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Abstract 

Plant pathogenic oomycete species pose a worldwide threat to crop production and ecosystems. During infection, 
oomycete pathogens secrete a series of effectors to manipulate plant immunity. Many of these effectors, which are 
indicated as avirluence gene candidates, will use components of immunity pathway to induce cell death in plants. 
This response given by plants is known as effector-triggered immunity (ETI). The identification of avirulence genes 
from pathogenic oomycete species opens a way to investigating their virulence function and uncovering related 
R gene repertoires in resistant plants. In this study, we screened eight cell death-inducing effectors from oomycete 
species in N. benthamiana and tested the requirements of ETI signaling components to induce cell death. SGT1 was 
required for PsAvh163- and PcRXLR25-mediated cell death, while silencing NbHSP90 abolished PcRXLR25-, PsAvh163-, 
PsAvh241- and PsCRN63-triggered cell death. The cell death induced by the tested effectors does not depend on 
EDS1, NDR1, NRG1 and ADR1. PcRXLR25- and PsAvh163-induced cell death was found to require NRC2/3/4, indicat-
ing that these two effectors are avirulence protein candidates. Finally, we found that auto-activated NRC2/3/4 also 
required SGT1 and HSP90 to induce hypersensitive response.
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Background
Oomycete pathogens continue to hamper crop produc-
tion and damage ecosystems on a global scale (Pais et al. 
2013). A notorious group of pathogens are found within 
the Phytophthora genus and Pythium genus, among 
which members such as Phytophthora infestans and 
Phytophthora sojae cause severe yield losses in potato, 
tomato and soybean crops, while others, such as Pythium 
ultimum is a rapidly emerging pathogen with a broad 
host range (Kamoun et  al. 2015). Oomycetes belong to 
heterokont/chromist clade (Riisberg et  al. 2009), within 
the ’Straminipila-Alveolata-Rhizaria’ superkingdom 
(Burki et  al. 2008). The common management method 

for controlling pathogenic fungi may fail to prevent 
infections of oomycete pathogens due to the great diver-
sity between these two types of pathogens. Therefore, 
there is an urgent need to understand the mechanisms 
underpinning the parasitism of this important group of 
eukaryotes.

For successful colonization in host plants, oomycete 
pathogens deliver diverse groups of effectors into plant 
cells to subvert host immunity (Dou and Zhou 2012). 
Oomycete pathogens mostly secrete two classes of effec-
tors: apoplastic effectors such as necrosis and ethylene-
inducing peptide-like proteins (NLPs), and cytoplasmic 
effectors such as RXLRs (Arg-X-Leu-Arg, where X is any 
amino acid) and CRNs (crinkling and necrosis proteins) 
(Dou and Zhou 2012). Specifically, hundreds of effectors 
are encoded by oomycete pathogens and many of them 
trigger hypersensitive response (HR)-like phenotype in 
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plants (Dou and Zhou 2012). Notably, many RXLR effec-
tors are avirluence (AVR) proteins (Rehmany et al. 2005). 
For example, AVR1, AVR3a, AVRblb1 and AVRvnt1 are 
RXLR effectors identified in P. infestans (Ballvora et  al. 
2002; van der Vossen et al. 2003; Huang et al. 2005; Bos 
et al. 2006; Foster et al. 2009).

Plants use their sophisticated immune system to antag-
onize the invasion of external pathogens. Plants employ 
two main regulatory strategies to defend themselves 
against pathogens: pattern-triggered immunity (PTI) 
and effector-triggered immunity (ETI) (Jones and Dangl 
2006). PTI requires membrane-localized pattern recogni-
tion receptors to recognize pathogen- or microbe-associ-
ated molecular patterns (Zipfel 2008). However, virulent 
pathogens can secrete effectors to escape from the rec-
ognition by pattern-recognition receptors and therefore 
reach the aim of manipulating host immunity (Tsuda and 
Katagiri 2010). To address this problem, ETI, which is 
mediated by disease resistance (R) proteins, can directly 
or indirectly recognize the presence of effectors secreted 
by pathogens (Tsuda and Katagiri 2010). Compared with 
PTI, ETI induces a stronger and faster defense response 
against pathogens and is often accompanied by local 
cell death, a characteristic feature of the hypersensitive 
response (HR) (Dodds and Rathjen 2010).

