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Abstract

Molecular imaging (MI) is a novel imaging discipline that has been continuously developed in recent years. It combines
biochemistry, multimodal imaging, biomathematics, bioinformatics, cell & molecular physiology, biophysics, and
pharmacology, and it provides a new technology platform for the early diagnosis and quantitative analysis of diseases,
treatment monitoring and evaluation, and the development of comprehensive physiology. Fluorescence Molecular
Tomography (FMT) is a type of optical imaging modality in MI that captures the three-dimensional distribution of
fluorescence within a biological tissue generated by a specific molecule of fluorescent material within a biological tissue.
Compared with other optical molecular imaging methods, FMT has the characteristics of high sensitivity, low cost, and
safety and reliability. It has become the research frontier and research hotspot of optical molecular imaging technology.
This paper took an overview of the recent methodology advances in FMT, mainly focused on the photon propagation
model of FMT based on the radiative transfer equation (RTE), and the reconstruction problem solution consist of forward
problem and inverse problem. We introduce the detailed technologies utilized in reconstruction of FMT. Finally, the
challenges in FMT were discussed. This survey aims at summarizing current research hotspots in methodology of FMT,
from which future research may benefit.

Keywords: Fluorescence molecular tomography, Image reconstruction, Photon propagation model, Forward problem,
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Background
Optical molecular imaging (OMI) uses molecular probes to
label target organisms. Under certain external conditions,
the molecular probe releases fluorescent light in the visible
or near-infrared spectrum, using high-sensitivity detection
equipment for fluorescence. The signal is collected and the
position and intensity of the fluorescent light source are
displayed to obtain physiological activity information of the
organism’s molecular cells. OMI has the advantages of high
sensitivity, no radiation, low cost, dynamic observation, and
intuitive imaging, and can achieve early detection of tu-
mors. Therefore, OMI has been rapidly developed in recent
years, and has been widely used in tumor detection, drug
development, image-guide surgery and other fields [1–4].
Fluorescence molecular tomography (FMT) is a

three-dimensional imaging method based on fluorescence
molecular imaging (FMI), which is based on the distribu-
tion of fluorescence in biological tissues [2, 3, 5–10]. It
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develops from two-dimensional (2D) qualitative imaging
to three-dimensional (3D) quantitative research, and
further expands the integration of stimulated fluorescence
in the diagnosis and treatment of cancer, preclinical and
clinical applications such as pharmacokinetics. Compared
to other OMI technologies, FMT has the characteristics of
low cost, safety, reliability, high signal strength, and
flexible and reliable imaging. It has developed rapidly in
recent years and has become a research frontier and
research hotspot for OMI technology [11–17].
Methods
In FMT, first we need to get the precise photon propaga-
tion model for describing both excitation and emission
light transmission in-vivo. When the imaging spatial
data needed for FMT reconstruction is obtained, and the
reconstruction of the structural data and optical data
based on the biological model can be carried out [18]. In
general, the image reconstruction process includes two
steps: solving the forward problem and solving the in-
verse problem. The solution of the forward problem is
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to calculate the photon propagation model of the fluor-
escence transmitted in the imaging space to obtain the
linear relationship between the fluorescence measure-
ment data on the surface of the tissue and the fluores-
cence distribution inside the bio tissue. After the linear
relationship is obtained by solving the photon transfer
model, various methods are used to solve the linear
model, and the distribution of fluorescence inside the
imaging space is obtained, which is called inverse prob-
lem [6]. As a conclusion, there are mainly three compo-
nents in FMT methodology, photon propagation model,
forward problems solving and inverse problems solving.
Next, we will briefly introduce the mainstream of
current methods used in FMT reconstruction, and dis-
cusses the analysis of the characteristics of each method
and its scope.

