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Synthesis and analysis of separation
processes for extracellular chemicals
generated from microbial conversions
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Abstract

Recent advances in metabolic engineering have enabled the production of chemicals via bio-conversion using
microbes. However, downstream separation accounts for 60–80% of the total production cost in many cases.
Previous work on microbial production of extracellular chemicals has been mainly restricted to microbiology,
biochemistry, metabolomics, or techno-economic analysis for specific product examples such as succinic acid,
xanthan gum, lycopene, etc. In these studies, microbial production and separation technologies were selected
apriori without considering any competing alternatives. However, technology selection in downstream separation
and purification processes can have a major impact on the overall costs, product recovery, and purity. To this end,
we apply a superstructure optimization based framework that enables the identification of critical technologies and
their associated parameters in the synthesis and analysis of separation processes for extracellular chemicals
generated from microbial conversions. We divide extracellular chemicals into three categories based on their
physical properties, such as water solubility, physical state, relative density, volatility, etc. We analyze three major
extracellular product categories (insoluble light, insoluble heavy and soluble) in detail and provide suggestions for
additional product categories through extension of our analysis framework. The proposed analysis and results
provide significant insights for technology selection and enable streamlined decision making when faced with any
microbial product that is released extracellularly. The parameter variability analysis for the product as well as the
associated technologies and comparison with novel alternatives is a key feature which forms the basis for
designing better bioseparation strategies that have potential for commercial scalability and can compete with
traditional chemical production methods.

Keywords: Process systems engineering, Downstream separation, Superstructure optimization, Technology
selection, Bio-based chemicals

Background
Recent advances in metabolic engineering enable the use
of microbes for the production of chemicals (referred to
as “products” hereafter) from sugars, made from trad-
itional sources like sugar beet and sugarcane or from al-
ternative sources like cellulosic biomass [1–9]. Many of
these chemicals are currently derived mainly from fossil

fuel feedstocks. In comparison, microbial conversion
processes can be advantageous for their mild production
conditions and direct conversion instead of step-wise
chemical conversions (some steps can have low yield
and high cost) [10]. Also, metabolic engineering and bio-
reactor engineering tools can be used to maximize the
yield and selectivity of the desired product and thus
minimize the concentrations of coproducts [11–16].
A bioreactor effluent is often dilute (less than 20 wt%

product) [17] and the purity requirement for chemicals
is relatively high. Therefore, downstream separation
tends to be expensive, accounting for 60–80% of the
total production cost in many cases [10, 18, 19]. Thus,
the synthesis of an effective downstream bio-separation
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process is a critical but at the same time challenging task
because multiple technologies are usually available for a
given separation task, and thus a large number of alter-
native process networks exists. Also, the product proper-
ties and the bioreactor effluent compositions are not
uniform across chemicals, but rather specific, which re-
quires case-specific considerations.
Methods used for process synthesis generally include

an enumeration of alternatives, evolutionary modifica-
tion, and superstructure optimization [20, 21]. In the
enumeration of alternatives, each alternative design is
generated and evaluated. In an evolutionary modifica-
tion, designers make changes to known flowsheets for
similar processes to meet new objectives and constraints.
An optimization model can also be formulated to facili-
tate the comparison between different flowsheets and
determination of process variables such as flowrates, op-
erating temperatures, and pressures [22–27]. However,
these two methods are not feasible for cases where a
large number of different technologies is available for
comparison. On the other hand, a superstructure
optimization is a model-based approach that compares
alternative process networks simultaneously [28–30].
In some cases, the generation of schemes can assist in

the generation of superstructures for the synthesis of
separation networks [24, 31–37]. A scheme incorporates
a list of technologies available for a set of tasks, while a
superstructure incorporates a number of alternative spe-
cific technologies and relevant interconnections. Super-
structure optimization has been proposed for the
synthesis of separation networks [20, 38–42] as well as
the development of bio-processes [33, 39, 43–49]. How-
ever, these studies were mostly focused on either general
methodological discussions or analysis for specific products
on a case-by-case basis. The recent studies by Maravelias
group [42, 50, 51] have presented a systematic approach for
generating and modeling bio-separation superstructures for
different classes of products defined in terms of a set of at-
tributes including product localization, solubility, density,
volatility, physical state, and intended use. This work builds
on those recent studies to look at microbial products re-
leased extracellularly in more detail through carefully se-
lected case studies, appropriate parameter values, typical
range of variation and additional insights derived from solv-
ing multiple optimization problems.
When a product of interest is produced by microbial