Upon pathogen recognition, conformational changes 
and/or translocation of the sensors would activate the 
downstream immunity signaling pathways. Thence, mis-
folded or used sensors become a threat to host cells and 
must be inactivated and discarded immediately to avoid 
inappropriate activation of downstream pathways. For-
tunately, several critical components of the ETI path-
way have been identified to correct these misfolded and 
overused sensors, such as SGT1 and HSP90 (Shirasu 
2009). SGT1-HSP90 pair, a structurally and functionally 
conserved chaperone complex in eukaryotes, is required 
for the maintenance of nucleotide-binding leucine-rich 
repeat (NLR)-type sensors in a correct state (Shirasu 
2009). Another ETI regulator, ENHANCED DISEASE 
SUSCEPTIBILITY 1 (EDS1), is a conserved lipase-like 
protein that can transduce signals from pathogen-acti-
vated intracellular NLR receptors to transcriptional 
defense response and host cell death (Dongus and Parker 
2021). In addition, NONRACE-SPECIFIC DISEASE 
RESISTANCE (NDR1), a positive plant immunity regu-
lator, is required for both PTI and ETI (Knepper et  al. 
2011b; McNeece et al. 2017). NDR1 is also important for 
mediating electrolyte leakage because of its plasma mem-
brane-localization (Knepper et al. 2011a).

NLR-mediated immune responses often require 
the presence and activity of so called ‘helper’ NLRs 
(hNLRs) (Wu et  al. 2017; Qi et  al. 2018). There are 

three described hNLR families, all encoding coiled-
coil (CC)-NLRs (CNLs): the ACTIVATED DISEASE 
RESISTANCE 1 (ADR1) family (Bonardi et  al. 2011), 
the N REQUIRED GENE 1 (NRG1) family (Peart et al. 
2005) and HR-associated cell death (NRC) family (NB-
LRR protein) (Gabriels et al. 2007). It seems that hNLRs 
serve as downstream signaling hubs for a diverse array 
of senser NLRs (Jubic et al. 2019).

In this study, we tested the requirement of ETI com-
ponents for eight oomycete effectors to induce cell 
death in N. benthamiana. ETI-related genes were 
silenced by virus-induced gene silencing (VIGS) and 
effectors were then expressed in silenced leaves. SGT1 
was found to be essential for INF1, VdEIX3, PcRXLR25 
and PsAvh163 to induce cell death in N. benthami-
ana, while silencing NbHSP90 abolished PcRXLR25-, 
PsAvh163-, PsAvh241- and PsCRN63-triggered cell 
death. HR induced by PcRXLR25 and PsAvh163 
required NRC2/3/4. No effectors induced cell death 
through EDS1, NDR1, NRG1 and ADR1.  PcRXLR25 
and PsAvh163 depended on both SGT1/HSP90 and 
NRC2/3/4 to induce HR, and this inspired us to inves-
tigate the relationship of NRC2/3/4 with SGT1 and 
HSP90. Moreover, we found auto-activated NRC2/3/4 
required SGT1 and HSP90 to induce HR. Interestingly, 
however, there was no interaction between NRC2/3/4 
and SGT1 or HSP90 by conducting a luciferase comple-
mentation assay.

Results
Eight oomycete effectors induce HR‑like phenotype in N. 
benthamiana
Our laboratory has reported that many effectors from 
oomycete species induce cell death in N. benthamiana 
(Li et  al. 2019; Ai et  al. 2020). To figure out whether 
the oomycete effector-induced cell death requires ETI 
components, a transient expression screening was 
conducted. Eight effectors listed as INF1, PoNLP5, 
PoNLP7, PcRxLR25, PsAvh105, PsAvh163, PsAvh241 
and PsCRN63 were chosen in this assay (Additional 
file 1: Table S1). VdEIX3, a fungal effector that induces 
pattern-triggered immunity (PTI), was selected as a 
control (Yin et al. 2021).