Results and discussion
Photon propagation model
The process of transmitting fluorescence from a light
source to a biological body through a specific bio-
logical tissue is extremely complicated, and includes
various physical processes such as scattering of light,
inter-tissue reflection, refraction, diffusion and absorp-
tion. For FMT imaging, imaging is usually performed
in the visible and near-infrared optical bands, and the
scattering and absorption effects of this band of light
inside the biological tissues are the main forms of our
study. Therefore, the FMT photon propagation model
can be simplified to a photon stochastic propagation
model that contains only the scattering and absorp-
tion effects without considering the reflection and re-
fraction of different tissues. Today’s mainstream
mathematical theories to solve these problems include
analytical theory and transport theory. The analytical
theory is based on the Maxwell wave equation and
takes into account the multiplicative scattering, wave
interference and diffraction, and tissue absorption
effects of photons, introduces the related physical
processes into the wave equation, and through rigor-
ous analytical derivation, the micro integral equation.
However, in the actual FMT experiment, the calculus
equations containing these complex effects are diffi-
cult to solve due to the large number of optical
parameters to be obtained, and it is impossible to get
exact solutions of these optical parameters at the
same time. It can be utilized only in the combination
of some a priori knowledge of the circumstances,
while narrow the scope of the solution of these
optical parameters. Transport theory is based on
Boltzmann’s Radiative Transfer Equation (RTE) [19],
which is equivalent to photon propagation as trans-
port of photon flux in a medium, from particle
fluctuation to energy transport, to study transport of
light energy in biological tissues problem. The theory
pioneered by Arthur Schuster in 1903, first applied to
the theory of gas dynamics and neutron transport.
This method is mathematically lax due to ignoring
the complex wave effects of photon transmission.
However, due to the greatly simplified equations, the
theory can flexibly handle the energy transfer phe-
nomena in many random media [20] and is now
widely used in many research fields [21–23].
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The above formula is the RTE time-domain expression.
Where r denotes a certain point in the imaging space, Ω
denotes the imaging space, c denotes the photon propaga-
tion rate in the biological tissue, denotes the time par-
ameter, uðr; ŝ; tÞ denotes Radiance whose dimension is
Wm−2sr− 1Hz− 1; μa and μs denote the absorption and scat-
tering coefficients respectively representing the transmis-
sion of photons in the biological tissue. pð̂s0; ŝÞ denotes the
normalized phase function representing no photonic phase,
indicating that a single photon in a single scattering from
the probability of scattering in the direction apparently sat-
isfies the probability integral in the spatial domain of 1, ie.R
4πpð̂s0; ŝÞdŝ0 ¼ 1. qðr; ŝ; tÞ denotes the spatial and angular

distribution of the fluorescence to be sought [24–26].
The above radiation transfer equation is based on conser-

vation of energy and is a very complex calculus equation. In
three-dimensional biological tissue, the solution of RTE is
transformed into a six-dimensional space-time problem.
There are few methods in solving mathematical and com-
puter problems, and it is usually not able to directly close
the analytical solution. Moreover, because of its unknowns,
it can be solved precisely only in rare cases. Usually it can
not get a closed analytical solution. At the same time, it is
extremely difficult to solve RTE directly, while the exact so-
lution will only exist in rare cases. Therefore, it is common
practice to replace itself with a simplified approximation of
the radiation transfer equation [27].
Diffusion Equation (DE) is a widely used RTE-based

simplified model [28–34]. It uses the first-order spherical
harmonic function to expand the important function
items in the RTE equation and performs the approximate
processing, which significantly reduces the computational
complexity and is suitable for the visible and near-infrared
bands of the FMT imaging. The researches show that in
the visible and near-infrared light bands, the result of DE
and RTE has high similarity, so it becomes the main-
stream model of optical imaging. In principle, DE is based
on the approximation of RTE where the photon scattering
coefficient is much greater than the absorption coefficient
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(μa<<μs΄). When photons do not meet these characteris-
tics, such as the cavity inside a living organism, or highly
scattering tissue like liver, it is difficult to obtain the exact
solution of the DE equation. In addition, the diffusion
equation takes the near-source error in describing the
photon propagation near the light source region [7], which
limits the application range of the diffusion equation.
Based on the above drawbacks of DE equations, in re-

