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Abstract 

Background  The ever-growing need for cheap, simple, fast, and accurate healthcare solutions spurred a lot of 
research activities which are aimed at the reliable deployment of artificial intelligence in the medical fields. However, 
this has proved to be a daunting task especially when looking to make automated diagnoses using biomedical image 
data. Biomedical image data have complex patterns which human experts find very hard to comprehend. Against 
this backdrop, we applied a representation or feature learning algorithm: Invariant Scattering Convolution Network or 
Wavelet scattering Network to retinal fundus images and studied the the efficacy of the automatically extracted fea-
tures therefrom for glaucoma diagnosis/detection. The influence of wavelet scattering network parameter settings as 
well as 2-D channel image type on the detection correctness is also examined. Our work is a distinct departure from 
the usual method where wavelet transform is applied to pre-processed retinal fundus images and handcrafted fea-
tures are extracted from the decomposition results. Here, the RIM-ONE DL image dataset was fed into a wavelet scat-
tering network developed in the Matlab environment to achieve a stage-wise decomposition process called wavelet 
scattering of the retinal fundus images thereby, automatically learning features from the images. These features were 
then used to build simple and computationally cheap classification algorithms.

Results  Maximum detection correctness of 98% was achieved on the held-out test set. Detection correctness is 
highly sensitive to scattering network parameter setting and 2-D channel image type.

Conclusion  A superficial comparison of the classification results obtained from our work and those obtained using a 
convolutional neural network underscores the potentiality of the proposed method for glaucoma detection.
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Introduction
Glaucoma constitute a weighty eye problem plaguing the 
human race. It is a group of diseases in which the optic 
nerve is impaired resulting in unalterable loss of vision. In 
majority of cases, this impairment is due to an increased 
intra ocular pressure within the eye. The ciliary body in 
the eye secretes a fluid known as aqueous humour into 
the space between the iris and the lens (i. e. the posterior 

chamber). The fluid then flows through the pupil into the 
space between the iris and the cornea (i. e. the anterior 
chamber) from where it drains through the trabecular 
meshwork, a spongy like structure at the base of the eye. 
A steady flow is established in a healthy eye as the rate 
of secretion balances the rate of drainage. In contrast, 
rate of drainage does not match the secretion rate in the 
unhealthy eye giving rise to accumulation of fluid in the 
anterior chamber. As accumulation increases, pressure 
builds up within the eye and the optic nerve which car-
ries visual signals to the brain gets damaged leading to 
a permanent loss of vision. There are two main types of 
glaucoma. The open angle glaucoma and the angle clo-
sure glaucoma. In open angle glaucoma, the drainage 
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canal (i.e. trabecular meshwork) is open while in angle 
closure glaucoma, the iris bulges forward and closes the 
drainage canal. In either case, the progression of the dis-
ease can be stopped with medical intervention but part of 
vision already lost cannot be restored even with surgery. 
This is why it is important to detect the signs of glaucoma 
early through regular eye examination particularly, eye 
pressure measurement. Although, the procedure car-
ried out during a typical eye examination for glaucoma 
is fairly simple and non-invasive, the cost of the examina-
tion might constitute a barrier to regular and unlimited 
access to examinations most especially in the develop-
ing world. An important fact to note about glaucoma is 
that it can be present in patients with normal eye pres-
sure and in like manner cause serious sight loss [24] . This 
fact proves that full understanding of this disease is still 
lacking. Therefore, many of its salient features, signs and 
manifestations are still left undiscovered. Many attempts 
have been made towards understanding the pathophysi-
ology of glaucoma through mathematical modelling 
where more often than not, mechanical response of the 
optic nerve head is characterized as certain physiological 
parameters are varied. Prominent amongst these param-
eters are the intraocular pressure, cerebrospinal fluid 
pressure, scleral tension etc. However, little insights have 
only been drawn from the modelling exercise as glau-
coma is dubbed multi-factorial disease thus developing a 
single model that will capture the essence of several fac-
tors such as ethnicity, diabetic status, gender, obesity, age 
etc. that contribute to glaucoma [25]has proved very dif-
ficult. The lack of good understanding of glaucoma might 
explain the reason why eyes with glaucomatuos field loss 
have high false negative responses during medical exami-
nations [32]. Although we cannot rule out the influence 
of human error as fatigue, state of mind and carelessness 
may also contribute significantly to high false negative 
responses.