To confirm that these effectors are able to induce cell 
death, we transiently expressed them in leaves of N. 
benthamiana. GFP and VdEIX3 were used as negative 
and positive control, respectively. All the eight effec-
tors and VdEIX3 induced obvious cell death in infiltra-
tion sites (Fig. 1a), while leaves expressing GFP did not. 
Confocal images and Western blot assay indicated that 
all the proteins were expressed correctly (Fig.  1b and 
Additional file 2: Figure S1).
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VdEIX3, INF1, PcRXLR25 and PsAvh163 induce 
SGT‑dependent HR, while INF1, PcRXLR25, PsAvh163, 
PsAvh241 and PsCRN63 cause HSP90‑dependent HR
SGT1 and HSP90 jointly regulate the stability and accu-
mulation of NLR protein in plants. Many NLR pro-
teins require the complex of ubiquitin ligase-related 
protein SGT1 and the heat shock protein HSP90 to 
activate cell death (Bos et  al. 2006; Li et  al. 2015). To 
test whether the cell death triggered by the selected 
effectors depends on NbSGT1 or NbHSP90, we indi-
vidually silenced the two genes by VIGS. Compared 

with TRV-GUS control leaves, the expression levels of 
NbSGT1 and NbHSP90 were reduced ~ 90% and ~ 70% 
in indicated silenced leaves, respectively (Additional 
file  2: Figure S2). NbSGT1- and NbHSP90-silenced 
plants showed impaired growth phenotype (Addi-
tional file  2: Figure S3). Furthermore, INF1 induced 
cell death was abolished in SGT1- and HSP90-slienced 
plants (Fig. 2a). These results are similar to the previous 
report on SGT1- and HSP90-slienced N. benthamiana 
(Bos et al. 2006), indicating that NbSGT1 and NbHSP90 
were silenced successfully.

Fig. 1  Eight oomycete effectors cause HR-like phenotype in N. benthamiana. a Ectopic expression of eight effectors in N. benthamiana. Transient 
expression of VdEIX3, INF1, PoNLP5, PoNLP7, PcRXLR25, PsAvh163, PsAvh241 and PsCRN63 in N. benthamiana. GFP was used as a negative control 
and VdEIX3 was used as a positive control. Photographs were taken at 6 days post-infiltration (dpi). Numbers represent the number of leaves 
showing cell death out of the number of leaves analyzed. b Western blot detection of eight oomycete effectors in N. benthamiana. Western blot 
analysis of indicated proteins expressed in N. benthamiana leaves. Leaves were collected after 36 h post-infiltration (hpi). Total protein loading was 
confirmed by Ponceau S staining
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Silencing NbSGT1 abolished VdEIX3-, INF1-, 
PcRXLR25- and PsAvh163-triggered cell death in N. 
benthamiana, while silencing NbHSP90 abolished INF1-, 
PcRXLR25-, PsAvh163-, PsAvh241- and PsCRN63-trig-
gered cell death (Fig.  2a). It was reported that protein 
accumulation might be affected in SGT1-VIGS plants 
(Fig.  2b) (Yu et  al. 2019). In our western blot assay, all 
proteins did accumulate correctly in GUS-, SGT1- and 
HSP90-silenced lines (Fig. 2b). Based on these results, we 
speculated that these effectors-induced cell deaths might 
be related to the ETI pathway.

The cell death caused by eight effectors in N. benthamiana 
does not depend on NbNDR1 and NbEDS1
NDR1 and EDS1 are vital components of the ETI pathway 
(Aarts et al. 1998; McDowell et al. 2000; Day et al. 2006). 
We next tested whether the selected effector-triggered cell 
death is NDR1- or EDS1-dependent. As shown in Fig.  3, 
silencing NDR1 or EDS1 led to no effect on the cell death 
induced by all eight effectors. NDR1 and EDS1 expression 
levels were reduced ~ 90% in the indicated gene-silenced 
leaves (Fig. 3a). Agrobacterium infiltration with any one of 
the eight effectors on EDS1- and NDR1-silenced leaves led 