cent years, researchers have proposed such high-order
approximations as RTE [7, 35–41]. Compared with dif-
fusion equations, higher-order approximation models
can significantly improve FMT accuracy. The SN model
[42], the PN model [43], and the SPN model [41] are
three commonly used RTE high-order approximation
models and usually give more accurate RTE solutions to
the more diffusive equations. By these approximation
methods, the traditional RTE equation can be trans-
formed into several coupled higher-order partial differ-
ential equations for easy calculation and solution. For
example, two coupled equations of N (N + 2) and (N + 1)
can be obtained using the SN model and the PN model,
respectively. Here, N represents the number of Legendre
Polynomials and direction cosines used for SN and PN
approximation. As N increases, the approximate order
increases. In recent years, SN models and PN models
applied to optical molecular imaging have achieved good
results [35, 44]. However, the RTE approximate solution
based on the SN model and the PN model needs to solve
multiple higher order partial differential equations at the
same time, which causes great computational cost and
limits its practical application. The SPN model is consid-
ered to be a good solution to the approximation of diffu-
sion equations and to obtain the improved RTE solution.
The SPN model only needs to solve (N + 1)/2 equations,
much smaller than the SN model and the PN model,
which improves its practical application. Taking N = 7
as an example, we only need to solve four coupled
partial differential equations, the coupling equation is
as follows [38]:
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In addition, in order to overcome the defect of the diffu-
sion equation, the researchers also proposed some mixed
photon propagation models that incorporate diffusion
equations and other models. For example, The
Radiosity-diffusion Model can be used to describe photon
propagation in non-scattering regions [45]. However, the
model is ineffective in low-scattering regions. In addition,
Monte Carlo (MC) and the diffusion equation model
(MC-DE) are also reported [46–48]. In the MC-DE model,
the photon propagation near the light source is obtained by
MC simulation, while in other imaging regions diffusion
equations are used to describe this. Although MC describes
photon transmission more accurately, its computational
load is larger, which seriously affects the computational effi-
ciency of MC-DE [49]. Accordingly, T. Tarvainen et al. pro-
posed a mixed model combining RTE and DE equations
[49]. The hybrid model uses RTE to describe photon trans-
mission in the imaging region that does not satisfy the DE
assumption, and the remaining regions are described using
DE. The model can effectively characterize the photon
propagation properties in high-scattering regions and cor-
rect the defects such as near-source error of DE. The re-
sults show that the hybrid model can approximate the
same accuracy as RTE, and the computational efficiency
can be effectively improved compared with RTE.
These reported photon propagation models have been

widely used in FMT and achieved good results. However,
computational efficiency and accuracy of photon propaga-
tion models require further study to significantly improve
the accuracy and efficiency of FMT reconstruction. In
addition, different photon propagation models need to be
developed for different wavelengths and different imaging
area sizes.

Forward problem solving
The linear relationship between the measured data on
the surface of the imaging area and the internal fluores-
cence distribution in the imaging area based on the
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photon propagation model is the core of the FMT for-
ward problem. In recent years, researchers have pro-
posed various mathematical solution methods including
analytic method, statistical method and numerical ana-
lysis method to solve the forward problem of FMT [6,
7]. The analytical solution to RTE and its many approxi-
mation models is usually based on the Green’s function.
The Green’s equation sets the light source to a
δ-equation, and on the basis of which the light source is
convolution expanded until it fills the entire imaging
space [43]. Parsing solves quickly, but is limited to some
special cases, such as homogeneous model contains sim-
ple and regular objects. Although analytic methods have
been extended to imaging spaces of more complex
geometries, such as multi-layered homogeneous plates
[50], this method needs further study in FMT in compli-
cated three-dimensional imaging space, especially in the
imaging space containing complex geometry happening.
Recently, the Kirchhoff Approximation (KA) has been
utilized to solve the forward problem of FMT [51, 52].
Compared with the traditional analytical method, the
KA has achieved relatively high computation efficiency,
and high adaption to complex geometric models.
MC is a classical statistical method for solving photon

propagation, which obtains photon propagation properties
in imaging space by tracking the propagation of a large
number of independent photons. Therefore, this method
can be applied directly to solving RTE and is considered as
the gold standard for solving forward problems [53]. MC is
easy to implement and does not require excessive computa-
tional constraints, however, it requires relatively repetitive
calculations, and reliable statistical results can only be ob-
tained by computing large sample quantities of photons.
Computing speed and memory footprint are the main fac-
tors that limit MC applications. In recent years, researchers
have proposed a MC method based on GPU (Graphic Pro-
cessing Unit) hardware acceleration [54–56], which signifi-
cantly improves the computational speed compared with
the single-CPU MC method. Meanwhile, the GPU-based
MC simulation reconstruction algorithm has also been suc-
cessfully applied to FMT reconstruction [55, 57].
Compared with analytic method and statistical method,