cells, it is then localized either inside the cells or released
to the extracellular phase. In fact, most products are ini-
tially produced intracellularly, but some products are lo-
calized extracellularly to the aqueous medium through
passive diffusion or active transport [52]. Previous work
on economic assessment for the separation of extracellu-
lar chemicals has been mainly restricted to specific
examples such as hyaluronic acid [53–57], limonene

[58–61], xanthan gum [62, 63], butanediol [64–67], lac-
tic acid [68–72] and penicillin V [19, 73, 74]. Also, as-
sessment studies have been performed for individual
separation technologies [75–77]. However, technology
selection is nontrivial because many competing alterna-
tives are often available and when considered in a
complete separation network for cost minimization, it
adds to further complexity as optimal solutions become
non-intuitive. Moreover, traditional analyses have usu-
ally focused on sensitivity analyses for separation net-
works with fixed technologies, and single parameter
variation at a time to assess its influence on the process
economics [78, 79].
In this work, we synthesize and analyze separation

processes for extracellular products, aiming to convert a
dilute effluent (containing product, microbial cells,
water, and small amounts of co-product impurities)
from a microbial-based reactor to a high-purity product
stream. The synthesis aspect has been addressed in more
details in Yenkie et al. [50], however, the aspects relevant
to the superstructure synthesis for separation of extra-
cellular products in also presented in Fig. 1a and b and
have been revisited wherever possible. However, the
paper focuses on deriving critical insights from the de-
tailed cost and technological parameter variation analysis
for the extracellular products. Extracellular products
have many distinguishing features, especially they can be
present in very low concentrations in water abundant
process streams. Moreover, some tasks such as cell dis-
ruption are not needed for extracellular products. Thus,
extracellular product classes are treated separately and
the critical insights derived in this work can provide bet-
ter downstream separation and purification design strat-
egies for these products and can also provide future
research directions for technology enhancement. Note
that we only consider liquid or solid products entering
the separation networks.
In the “Methods” section, we discuss a stage-wise sep-

aration scheme, superstructure generation and modeling,
and the analysis framework we employ. In the “Results
and discussions” section, we first categorize extracellular
products into three different categories based on their
physical properties: (1) insoluble light (with a density
lower than that of water), (2) insoluble heavy, and (3)
soluble. Such categorization is necessary because, e.g.,
separation of extracellular insoluble light products tends
to be easier (via simple decantation, filtration, etc.) than
that of extracellular soluble ones (via distillation, mem-
brane, precipitation, etc.), especially when the product
titer is low. Second, in each category, we develop a base
case, to generate the cost-minimal process with the opti-
mal technology selection and identify the key cost
drivers. Third, we analyze the influence of these drivers
(such as product titer and technology performances) on
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optimal technology selection and cost. Finally, we extend
the discussion to account for other classes of products
in the category.

Methods
Stage-wise separation scheme
The recovery of an extracellular (EX) product is divided
into three stages: (I) Product isolation (including pretreat-
ment, cell removal, and phase isolation), (II) Product con-
centration, and (III) Product purification and refinement, as
shown in Fig. 1a. These three stages have been formulated
after careful consideration of previous literature and reports
on bioseparations and downstream processing by Belter,
Cussler and Hu [31], Harrison [32, 80], Chisti [81–85],
Asenjo [16, 22, 27, 86, 87], and Bogle [39, 88, 89]. Each
stage has multiple technologies available for every task, as
shown in Table 1.
We will use the abbreviations when referring to the

specific technologies hereafter. For discussions regarding
the three stage scheme and the specific separation tech-
nologies, the readers are referred to [42, 50, 51]. We
would like to point out that we have chosen the most
basic configurations for the technology models. For
example, filtration and membrane processes can have
varied designs such as depth filtration, diafiltration, cas-
caded designs [90–92], etc. However, these varied

configurations will not change the broader insights and
typical cost ranges obtained from this work.