Fig. 2  VdEIX3, INF1, RXLR25 and PsAvh163 induce SGT-dependent HR, while INF1, RXLR25, PsAvh163, PsAvh241 and PsCRN63 cause 
HSP90-dependent HR. a Phenotypes of eight oomycete effectors in GUS-, SGT1- and HSP90-silenced leaves. INF1, PoNLP5, PoNLP7, PcRXLR25, 
PsAvh105, PsAvh163, PsAvh241 and PsCRN63 were transiently expressed individually through Agrobacterium infiltration in gene-silenced leaves of 
N. benthamiana. Agrobacterium was infiltrated at an OD600 of 0.5 and the plants were imaged at 6 dpi. Consistent results were observed from three 
independent biological replicates. Numbers represent the number of leaves showing cell death out of the number of leaves analyzed. b Western 
blot detection of the effectors that trigger SGT1 or HSP90-dependent cell death. The accumulation of VdEIX3, INF1, PcRXLR25, PsAvh163, PsAvh241 
and PsCRN63 in GUS-, SGT1- and HSP90-silenced plants. GFP was used as a test control. Total proteins were extracted from the leaves at 36 hpi, and 
protein accumulation was determined using anti-GFP or anti-HA antibody. In western blots, total protein loading was confirmed by Ponceau S 
staining



Page 5 of 12Dong et al. Phytopathology Research             (2022) 4:4 	

to the same cell death phenotype as those on GUS-silenced 
leaves (Fig.  3b), indicating that these effectors triggered 
EDS1- and NDR1-independent cell death.

The cell death caused by eight effectors in N. benthamiana 
does not depend on RPW8‑type helper NLR NbADR1 
and NbNRG1
NRG1 and ADR1 are RPW8-containing helper NLRs 
that are required for cell death triggered by recognition 

between AVR proteins and sensor NLRs (Castel et  al. 
2019; Wu et  al. 2019). It was reported that NRG1 is a 
EDS1 downstream factor to regulate TIR-type sensor 
NLRs (TNLs)-mediated immunity in N. benthamiana (Qi 
et al. 2018). Besides, ADR1 is required for normal func-
tion of many TNLs (Wu et al. 2019). NRG1- and ADR1-
silenced lines were obtained and the eight effectors were 
individually expressed in the leaves (Fig. 3a). The expres-
sion levels of ADR1 and NRG1 were both down-regulated 

Fig. 3  Cell death induced by the eight effectors does not require ADR1, NRG1, NDR1 and EDS1. a Evaluation of the silencing efficiency of the 
indicated gene in ADR1-, NRG1-, NDR1-, EDS1- and ADR1/NRG1-silenced N. benthamiana plants using RT-qPCR. The EF1a gene was used as an 
internal reference. Bars represent standard errors from three independent biological replicates (mean ± SD; n = 3; **, P < 0.01 compared with the 
GUS-silenced lines; Student’s t-test). b Phenotypes of eight effectors in gene-silenced leaves. Photos were taken at 6 dpi. Consistent results were 
observed from three independent biological experiments, with each having at least seven repetitions. Numbers represent the number of leaves 
showing cell death out of the number of leaves analyzed
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by more than 60%, indicating that the silencing efficiency 
is acceptable (Fig.  3a). The eight effectors still induced 
cell death in infiltration sites (Fig.  3b), which indicated 
that the cell death induced by the eight effectors did not 
require NRG1 or ADR1.

There is function redundancy between ADR1 and 
NRG1 (Saile et  al. 2020). We thus silenced ADR1 and 
NRG1 simultaneously and found knock-down of both 
ADR1 and NRG1 did not abolish the cell death pheno-
type triggered by these effectors (Fig. 3a, b).

PcRXLR25‑ and PsAvh163‑triggered cell death in N. 
benthamiana depends on NRC helpers
Except for RPW8-type helper NLRs, N. benthamiana 
has another significant type of helper NLRs, NRCs 
(NRC2, NRC3 and NRC4), which were reported to 
participate in defense responses in oomycetes, bacte-
ria, viruses and nematodes (Wu et al. 2016; Derevnina 
et  al. 2021). NbNRC4 is indispensable for Rpi-blb2 
to recognize the P. infestans effector AVRblb2 in N. 

benthamiana (Wu et  al. 2017). NRC2 and NRC3 are 
required for Pto-induced HR (Wu et  al. 2016), while 
Bs2 and Sw5b trigger NRC2/3/4-dependent cell death 
in N.benthamiana (Wu et  al. 2017). To figure out 
whether the NRC helpers have a role in the cell death 
caused by these eight effectors in N. benthamiana, we 
silenced NRC2, NRC3 and NRC4 separately and then 
expressed the eight effectors individually (Fig. 4a). The 
silencing efficiency of the three genes was confirmed 
and the eight effectors still triggered cell death in the 
silenced leaves (Fig. 4a, b).