numerical analysis method is the main solving method
currently used in optical molecular imaging reconstruc-
tion. Its computational efficiency is high and its applicabil-
ity is wide. Numerical analysis methods include Finite
Difference Method (FDM) [40], Boundary Element
Method (BEM), Finite Element Method (FEM) [37, 58]
and Meshless Method (MM) method [59]. FDM uses
equidistant grid points and regular grids to solve the for-
ward problem, which is more efficient than irregular grids.
However, FDM has difficulty in dealing with geometrically
complex imaging spaces and boundary conditions. In con-
trast, FEM is the mainstream solution to FMT forward
problems in recent years. The main advantage of FEM is
its effectiveness in dealing with complex geometric prob-
lems. In addition, the system matrices obtained by FEM
are usually sparse and positive definite, which leads to a
more stable solution and high computational efficiency,
which is also beneficial to FMT reconstruction [60, 61].
However, the main drawback of FEM is that it is difficult
to generate FEM grid. In contrast, BEM only needs to
discretize the imaging surface and the boundaries of the
heterogeneous tissue within the space without the need to
mesh the entire imaging space.
Therefore, compared with FEM, BEM can effectively re-

duce the computational dimension and complexity, to im-
prove computational efficiency. However, fast and
stable 3D mesh generation for complex geometry prob-
lems remains a challenging issue. In order to overcome
the problem of 3D mesh generation, Y. An et al. proposed
a meshless method [62] and applied it to solve the forward
problem of FMT, and the result is shown in Fig. 1. The
method only needs to obtain nodes that are relatively in-
dependent from each other to discretize the imaging space
and does not require a cumbersome gridding process.
Regardless of which method is used to solve the pho-

ton propagation model, a linear relationship describing
the three-dimensional fluorescence distribution of the
surface measurement data within the imaging space dur-
ing FMT imaging is finally obtained as shown in the fol-
lowing equation:

AX ¼ b ð6Þ

Among them, A ∈ Rm × n denotes the FMT system
matrix, depicting the photon in the imaging space within
the discrete nodes on the transmission characteristics. m
is the number of surface measurement data, n is the
number of internal nodes in the imaging space. X ∈ Rn

represents the desired target value of each discrete node
inside the imaging space. b ∈ Rm denotes the surface
measurement data vector. Therefore, solving Eq. (6) is
the core issue of FMT reconstruction, that is, the core
problem of FMT inverse problem solving.

Inverse problem solving
In FMT preclinical and clinical trials, b in eq. (6) is usually
only measured from the imaging surface. However, the di-
mension of the measurement data on the imaging space
surface is usually much less than the number of internal
nodes in the imaging space, ie m>>n. Therefore, solving Eq.
(6) is ill-conditioned [33]. Although the excitation fluores-
cence can be combined by multiple excitation-emission
equations, the ill-condition of the inverse problem can be
alleviated to a certain extent [63, 64]. However, the effective
information contained in each excitation-emission system
usually repeats each other and cannot be used as an



Fig. 1 Reconstruction of the in vivo experiment based on meshless method (MM) and finite element method (FEM). The first row and second
row list the results of MM and FEM, respectively. The first and second columns list the 3-D visualization and cross-sectional of the reconstructed
fluorescent sources. The third column lists the corresponding micro-CT cross-sectional image. The red square markers clarify the actual locations
of the fluorescent bead. The figure is reproduced from [62]
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effective solution information. Therefore, it cannot elimin-
ate the ill-condition. Moreover, because of the high scatter-
ing properties of photons in the imaging space, Eq. 6 is
ill-posedness and it is difficult to find the exact solution
[65–67]. At the same time, the measurement noise gener-
ated during the experiment also affects the accuracy of the
FMT reconstruction [68].
The ill-posedness of the FMT inverse problem is