The associated issues with early detection and correct 
diagnosis of glaucoma raised in the foregoing can largely 
be tackled by considering automation of the glaucoma 
diagnosis process. Here, an intelligent system is envis-
aged. The system takes as input the retinal fundus image 
of a patient, performs a predefined mathematical opera-
tion on the image and produces an output encoding the 
health status of the eye. The predefined operation which 
is usually derived from techniques in biomedical image 
processing and machine learning determines the overall 
performance of the system. Several approaches focus on 
image segmentation methods including sparse dissimilar-
ity constraint coding [10], super pixel classification [6, 9], 
and adaptive thresholding [18, 28] to delineate the optic 
disc and optic cup in retinal fundus images towards the 
estimation of features such as cup to disk ratio CDR [3], 

vertical cup and disc diameters (VCD and VDD) [23] and 
neuro-retinal rim (NRR) [15]. These features have been 
suggested [23] to have certain correlation to the pres-
ence of glaucoma. Another commonly explored approach 
is to process the entire retinal fundus image using time 
[21], frequency [22] or joint time-frequency analysis 
[20] in order to obtain new representation of the image 
data that are helpful for discriminatory or classification 
tasks. The use of Fourier analysis [13], Gabor transform 
[1] and wavelet transform [19] have been reported for 
glaucoma detection. Also, many classification algorithms 
that learn discriminatory features and classify data into 
different classes have been deployed [4, 34]. Specifically, 
in recent years, Convolutional Neural Networks (CNNs) 
[29] which are a class of Deep Neural Networks (DNNs) 
have gained tremendous traction in glaucoma detection 
research. This is largely due to the fact that they don’t 
require manual feature extraction as they are designed in 
a way that allows them to automatically obtain good data 
representation for classification task, learn the useful 
discriminatory features in the representation and finally 
classify the data into different classes [36]. Another rea-
son is that CNNs have consistently displayed superior 
performance in several other time series [39] and image 
data [16] classification tasks. Although deep learning 
algorithms have been successfully used for glaucoma 
detection task [29], the computational resources required 
for their implementation is usually very huge. This stems 
from the fact that they usually have lots of tunable hyper-
parameters that can only be tuned properly with large 
amount of training data which is not always readily avail-
able in biomedical data analysis problems [12]. Secondly, 
their optimal network architecture and hyperparameters 
configuration are not well understood [27]. Therefore, a 
simpler alternative method that will produce the same or 
even better result than CNNs will be desirable.

Wavelet Image Scattering Network (WISN) is a rep-
resentation or feature learning scheme described as 
very computationally cheap, well understood and very 
efficient in learning desirable data representation or 
automatic feature extraction (i.e. within class low-var-
iance and between class high-variance features) [7]. 
The learned features can then be used downstream to 
build very simple and computationally cheap classifica-
tion algorithms. Convolution, nonlinearity and pooling 
are the major operations carried out in the upstream 
section of all CNN architectures, these same opera-
tions are carried out efficiently in WISN by the suc-
cessive application of wavelet filters, modulus operator 
and scaling filters respectively to the data. An impor-
tant distinction between WISN and CNNs is that fil-
ters weights are learned in CNNs while they are fixed 
in WISN. As we write, we are not aware of any research 
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work documenting a detailed performance of wave-
let scattering features from retinal fundus image data 
on glaucoma detection. We note that wavelet scatter-
ing features were used in [17] however, the study is 
conspicuously silent on the effect of scattering trans-
form parameters. Therefore, as far as we know, this 
paper presents the first research work studying the 
influence of wavelet image scattering network param-
eters on the scattering features obtained from retinal 
fundus image data for glaucoma detection. The aim is 
to study the potentiality of WISN as a reliable feature 
learning scheme for an envisioned fully automated 
glaucoma detection/diagnosis system. The rest of the 
paper is arranged as follows. Section  Wavelet Scatter-
ing  gives a concise theoretical background to wave-
let scattering. Materials and methods are described in 
section  Materials and Methods  while the results and 
discussion are contained in sections  Results  and Dis-
cussion respectively. Lastly, we give our conclusion in 
section Conclusion.