However, when all the three NRCs were knocked 
down, the cell death induced by PcRXLR25 from Phy-
tophthora capsici and PsAvh163 from P. sojae was totally 
inhibited (Fig.  5a, b). Western blot assay indicated that 
all the proteins accumulated normally in the silenced 
leaves (Fig. 5c). These results showed that PcRXLR25 and 
PsAvh163 triggered an NRCs-dependent cell death, indi-
cating that PcRxLR25- and PsAvh163-triggered cell death 
in N. benthamiana was related to the ETI pathway.

Fig. 4  Silencing individual NRC helper genes has no effect on the cell death triggered by the eight effectors in N. benthamiana. a Silencing 
efficiency of NbNRC2, NbNRC3 and NbNRC4 in the indicated gene knock-down N. benthamiana plants. Values represent average ± SE (n = 3); **, 
P < 0.01 compared with the GUS; Student’s t-test. b Transient expression of effectors in NRC2-, NRC3-, NRC4-silenced plants. Photographs were taken 
at 6 dpi. Consistent results were observed from three independent biological experiments, with each having at least eight repetitions. Numbers 
represent the number of leaves showing cell death out of the number of leaves analyzed
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Cell death triggered by auto‑activated NbNRC2/3/4 
is dependent on SGT1 and HSP90
According to the above experimental results, we con-
cluded that HR induced by PcRXLR25 and PsAvh163 
relied on SGT1/HSP90 and NRC2/3/4. It is interest-
ing to figure out whether the correct functions of 
NRC2/3/4 require SGT1 and HSP90. The HSP90-SGT1 
chaperone complex interacts with NLRs and plays a 
critical role in maintaining the stability of NLR proteins 
(such as Rx, RPS2, RPS5) and NLR-mediated resist-
ance, (Takahashi et  al. 2003; Holt et  al. 2005; Botër 
et  al. 2007). Meanwhile, this chaperone complex con-
tributes to the hybrid incompatibility  in  Nicotiana 
(Katsuyama et  al. 2021). To investigate the functional 

relationship between NRCs and SGT1 or HSP90, NRCs 
auto-activated mutant vector (NRC2H480R, NRC3D480V, 
NRC4D478V) was constructed (Derevnina et  al. 2021). 
As shown in Fig.  6a, NRC2H480R, NRC3D480V and 
NRC4D478V induced cell death in control leaves, which 
confirmed that NRC2H480R, NRC3D480V and NRC4D478V 
are auto-activated mutants. However, all the auto-acti-
vated mutants failed to induce cell death in SGT1- and 
HSP90-silenced plants (Fig. 6a), indicating that the cor-
rect function of NRC2/3/4 required both SGT1 and 
HSP90.

We next tested the interaction of NRC2/3/4 with 
SGT1 and HSP90 using a luciferase complementa-
tion assay. NRC2/3/4 were fused with nLUC in their 

Fig. 5  Silencing NbNRC2, NbNRC3 and NbNRC4 simultaneously attenuates the cell death triggered by PcRXLR25 and PsAvh163 in N. benthamiana. 
a Silencing efficiency of NbNRC2, NbNRC3 and NbNRC4. Values represented average ± SE (n = 3); **, P < 0.01 compared with the GUS; Student’s 
t-test. b Transient expression of GFP, PcRXLR25, PsAvh163 and PsAvh105 in GUS- and NRC2/3/4-silenced plants. GFP was used as a negative control. 
Consistent results were observed from three independent biological experiments. Numbers represent the number of leaves showing cell death out 
of the number of leaves analyzed. c The accumulation of GFP, PcRxLR25, PsAvh163 and PsAvh105 in GUS- and NRC2/3/4-silenced plants. GFP was 
used as a negative control. Total protein loading was confirmed by Ponceau S staining
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C terminal and co-expressed with SGT1 or HSP90 
fused with cLUC in N terminal in leaves. The combi-
nation of FLS2 (flagellin-sensitive2) and Gβ (G protein 
β-subunit1) from Arabidopsis thaliana, a well-known 
associated proteins (Liang et  al. 2016), were used as 
positive control. No chemiluminescence signal could 
be detected in the infiltration sites where the combi-
nation of NRCs and HSP90/SGT1 was co-expressed, 
while positive control (FLS2-nLUC and cLUC-Gβ) 
displayed strong signals (Additional file  2: Figure S4). 
This indicated that NRC2/3/4 and SGT1/HSP90 may 
not interact with each other in our system.