mainly due to the lack of information and uncertainty
due to the high scattering of photons. In order to over-
come the ill-posedness of reverse problems, researchers
started from the light source prior information and com-
bined with a variety of a priori information related to
the light source and photon transmission to reduce the
uncertainty of the information so as to improve the ac-
curacy of inverse problem solving [15, 30, 69–78]. Feas-
ible region is one of the earlier applied to the optical
reconstruction of the information [79, 80]. The main
idea is to infer the light source in the imaging area by
the location of the light spot area generated by the surface
measurement to approximate the area, so as to remove
the nodes in other non-approximate regions in the im-
aging space, reduce the number of unknowns in Eq. (6) to
handle the ill-posedness. However, the FMT imaging
process is different from other imaging modalities due to
the influence of the excitation light position. Usually, the
spot generated by the surface of the living body has a
strong correlation with the position of the excitation light.
Therefore, it is determined directly from the surface spot
that the feasible region of the internal light source exists
the error. Therefore, feasible regions are not usually used
for reconstructing during FMT reconstruction. Moreover,
it is very difficult to use the feasible region effectively
when the internal light source of the imaging region is in
a deep position or there are multiple fluorescent light
sources [81]. In order to improve these problems, re-
searchers have proposed posterior feasible regions and op-
timized feasible regions [82, 83], and have been verified by
numerical simulation models. The advantage of optimiz-
ing the feasible region is that it takes the whole imaging
space as the initial feasible region, and optimizes the feas-
ible region by iteratively updating the feasible region by
judging the region where the light source is most likely to
appear. On this basis, the researchers also proposed a feas-
ible method of regional adaptive correction to further im-
prove the applicability of feasible regions [84, 85].
The optical parameters (photon absorption coefficient

and scattering coefficient) of each node in imaging space
are the key factors that affect the reconstruction effect of
FMT, and are the sufficient conditions that affect the pho-
ton propagation model and the accuracy of the reconstruc-
tion method [86–89]. The classical FMT method assumes
imaging space as homogeneous space, that is, the optical
parameters of each point in imaging space are the same.
This assumption greatly simplifies the reconstruction oper-
ation, computational efficiency [90]. However, in biological
conditions, the imaging space is usually not homogeneous,
the optical parameters of various organs and tissues are far
apart, and the reflection effects of different optical trans-
mission media exist. Therefore, the researchers combined
the prior information of the structure into the FMT recon-
struction, proposed a non-homogeneous imaging space
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model and a priori reconstruction method, which greatly
improved the reconstruction accuracy. The structure of im-
aging space prior information can usually be obtained by
high-resolution structural imaging modalities such as com-
puted tomography (CT), magnetic resonance imaging
(MRI) [91–96]. The optical parameters of various organs
and tissues can be obtained by other imaging techniques
such as diffuse optical tomography (DOT) [97]. The im-
aging technique that combines imaging modalities to in-
crease imaging prior information is also known as
Multi-Modality imaging and is the focus of current medical
imaging research [4].
Although researchers have put forward priori knowledge

such as feasible regions, structural prior information to
augment the information needed for reconstruction, the
morbidity of the FMT reconstruction equation remains un-
resolved. Moreover, the actual FMT acquisition data usually
contains a certain amount of noise, which has a great im-
pact on the reconstruction of the pathological eq. A small
signal disturbance may lead to a large reconstruction error.
Therefore, researchers apply regularization techniques to
FMT reconstruction to constrain the reconstruction
process and reduce morbidity [8, 9, 28, 30, 63, 98–115].
The main principle of regularization is as follows:

Θ Xð Þ ¼ Ψ X; bð Þ þ λν Xð Þ ð7Þ

where Ψ is the data fitting function, v is the regularization
term, and λ is the regularization parameter, which is used to
balance two items in Eq. (7). In FMT reconstruction, Ψ is
usually chosen least squares, i.e. kAX−bk22 . Recently, re-
searchers proposed a new data fit term that yielded better
reconstructions [116]. The regularization term choice of eq.
(7) is the key to reducing morbidity and suppressing noise.
Lp-norm regularization is the commonly used
regularization method for FMT reconstruction, which is
kXkpp [100, 114, 117]. The classical regularization term is L2
regularization, that is p = 2. The L2 norm regularization usu-
ally obtains a smoother reconstructed result of a large re-
constructed area and has a good reconstruction effect for a
large light source volume in an imaging space. Moreover, L2
norm can be derived mathematically, so it can be solved by
many classical optimization methods, which is mathematic-
ally complete [118]. However, L2 norm reconstruction arti-
facts are usually large, and the phenomenon of smoothing
occurs during the reconstruction, which is not conducive to
the reconstruction of the complex structure of the light
source.
Based on the regularization method, researchers began to