Wavelet Scattering
In this section, we provide a brief description of the the-
ory behind 2-D wavelet scattering transform or wavelet 
image scattering. The advantage of using wavelets for 
biomedical signals analysis is discussed in section  Bio-
medical Signal Analysis followed by the definition of the 
2-D wavelet transform in section  2-D Wavelet Trans-
form. Section Wavelet Scattering Network explains how 
wavelet scattering transform is derived from wavelet 
transform. A more detailed treatment of wavelet scatter-
ing transform can be found in [7].

Biomedical Signal Analysis
Biomedical data or signals frequently exhibit slowly 
changing trends or oscillations punctuated with transients 
[37]. In particular, biomedical images usually consist of 
smooth regions interrupted by edges or abrupt changes 
in contrast. Generally, these abrupt changes are the most 
interesting part of the data both perceptually and in terms 
of the information they provide. The canonical Fourier 
Transform is a powerful signal analysis tool however, it 
does not represent abrupt changes in signals efficiently 
[35] in that it represents signals as a sum of sine waves 
which are not localized in time and space. In contrast, 
wavelet transform represents signals as sum of wave-
lets which are well localized in time and space [35]. This 
makes wavelet transform suitable for the analysis of most 
real world signals. The 2-D wavelet transform supplies the 
basic theory for wavelet scattering transform network to 
learn discriminatory features from image data.

2‑D Wavelet Transform
A 2-D wavelet transform of an image signal f (

−→
x ) , 

f ∈ ℓ2(ℜ2) (i.e. finite energy signal) is given as

Equation (1) defines a convolution operation f ⊗ ψ 
where ψ , the analysing wavelet or convolution kernel is 
dilated by a > 0 , translated by 

−→
b ∈ ℜ2 and rotated by 

angle θ ( r−θ denotes the rotation operator). The analys-
ing wavelet ψ satisfies the admissibility condition which 
in most applications may be interpreted as ψ having a 
zero mean (i.e. ψ(

−→
x )d

−→
x = 0 ). When the admissibil-

ity condition is coupled with the localization capability 
of ψ and its Fourier transform (i.e. band pass character-
istic in the frequency domain) it becomes obvious that 
wavelet transform implements a local filtering in space 
( −→x  ) and scale (a). This local filtering operates in constant 
relative bandwidth, �ω/ω . Consequently, wavelet trans-
form is more efficient at small scales or high frequencies 
particularly, in scanning singularities (transients or high 
frequency components in signals). The low-frequency 
components of the signal not captured are then decom-
posed through a separate function known as the scal-
ing function ( φ ) whose partial derivatives result in the 
analysing mother wavelet functions [33]. Even though 
wavelet transform is good at scanning localized features 
in signals, it suffers from the fact that it is translation 
covariant [14]. This means similar signals at dissimilar 
locations get mapped into separate signal classes, and 
thus making learning of discriminatory signal features by 
classification algorithms more complicated. Direct appli-
cation of engineered features obtained directly from 2-D 
wavelet transform of retinal fundus images for glaucoma 
detection can be found in [26, 31]

Wavelet Scattering Network
Fortunately, It can be shown [7] that the modulus of a 
wavelet transform, |f ⊗ ψ | makes it translation invari-
ant. By taking this idea further, [7] created the scatter-
ing propagator ( Vp ), a path-ranked iteration operator 
on the modulus and applied the scaling function ( φ ) to 
the propagator in order to capture the slowly varying 
features in the signal. Thus, introducing what they call 
the Wavelet scattering transform ( Spf )