Discussion
Many cytoplasmic effectors secreted by oomycete patho-
gens could induce cell death in plants. According to the 
results from two large-scale screenings of RXLR effec-
tors, nearly 6–7% RXLR effectors from P. sojae and P. 
capsici could trigger cell death in N. benthamiana (Li 
et  al. 2019; Wang et  al. 2011). Likewise, RXLR effec-
tors from Pythium species are able to cause cell death 
in plants (Ai et al. 2020). Same situation can be applied 
to CRN effectors (Stam et  al. 2013). These cell death-
induced effectors may be toxic effectors capable of killing 
cells directly. Alternatively, some of them may be AVR 

Fig. 6  Correct function of NRC2/3/4 requires SGT1 and HSP90. a The phenotypes of auto-activated NbNRC2, NbNRC3 and NbNRC4 in GUS-, 
SGT1- and HSP90-silenced N. benthamiana plants. Photographs were taken at 2 dpi. Numbers represent the number of leaves showing cell death 
out of the number of leaves analyzed. b Oomycete effectors-induced cell death is differentially dependent on effector-triggered immunity pathway 
components. Dotted arrows indicate that host genes required for the effector-induced cell death is unknown
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proteins recognized by R proteins and trigger HR. In 
this study, we identified two effectors, both of which are 
RXLR effectors and have potential to be AVR candidates.

Ectopic expression of some CRN effectors from oomy-
cetes and fungi leads to severe cell death in plant, insect 
and animal cells (Schornack et al. 2010; Stam et al. 2013; 
Ramirez-Garces et  al. 2016; Shen et  al. 2019). In this 
study, no CRN effector was selected as an AVR protein 
candidate. The screening scale of this study is not broad 
enough, so whether there is a chance for CRN effectors 
to be AVR proteins is still unknown. In  many  circum-
stances, CRN effector-induced cell death requires nuclear 
localization of CRN effectors (Schornack et  al. 2010; 
Stam et  al. 2013). Similarly, some NLR proteins need 
nucleus localization for correct functions (Shen et  al. 
2007; Xu et al. 2014). It is needed to figure out whether 
there is an R gene that can recognize CRN effectors.

Apoplastic effectors such as NLP effectors are toxic 
effectors that bind to plant-specific glycosylinositol 
phosphorylceramide (GIPC) sphingolipids to kill plant 
cells (Lenarcic et  al. 2017). As expected, PoNLP5- and 
PoNLP7-triggered cell death did not require any of 
the ETI components tested in this study. Interestingly, 
VdEIX3, an effector to induce PTI, also relied on SGT1 to 
produce cell death. However, it did not depend on other 
ETI components like EDS1 or helper NLRs. Such phe-
nomenon may be explained by the recently uncovered 
tight association between ETI and PTI (Ngou et al. 2021). 
Similarly, another PTI-related apoplastic effector, INF1, 
also required SGT1 and HSP90 to induce cell death.

HR mediated by PcRXLR25 and PsAvh163 was depend-
ent on Solanaceae-specific helper NLR, NRC2/3/4, but 
not EDS1 or other types of helper NLR, which indi-
cated that the sensor NLR of PcRXLR25 and PsAvh163 
might be CNL-type R genes. In addition, PcRXLR25- and 
PsAvh163-induced HR depended on NRC2/3/4, SGT1 
and HSP90 simultaneously. This inspired us to test the 
association of NRC2/3/4 with SGT1 and HSP90, and 
the luciferase complementation assay showed that no 
interaction was found between them. However, since the 
interaction between NLR and other proteins is a compli-
cated issue, we can only conclude that no interaction was 
observed in our system. Surprisingly, we detected that 
the auto-activated NRC2/3/4 required SGT1 and HSP90 
to induce HR. The SGT1 and HSP90 complex is crucial in 
stabilizing NLR-type sensors (Shirasu 2009). As a result 
of our study, SGT1 and HSP90 complex may also help to 
stabilize helper NLRs.