try to apply the prior knowledge of light source to the
regularization method. The priori knowledge that is cur-
rently used in regularization methods is the sparsity of
fluorescent light sources. It is based on the assumption that
the space occupied by a fluorescent light source is relatively
sparse with respect to the whole imaging space or the dis-
tribution in the imaging space is sparse. In the actual bio-
logical tumor model, when the tumor is in the early stage
of development, the tumor volume is relatively small; the
distribution is more dispersed, more in line with the above
assumptions. The regularization method based on sparsity
is developed from the theory of compressed sensing (CS).
Its basic principle is based on the signal sparsity character-
istics, which recover the original signal from the missing
collected information. L1 norm regularization (p = 1) is the
mainstream sparse reconstruction method applied to FMT
reconstruction today, which can reconstruct a good fluores-
cence three-dimensional distribution image based on less
fluorescence acquisition information [10, 98, 108, 109, 113].
Numerical simulation, physical simulation and in vivo ex-
periments verify that regularization of L1 norm and L2
norm regularization can achieve more accurate reconstruc-
tion results [113]. However, L1 norm regularization works
well in reconstructing a sparse light source, but
over-convergence also exists. Moreover, regularization of
the L1 norm also makes it difficult to reconstruct good im-
ages when the fluorescent light source does not meet the
sparsity characteristics. The comparison of the L1 norm
and L2 norm regularization is shown in Fig. 2.
Besides the L1 norm and L2 norm regularization, other

forms of Lp norm regularization were utilized in the re-
construction of FMT [100, 114, 117, 119, 120]. These
regularization methods (0 ≤ p ≤ 1) not only make full use
of the gradient information of the objective functions, like
the Tikhonov method, but also retain the advantages of
the sparsity regularizations in improving image quality.
Another available regularization method is total vari-

ation (TV) [102, 121]. TV norm regularization was first
proposed by Rudin et al. and has been applied to image
denoising, DOT, photoacoustic imaging and BLT in re-
cent years [65, 122–125]. The main idea of TV norm
regularization is to constrain the variation terms of the
distribution of the fluorescent light sources while pre-
serving the boundaries of the light source zones. How-
ever, the TV norm regularization implies the following
assumptions: the region of the fluorescent light source
and the surrounding non-fluorescent light source re-
gion have the characteristics of piecewise constant, that
is, the light intensity difference between the light
source region and the non-light source region is rela-
tively large, and in each region light intensity is rela-
tively constant [126–128]. In FMT reconstruction,
FMT imaging satisfies the above assumptions when the
property of the imaging internal light source is rela-
tively simple (e.g., just one tumor). Therefore, the TV
norm can be better applied to FMT reconstruction.
The disadvantage of TV norm is its non-smoothness
and non-differentiable, which makes it difficult to
calculate. The traditional optimization method is



Fig. 2 Views of the reconstruction results using L2-norm regularization (Tikhonov), L1-norm regularization (L1-Iteration Shrinkage, L1-IS) and L1-
norm regularization piecewise constant Level-Set (L1-PCLS) methods. The blue plane in the figure is the z = 6.4 mm slice from the mice. The red
dot marks the real position of the fluorescent bead. The figure is reproduced from [98]
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difficult to apply TV norm solution. In order to solve
this problem, the researchers put forward a variety of
targeted optimization methods. Split-Bregman method
is one of the representatives [129]. It decomposes the
coupled complex optimization problems in TV norm
regularization into two relatively independent
sub-optimization problems, which can effectively improve
Fig. 3 a Coronal and b transverse sections of the CT image of the mo
sources. c Coronal and d transverse overlay of CT and FMT images. e
two fluorescent line sources reconstructed using both L1 and TV penal
figure is reproduced from [102]
the reconstruction effect. The experimental results show
that the TV norm can get better reconstruction results.
However, further analysis and improvement are needed.
The comparison of L1 norm and TV norm regularization
is shown in Fig. 3.
The reconstruction effect of regularization method