(1)

c(
−→
b , a, θ) =

∫

ψ

(

a−1, r−θ

(

−→
x −

−→
b
))

f (
−→
x )d

−→
x

(2)Vpf = |||f ⊗ ψ1| ⊗ ψ2| · · · ⊗ ψm|

(3)Spf = |||f ⊗ ψ1| ⊗ ψ2| · · · ⊗ ψm| ⊗ φ
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where 1, 2, . . . ,m denote the scattering stages. A wave-
let image scattering network is produced by continued 
stage-wise evaluation of the convolution operation in 
Eq. (3). There are many mother wavelet functions in lit-
erature however, the choice of the analysing wavelet for 
a particular problem depends on the nature of the prob-
lem. Since we aim to detect relevant information such as 
segments and edges in biomedical images, anisotropic 
or directional wavelets are preferred. These wavelets 
are sensitive to rotations or directions and as such they 
can track oriented features such as segments and edges 
in images. Specifically, we chose the Morlet wavelet as 
the analysing wavelet in this work because it is the most 
widely used anisotropic wavelet in literature. The Morlet 
wavelet is obtained by tapering a sine wave by a Gaussian 
as shown in Eq. (4).

Materials and Methods
This section presents detailed explanation on the 
methods and materials used in this work. The work-
flow is depicted in Fig. 1.

Data Acquisition
The RIM-ONE DL image dataset [5] was downloaded 
and used for the study. Three hundred and  thirteen  and 

(4)ψm = exp(i2π ft) exp(−t2/(2σ 2))

one hundred and seventy-two 3-D retinographies from 
healthy and glaucoma patients respectively are contained 
in the dataset. The images were captured in PNG for-
mat from subjects in three different Spanish hospitals. 
Additionally, the dataset is partitioned into training and 
test sets in two different ways: random partitioning and 
partitioning by hospital. In the former, the training and 
test sets are assembled randomly from all images in the 
dataset. However, in the latter, the partitioning was car-
ried out with respect to hospital. That is, images taken 
in one hospital are used for the training set while those 
taken in the other two hospitals are used for the test set. 
The number of retinal fundus images in the training/test 
set of the randomly partitioned dataset is 339/146 out 
of which 219/94 images belong to the healthy or normal 
class while 120/52 belong to the glaucoma class. Simi-
larly, the number of retinal fundus images in the training/
test set of the hospital partitioned dataset is 311/174 out 
of which 195/118 images belong to the normal class and 
116/56 images belong to the glaucoma class. The dataset 
is available for free download at https://​bit.​ly/​rim-​one-​dl-​
images. Figure  2 shows retinal fundus images randomly 
selected from healthy and glaucoma classes in the dataset.

Data Preprocessing
To be amenable to the 2-D wavelet transform, the 3-D 
images needed to be translated into their 2-D versions. 

Fig. 1  Training and testing workflows for the proposed method

https://bit.ly/rim-one-dl-images
https://bit.ly/rim-one-dl-images
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Consequently, individual 2-D channels that is red, green 
and blue channels were extracted from all images. In 
addition, all images were converted to the 2-D gray scale 
format. Therefore, each image in the dataset has four dif-
ferent 2-D representations. These are blue channel (BC), 
green channel (GC), red channel (RC), and gray scale 
(GS) representations. Lastly, the 2-D images were resized 
to 300-by-300 in order to have a uniform image size as 
sizes of the original images vary significantly. All preproc-
essing steps were carried out in the Matlab environment 
using the Image Processing Toolbox. Representations for 
randomly selected images from normal and glaucoma 
image classes are displayed in Fig. 2.