According to the iceberg model, the vast majority of 
AVR/R pairs are hidden (Thordal-Christensen 2020). It is 
a promising way to reveal the hidden AVR proteins via 
investigating the requirement of cell death-induced effec-
tor for ETI signaling components. By screening effectors 

in gene-silenced tobacco leaves, we have successfully 
identified two putative AVR proteins, PcRXLR25 and 
PsAvh163. In future studies, the virulent function of 
these two effectors should be investigated and their cog-
nate R proteins should be identified. Furthermore, we 
have found that SGT1 and HSP90 are required for nor-
mal function of NRC2/3/4. Next, we need to determine 
how SGT1 and HSP90 regulate NRC2/3/4.

Conclusions
In this study, we screened eight cell death-induced effec-
tors from oomycete pathogens in N. benthamiana to 
figure out which one is associated with ETI (Fig.  6b). 
The cell death phenotypes caused by these effectors 
were tested in the absence of vital ETI signaling com-
ponents. As a result, we found that PsAvh163, VdEIX3 
and PcRXLR25 require SGT1 to induce cell death, while 
silencing NbHSP90 abolishes PcRXLR25-, PsAvh163-, 
PsAvh241- and PsCRN63-triggered cell death. None 
of the eight effectors induce cell death through EDS1, 
NDR1, NRG1 and ADR1. HR induced by PcRXLR25 and 
PsAvh163 requires NRC2/3/4, suggesting that these two 
effectors are related to ETI. Hence, they are probably 
AVR protein candidates. Finally, we found that auto-acti-
vated NRC2/3/4 also relies on both SGT1 and HSP90 to 
generate HR.

Methods
Plasmid construct
The effectors used in the study are all existing vectors 
in the laboratory. Briefly, GFP (as a control), INF1 (as a 
control), VdEIX3, PoNLP5, PoNLP7 were cloned into 
pBin3xHA. PcRXLR25, PsAvh105, PsAvh163, PsAvh24 
and PsCRN63 (without signal peptide) were cloned into 
pBinGFP2. NRC2, NRC3, NRC4, SGT1 and HSP90 were 
amplified from N. benthamiana. For luciferase comple-
mentation assay, NRC2, NRC3 and NRC4 were cloned 
into pCAMBIA1300-35S-HA-Nluc-RBS, SGT1 and 
HSP90 were cloned into pCAMBIA1300-35S-Cluc-RBS. 
To overexpress auto-activated NbNRC2/3/4 in N. bentha-
miana, NRC2H480R, NRC3D480V and NRC4D478V were con-
structed in pBin3xHA. In order to silence SGT1, HSP90, 
EDS1, NDR1, ADR1, NRG1, NRC2, NRC3 or NRC4 in N. 
benthamiana, the reported gene fragment was inserted 
into pTRV2 vector individually (Burch-Smith et al. 2004). 
Primers are listed in the Additional file 1: Table S2.

Plant growth conditions
N. benthamiana were grown in greenhouse at 25 ℃ with 
60% relative humidity and a 16-h light/8-h dark photo-
period. VIGS-treated N. benthamiana plants used in this 
study were grown in the greenhouse at a temperature of 
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22 ℃ under a 16-h light/8-h dark photoperiod and 58% 
relative humidity.

Transient expression and VIGS in N. benthamiana
The indicated recombinant constructs were transformed 
into Agrobacterium tumefaciens strain GV3101. For infil-
tration, Agrobacterium strains were cultured at 28 ℃ and 
220 rpm for 48 h, and the cells were collected after cen-
trifugation at 4000 rpm for 4 min. The cells were washed 
and then re-suspended in infiltration medium [10  mM 
MgCl2, 10  mM MES (PH5.7) and 200  μM acetosyrin-
gone] to an appropriate optical density (OD) at 600 nm 
(0.4 – 0.6). Five-week-old N. benthamiana leaves were 
infiltrated for transient expression.