is usually related to the choice of regularization
use-shaped phantom showing the two embedded fluorescent line
Coronal and f transverse sections of the FMT image showing the
ties with regularization parameters of 10 and 1, respectively. The
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parameter λ. In general, when the regularization par-
ameter is small, many artefacts are generated due to
noise amplification. When the regularization param-
eter is larger, the reconstructed image will have
smoothed or over converged. To this end, researchers
have proposed a series of methods for selecting ap-
propriate regularization parameters such as L-curve,
U-curve, cross-validation, discrepancy principle [130,
131]. However, Vogel pointed out that the choice of
regularization parameters should be associated with a
specific inverse problem. The above methods have
been widely used in DOT and FMT reconstruction
[132, 133].
Based on the regularization model of FMT, there is a

large number of solving methods to solve the inverse
problem, such as Bayesian-based method [95, 112, 134],
iterated shrinkage [29, 72, 118], pursuit method [135,
136], Newton-based gradient descent method such as
conjugate gradient method [109, 110, 137–139],
Split-Bregman method [10, 129, 136, 140], etc. These
optimization methods achieved good result in FMT re-
construction especially in the balance of solving accuracy
and computation efficiency. However, in general, the
accuracy, efficiency and robustness cannot get the
optimization at the same time. Take Newton-based
method as an example, it could achieve relatively robust-
ness and accurate results of FMT, but the computation
efficiency is unsatisfactory. Recently, in addition to pro-
posing the new solving methods, lots of work concentrate
on the improvement of these traditional optimization
methods to improve the reconstruction performance, such
as the utilization of structure priori [10, 141, 142],
reweighted method [9, 108, 118], etc.
Conclusion
In this paper, we proposed the recent methodology ad-
vances in FMT. We briefly introduced the photon
propagation model for FMT based on the radiative
transfer equation, and further elaborated the solution
method of forward problem and inverse problem based
on the photon propagation model. We summarized the
current research progress in the methodology of FMT,
and focused on improving the accuracy, speed, and ro-
bustness of FMT.
As an important part of molecular imaging technol-

ogy, the research and application of FMT has made
rapid progress in the past decades because of the wide
variety of probes and strong imaging signals. The out-
standing advantages of low experimental cost and
non-invasive in vivo observation have been widely used
in many preclinical and clinical studies in recent years.
However, there still remain difficulties to be solved for
FMT which are as follows:
1. More accurate and efficient photon propagation
theory should be proposed. With the rapid
development of computer hardware and software,
especially with the support of large-scale parallel
processing technology and its corresponding large-
scale computer workstations, complex models (such
as RTE) that could not be solved before are likely to
become a reality today, and studies are more effi-
cient. Higher-order calculus imaging model solution
method is also one of the future research priorities.

2. Recently, studies on in vivo imaging are mainly based
on the use of specific probes to target in vivo tumors.
In this regard, the excitation FMT technique in these
researches is still in a preliminary stage and has not
been widely implemented. Different from the
implanted light source and simulation model, it is
difficult for non-invasive real-life tumors to obtain in-
formation on the lesion inside the organism. Invasive
imaging methods, such as frozen section imaging, have
a certain degree of deformation in the same body con-
dition. Therefore, how to verify the accuracy of recon-
struction is also a problem that needs further study.

3. The goal of FMT is to obtain structural distribution
information at the cellular and molecular level
targeted to the lesion area, strongly dependent on
photon propagation in biological tissues, and the
physiological and pathological information that can
be acquired by FMT has limitations. Integrating
optics, structure, and functional imaging with each
other, and multi-angle, systematic and comprehensive
acquisition of multimodal fusion imaging has become
the current research trend in the field of molecular
imaging. At present, the more mature fusion-excited
fluorescence tomography is combined with struc-
tural/optical multimode imaging represented by CT
and MRI, functional/optical multimode imaging rep-
resented by PET, and optical/structure/functional
multimodality image fusion. Both have received ex-
tensive attention and have published many high-level
results in preclinical and clinical applications and im-
aging theory. In the future work, the methodology in
multimode fusion imaging need to be studied, to ex-
tend the existing imaging theory and methods to
multimode fusion imaging, and further improve the
application of FMT and imaging quality.
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