Development of our Wavelet Image Scattering Network
The wavelet scattering framework used for the wave-
let image scattering decomposition was implemented 
in Matlab using the Image Processing and Wavelet tool-
boxes. The framework uses 2 complex-valued 2-D Mor-
let filter banks (i.e. 2 scattering stages). The scattering 
decomposition result depends on parameter setting in 
the framework. The parameters include Quality Factors 
(q), Invariance Scale (s) and Number of Rotations (r). In 
order to determine how sensitive the scattering features 
are to changes in individual parameter values, a t-test 
was conducted. The test gave information regarding the 
significance of difference in means of a particular feature 
as a given parameter is varied. For most of the features, 
there was a significant difference in the means when 
the scale invariance and quality factor parameters were 

varied. However, none of the features have significance 
difference in means with changes in the number of rota-
tion parameter. Therefore, only the scale invariance and 
quality factors parameters were varied in the scattering 
framework. Quality Factors control the number of wave-
lets per octave in each of the filter banks. Although the 
flexibility of allowing wavelets within each octave may be 
desirable as it supports fine scale analysis, it could also 
escalate the computational complexity of the framework 
if many wavelets are used. Therefore, a balance must be 
struck somewhere in between. A maximum of four and 
three wavelets per octave in the first and second filter 
banks respectively was experimented in this study. The 
Invariance Scale parameter determines the spatial sup-
port of the scaling and wavelet filters (i.e. the spatial sup-
port of the scaling and wavelet filters can only take on 
values not exceeding the one specified for the invariance 
scale parameter). The default Invariance Scale param-
eter value in the framework is one-half the lower of the 
number of rows and columns in the image rounded to the 
nearest whole number. Therefore, in our case the default 
value for the Invariance Scale parameter is 150. As this 
default value does not imply the optimal value for the 
parameter, we experimented Invariance Scale parameter 
values in the range [25 150] with an incremental step of 
25 (i.e. 25, 50, 75, 100, 125 and 150). Finally, the Number 
of Rotations parameter sets the number of rotations of 
each wavelet in each filter bank in the scattering frame-
work. As stated earlier, varying this parameter showed an 
insignificant effect on the scattering features. Therefore, 

Fig. 2  Retinal fundus images (left panel) and 2-D channel representations of a retinal fundus image (right panel)
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six clockwise rotations (with linearly spaced angles 
between 0 and π radians) per wavelet per filter bank 
which corresponds to the framework default parameter 
setting was used in the study.

Wavelet Scattering Learned Features
Regardless of the WISN parameter configuration used, 
the dimension of the resulting feature space for each reti-
nal fundus image is x × y× z . That is there are x scatter-
ing paths and individual scattering path gives a scattering 
coefficient matrix of dimension y× z . Subsequently, we 
obtained the mean along the 2nd and 3rd dimensions (i.e. 
y and z respectively) of the scattering coefficient matrix 
to arrive at x - element feature vector for individual 
image in the training and test datasets. This resulted in 
a significant data reduction from 90,000 (i.e. 300× 300 
image size) elements to x where x varies between 100 and 
700 in this study.

Design of Classification Algorithms
The workflow for the classifier design include train-
ing and hyperparameter optimization. The classifica-
tion algorithms explored are the binomial Logistic 
Regression (LR) and binary Support Vector Machine 
(SVM). To serve as a check, a simple Convolutional 
Neural Network (CNN) classifier was also considered. 
The CNN was constructed to have a convolution layer 
with 25 10-by-10 filters with 1-by-1 strides. This is fol-
lowed by a RELU activation, max pooling layer and a 
fully connected layer. Furthermore, a softmax layer 
was deployed in order to normalize the output of the 
fully connected layer into probabilities. Lastly, a cross 
entropy loss was used as the loss function. Each classi-
fier type was designed using individual 2-D image data 
representation and feature vectors from the training 
datasets were used exclusively for training and opti-
mizing the classifiers. Optimized hyperparameters 
include regularization penalty and learning rate for LR 
and Kernel function, Kernel scale and box constraint 
for SVM. A 5 - fold cross validation scheme was used 
for training the LR/SVM classifiers. The best hyper-
parameter setting was the one that returned the mini-
mum cross-validated classification loss for the LR/SVM 
model and was eventually used for classifying the test 
sets. The Bayesian optimization procedure was used 
and it was implemented in Matlab.

