sensitivity, specificity, and accuracy

measures, PSNR and SSIM were also measured to esti-
mate the efficiency of the proposed method. PSNR
values were in the range of –95% with SDs ranging from
1%–2%. SSIM also produced similar results in the range
of 0.95 as shown in Figs. 9 and 10. It was observed that,
the segmentation algorithm produced similar results for
both groups. The proposed method was shown to per-
form better than other segmentation algorithms reported
in the literature as shown in Table 2. The execution time
for the proposed method takes up to 2 min for both CT
and MR images.

Fig. 7 Results of sensitivity, specificity and accuracy for CT dataset using the modified DRLSE for atrophy and normal subjects

Fig. 8 Results of sensitivity, specificity and accuracy for MRI images using the modified DRLSE for atrophy and normal subjects
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Fig. 9 Results of PSNR calculated between ground truth and segmented images for CT and MR datasets

Fig. 10 Results of SSIM calculated between ground truth and segmented images for CT and MR datasets
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Conclusions
This study presents a level set based segmentation
technique for segmenting ventricles from brain images
for atrophy and normal subjects in CT and MRI data-
sets. The proposed method is based on DRLSE and
RSF. The DRLSE method does not require re-
initialization process, but it lacks the information on
the regional intensity of the object being segmented.
RSF derives its surface energy from the regional in-
tensity information. The present study proposed a
framework, combining the regional information from
RSF with the conventional DRLSE method to improve
its efficiency. The proposed method produced sensi-
tivity in the range of 65%–90%, specificity in the
range of 98%–99% and accuracy in the range of 95%–
98%. PSNR and structural similarity index were also
used to measure the segmentation accuracy and pro-
duced good results: 95% and 0.95 respectively. In
addition to segmentation, an optimization procedure
was carried out to fine tune parameters of DRLSE
formulation for the input image dataset used. Pre-
sented method was found to be efficient and fast.
The proposed method is adaptive for normal and at-
rophy subjects and is multi-modal. Future studies
should involve analyzing shape differences of ventri-
cles of normal and abnormal subjects for diagnosis
and forming a generalized optimization technique.
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