For Agrobacterium-mediated VIGS, TRV vectors 
pTRV-RNA1 and pTRV-RNA2, namely pTRV-SGT1, 
pTRV-HSP90, pTRV-EDS1, pTRV-NDR1, pTRV-ADR1, 
pTRV-NRG1, pTRV-NRC2, pTRV-NRC3, pTRV-NRC4, 
pTRV-ADR1/NRG1, pTRV-NRC2/3/4, pTRV-GUS 
(negative control), and pTRV-PDS (positive control), 
were introduced into A. tumefaciens strain GV3101 by 
electroporation. Agrobacterium suspensions containing 
pTRV-RNA1 and pTRV-RNA2 derivatives were mixed 
at an equal ratio and inoculated into the true leaves 
of 20-day-old soil-grown N. benthamiana. Treated N. 
benthamiana plants were maintained at 22 ℃ under a 
16-h light/8-h dark photoperiod for 25 days before Agro-
bacterium transient expression.

RT‑qPCR analysis and bioinformatics analysis
For RT-qPCR analysis, total RNA was extracted from 
N. benthamiana leaves with an RNA-simple Total RNA 
Kit (Tiangen Biotech Co., Ltd., Beijing, China) accord-
ing to the operating instructions. N. benthamiana cDNA 
was synthesized with the HiScript II Q RT SuperMix for 
qPCR (Vazyme Biotech Co., Ltd., Nanjing, China). Real-
time PCR was performed by using a SYBR Premix Ex Taq 
Kit (Takara Bio Inc., Shiga, Japan) on an ABI Prism 7500 
Fast Real-Time PCR system following the instructions. 
Gene expression levels were normalized to the expres-
sion of NbEF1a, a stably expressed reference gene in N. 
benthamiana. The primers used are listed in Additional 
file  1: Table  S2. All the RT-qPCR results shown in this 
study were calculated from three independent biological 
replicates.

Western blotting
To extract proteins from N. benthamiana, leaves were 
frozen in liquid nitrogen and polished to a fine powder. 
For normal western blot assay, extraction buffer (50 mM 
HEPES, 150  mM KCL, 1  mM EDTA, and 0.1% Triton 
X-100; pH 7.5), supplemented with 1  mM DTT and 

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, 
MO, USA), was used for protein extraction from plant 
materials. Anti-HA (1:5, 000; #M20013; Abmart Inc., 
Shanghai, China), anti-GFP (1:5, 000; #M20004; Abmart), 
antibodies were used to bind the protein with the corre-
sponding tag.

Luciferase complementation assay
The coding sequence of indicated genes was cloned into 
pCAMBIA1300-35S-HA-Nluc-RBS or pCAMBIA1300-
35S-Cluc-RBS and then was transferred into A. tumefa-
ciens strain GV3101. Agrobacterium strains carrying the 
indicated Cluc and Nluc constructs were infiltrated into 
N. benthamiana leaves. Leaves were sprayed with 1 mM 
luciferin (Biovision) and luminescence was detected with 
a microplate reader (BioTek, Beijing, China) after 15 min.

Confocal microscopy
The GFP-fused constructs were expressed in N. bentha-
miana leaves by Agrobacterium-mediated transient 
expression. The signal of fluorescence was imagined 
using a confocal microscope under a 488  nm excitation 
wavelength.

Accession number
The primary accession codes for INF1, VdEIX3, PoNLP5, 
PoNLP7, RXLR25, PsAvh105, PsAvh163, PsAvh241 and 
PsCRN63 that support the finding of this study were 
shown as AY830090.1 (INF1), VDAG_06165 (VdEIX3), 
PYOLI_00013111-RA (PoNLP5), PYOLI_00013113-
RA (PoNLP7), PHYCAscaffold_81:176234-177661 
(RXLR25), Ps138565 (PsAvh105), Ps141933 (PsAvh163), 
Ps133912 (PsAvh241) and HQ231783.1 (PsCRN63), 
respectively.
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S3. Phenotypes of gene-silenced N. benthamiana. Photos were taken at 
25 dpi. Figure S4. The luciferase complementation assay between NRCs 
and SGT1/HSP90. A luciferase complementation assay was performed on 
N. benthamiana plants by Agrobacterium-mediated transient expression 
of the indicated constructs. The combination of FLS2-nLUC + cLUC-Gβ 
was used as a positive control. This experiment was repeated three times 
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