Performance Metric
Since there is an imbalance in the number of samples 
in the two data classes (see section  Data Acquisition), 
the appropriate performance metrics for classifier 
evaluation is the F1-score. F1-score describes a classi-
fier’s performance on individual data class. To obtain 

the F1-score, one needs to first calculate precision and 
recall for the classifier. Precision measures the propor-
tion of correct positive predictions in all positive pre-
dictions while recall measures the proportion of correct 
positive predictions in all positive data samples. In 
other words, precision answers the question: out of all 
positive predictions made by the classifier how many 
are truly positive? However, recall answers the ques-
tion: out of all positive data samples how many are clas-
sified as positive? The harmonic mean of precision and 
recall is the F1-score. That is the F1-score reports the 
classifier’s performance in terms of both precision and 
recall. It is worthy of note that precision and recall are 
both defined in terms of relevance, meaning that they 
are defined relative to what the experimenter desig-
nates as the positive data class. Here, we refer to the 
glaucoma class is the positive class.

Results
We present the results of the retina fundus image clas-
sification experiments in the boxplots shown in Fig. 3. 
Classification results for the test set in the case of data 
partitioning by hospital are displayed in Fig.  3c and d 
while those for random partitioning are displayed in 
Fig. 3a and b. The boxplots summarizes the influence of 
WISN parameter setting, data representation scheme 
and classification algorithm type on the classifica-
tion accuracy of the test sets. Results in Fig.  3a and c 
were obtained using support vector machine classifier 
while those in Fig. 3b and d were obtained using logis-
tic regression classifier. Each boxplot within a Figure 
reveals the distribution of the classification accuracy 
results and hence the effect of WISN parameters set-
ting on the classification accuracy results for each data 
representation scheme (i.e. BC, GC, RC, and GS). The 
influence of WISN parameter setting on F1-score is 
shown more explicitly in Fig. 4 where we have plotted 
F1-scores against individual parameter configuration 
for each of the 2-D channel representations and clas-
sification algorithm. There are thirty-nine (39) distinct 
parameter settings explored in this work (see sec-
tion  Development of our Wavelet Image Scattering 
Network). In Table  1 we have shown specifically, the 
best set of hyperparameter values for each of the clas-
sifiers with respect to individual 2-D channel repre-
sentations and data partitioning scheme. The best set 
of hyperparameter values are those that produced the 
maximum F1-scores. Lastly, in Table  2 we have com-
pared the classification results obtained from our pro-
posed method (i.e. combination of WISN features and 
simple classifiers) and an ordinary convolutional neural 
network (CNN) classifier (section Design of Classifica-
tion Algorithms) for both data partitioning schemes.
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Fig. 3  Boxplots summarizing the influence of WISN parameter setting on classification result for data partitioning by hospital (lower panel) and 
random partitioning (upper panel) schemes

Fig. 4  Plots of F1-score against parameter setting for data partitioning by hospital (lower panel) and random partitioning (upper panel) schemes
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Discussion
Generally, it is observed from Fig.  3 that highest 
F1-scores were obtained by the support vector machine 
classifier in both data partitioning schemes. For the 
random partitioning, highest F1-score of 98%/85% was 
achieved by the support vector machine/logistic regres-
sion classifier on the gray scale/green channel data rep-
resentation. For the partitioning by hospital however, 

F1-score of 89%/83% was achieved by the support vector 
machine/logistic regression classifier on the gray scale/
red channel data representation. It is quite reasonable to 
expect that the highest F1-score value would come from 
the random partitioning dataset. In the random parti-
tioning scheme, there are chances that some subjects 
would have their data placed in both the training and test 
datasets. As patient-specific features have been found to 
be present in glaucoma [38], learning algorithms can pick 
up these features during training and this will definitely 
make them perform well during testing. Conversely, in 
the partitioning by hospital scheme, the training and test 
datasets contain data from different subjects.

Furthermore, F1-score is highly sensitive to WISN 
parameter setting for each of the 2-D channel repre-
sentations and classification algorithms. This is clearly 
highlighted by Fig. 4. Figure 4 further reveals the superi-
ority of support vector machine to logistic regression in 
correctly classifying the test datasets. It is observed that 
there are a number of missing F1-score values in the plots. 
This is more pronounced in the plots for logistic regres-
sion where all the data representations (gray level, red, 
blue and green channels) have missing F1-score values. 
Missing F1-score values occur as a result of NANs. NaNs 

Table 1  Best hyperparameter setting

Data WISN

Partitioning Classification Parameter Image F1-score

Scheme Algorithm Setting Representation (%)

Random Support s = 125 Gray Scale 98

Vector q = [1, 1]

Machine

Logistic s = 125 Green Channel 85

Regression q = [1, 1]

Hospital Support s = 125 Gray Scale 89

Vector q = [1, 1]

Machine

Logistic s = 125 Red Channel 82

Regression q = [3, 2]

Table 2  Classification accuracy results for SVM, LR and CNN

Data WISN Maximum

Partitioning Classification Image Parameter F1-score

Scheme Algorithm Representation Setting (%)

Random Support Gray Scale s = 125, q = [1, 1]#8 98

Vector Red Channel s = 100, q = [4, 1]#5 94

Machine Green Channel s = 75, q = [1, 1]#33 91

Blue Channel s = 125, q = [3, 1]#10 82

Logistic Green Channel s = 125, q = [1, 1]#8 85

Regression Gray Scale s = 100, q = [3, 2]#4 82

Blue Channel s = 125, q = [1, 1]#8 80

Red Channel s = 125, q = [4, 1]#12 79

Convolutional NA Red Channel 82

Neural

Network

Hospital Support Gray Scale s = 125, q = [1, 1]#8 89

Vector Blue Channel s = 125, q = [4, 1]#37 86

Machine Red Channel s = 100, q = [4, 1]#5 85

Green Channel s = 125, q = [2, 1]#9 83

Logistic Red Channel s = 125, q = [3, 2]#11 82

Regression Gray Scale s = 125, q = [4, 3]#14 77

Green Channel s = 150, q = [4, 2]#31 72

Blue Channel s = 150, q = [3, 2]#29 67

Convolutional NA Blue Channel 83

Neural

Network
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are in turn occasioned by the occurrence of zero positive 
predictions by the classification algorithm at a particular 
hyperparameters setting. This means that the classifica-
tion algorithm failed to classify none of the retinal fun-
dus images in the glaucoma class as positive when certain 
hyperparameters values are used. This set of hyperparam-
eters value is the worst for the classification algorithm. 
Table  1 clearly shows that a scale invariance of 125 and 
quality factor [1,1] (i.e. one wavelet per octave in each of 
the filter banks) which corresponds to hyperparameter 
setting number 8 (see Fig. 4) appears to be the best hyper-
parameter setting out of the thirty-nine (39) explored in 
the classification problem. Furthermore, the gray scale 
representation proved to contain the most discriminatory 
features between healthy (normal) and glaucomatuous 
retinal fundus images amongst the four 2-D channel rep-
resentations. The gray scale representation gave the best 
F1-score result in the two data partitioning schemes.

As evident from Table 2, the new method proved to be a 
better alternative to CNN, at least for this problem and the 
particular CNN configuration used. For the random parti-
tioning scheme, the CNN trailed both the support vector 
machine and logistic regression classifiers. However, the 
CNN trailed only the support vector machine classifier but 
led the logistic regression classifier in the data partitioning 
by hospital scheme. The best 2-D channel representation 
for the CNN in both cases is the red channel.

Regarding ease of algorithmic implementation, an 
examination of the inference time was conducted to 
access the ease of implementation of our method. Five 
batches of 25 retinal fundus images were drawn ran-
domly from each class for the inference analysis. The 
inference time (in milliseconds) is the average of the time 
taken to classify all 25 images in each batch. We used a 
CPU device with 32 Gigabyte of memory and Intel Core 
i9 (8cores) execution unit. The inference time included 
the time it took to read the re-sized 2D channel images 
from file, obtain the wavelet scattering features and clas-
sify the images. The inference time for each scheme 
explored is shown in Table  3. The wavelet scattering 
network schemes have the least inference time and the 
scheme with the support vector machine is about 2 times 
faster than that with logistic regression.

Finally, we compare our results with those reported in 
literature. The RIM-ONE DL (RIM-ONE for Deep Learn-
ing) dataset was released in 2020 as a refined version of 
the three initially released RIM ONE datasets (RIM-ONE 
v1, v2, and v3). The dataset was specifically optimized 
for deep learning applications [5]. Different CNN archi-
tectures have been utilized for the classification of both 
hospital and random partitioned datasets. Table 4 com-
pares the classification accuracy results from these CNN 
architectures and our method. To the best of our efforts, 

only one publication [17] was found in literature to have 
applied wavelet scattering network features for glaucoma 
detection and the dataset used in the article is the initial 
dataset (i.e. RIM-ONE v3). The results from the work is 
also included in Table 4. This indicates that our work is 
the first to apply wavelet scattering features for glaucoma 
detection using the RIM-ONE DL dataset. From the 
table, it is obvious that our method gave better accuracy 
values in both hospital and random partitioned datasets.

Conclusion
This work exploits wavelet image scattering to obtain 
within class low-variance representations from 2-D chan-
nel representations of retinal fundus images for glaucoma 
detection. Utilizing the 2-D scattering transform with 
fixed filter weights and simple classification algorithms, 
we were able to attain a maximum of 98% and 89% cor-
rect classification on a held-out test sets. Wavelet Image 
Scattering Network proved to be a robust and effec-
tive feature extractor for glaucoma detection requiring 
only a minimal set of user-specified parameter values. 
On the same problem but with a simple Convolutional 
Neural Network whose filters were learned, we achieved 
a maximum of 82% and 83% correct classification. It is 
important to reiterate that our work is not intended as an 
absolute comparison of WISN and CNNs but rather, to 

Table 3  Inference Time (per image) comparison

Model Time (ms)

WISN + SVM 894.55

WISN + LR 1562.06

CNN 1725.21

Table 4  Wavelet scattering network versus CNN architectures 
on RIM-ONE DL dataset. Left: Randomly partitioned, Right: 
Partitioned by hospital. Accuracy values for the CNN 
Architectures were copied from https://​github.​com/​miag-​ull/​
rim-​one-​dl

Network Accuracy(%) Accuracy(%)

VGG19 93 85

VGG16 92 85

Xception 91 79

ResNet50 91 83

MobileNetV2 90 53

DenseNet 90 78

MobileNet 93 82

InceptionResNetV2 91 76

InceptionV3 89 80

NASNetMoile 75 79

WISN (RIM-ONE DL)our work 98 89

WISN (RIM-ONE v3)[18] 93 NA

https://github.com/miag-ull/rim-one-dl
https://github.com/miag-ull/rim-one-dl
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demonstrate the potentiality of Wavelet Image Scatter-
ing for producing robust and efficient representations of 
retinal fundus image data for glaucoma detection learn-
ing task. WISN and CNNs have different hyperparameter 
and architectural changes that can significantly influence 
the classification results. For instance, highly optimized 
CNN architectures such as VGG19 [8], VGG16 [30], 
Xception [11], and ResNet50 [2] have been reported to 
have achieved 93%, 92%, 91% and 91% correct classifi-
cation respectively on the random data partitioning test 
set and 85%, 85%, 84% and 79% respectively on the data 
partitioning by hospital test set. A future research task of 
our group is to apply our method to all publicly available 
glaucoma fundus datasets while also exploring differ-
ent retina fundus image pre-processing modalities. The 
results from such task will further give insight into the 
versatility and reliability of our method.
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