Extracellular product classes
The potential separation stages and the relevant technol-
ogy options in the separation scheme (see Fig. 1a and
Table 1) can be narrowed down based on other distin-
guishing properties of an extracellular (EX) product such
as the solubility of the product in water [insoluble (NSL)
or soluble (SOL)], density with respect to water [heavy
(HV) or light (LT)], physical state [solid (SLD) or liquid
(LQD)], relative volatility with respect to water [volatile
(VOL) and non-volatile (NVL)], and intended use [com-
modity (CMD) or specialty (SPC)], as shown in Fig. 1b.
Each combination of these properties corresponds to a
specific class of products, e.g., 2,3-butanediol belongs to
the EX SOL NVL LQD CMD class.

Superstructure generation and modeling
For each class of extracellular products, we generate a
superstructure that is based on the rules and informa-
tion presented in the prior work on separation network
synthesis [42, 50] and has also been revisited briefly in
Fig. 1a and b. Next, we formulate a superstructure
optimization model in the form of mixed-integer non-
linear programming (MINLP) problem, with binary

Fig. 1 Stage-wise separation scheme and its simplification. a Representation of the three-stage separation scheme for extracellular products; b
simplification of the separation scheme for superstructure generation based on product properties (solubility, density, physical state, volatility and
intended use). Abbreviations: solubility in water [insoluble (NSL) or soluble (SOL)], density with respect to water [heavy (HV) or light (LT)], physical
state [solid (SLD) or liquid (LQD)], relative volatility with respect to water [volatile (VOL) and non-volatile (NVL)], and intended use [commodity
(CMD) or specialty (SPC)]

Table 1 Technology options available for performing the tasks listed in the three separation stages. Abbreviations for the
technologies are shown in parentheses

Tasks Technologies

Pretreatment Flocculation (Flc)

Cell removal and product
isolation

Sedimentation (Sdm), filtration (Ftt), centrifugation (Cnt), flotation (Flt), membranes (Mbr- MF [microfiltration], UF
[ultrafiltration], and RO [reverse osmosis])

Phase isolation
(product rich phase formation)

Differential digestion (Ddg), solubilization (Slb)

Concentration Extraction (Ext), aqueous two phase extraction (Atpe), evaporation (Evp), precipitation (Prc), sedimentation (Sdm),
filtration (Ftt), centrifugation (Cnt), membranes (MF, UF, NF (nanofiltration), RO), distillation (Dst)

Purification & refinement Adsorption (Ads), chromatography (Chr), crystallization (Crs), pervaporation (Pvp), membranes (Mbr-MF, UF, NF, RO),
Drying (Dry), bleaching (Blc)
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variables denoting the activation/deactivation of tech-
nologies present in the superstructure. The model in-
volves constraints describing the separation
technologies, stream flows, input specifications, and
product purity requirements. The typical number of
equations involved in an extracellular product case study
can range from ~ 600–1700, model variables can range
from ~ 500–1200 with ~ 25–35 discrete variables de-
pending on the number of tasks and technology alterna-
tives involved in the complete superstructure. The
objective is to minimize the total cost, including annual-
ized capital cost and operating cost (input feedstock,
consumables, labor, utility, materials, etc.) [21, 93]. We
assume reasonable base case values for the process, tech-
nology and economic parameters such as product titer,
technology efficiencies, and material costs (refer Table 2).
The specific model equations for each technology (ma-
terial and energy balances, design and costing equations)
and the parameter values used in the current work can
be found in the Additional file. The model has been de-
veloped in GAMS 25.1.1 environment and solved using
BARON [94, 95], a global optimization solver.

Analysis framework
For each product category, after solving the base case to
determine the cost-minimal separation network and the
key cost drivers, we further analyze how variations in the
key drivers affect the cost and technology selection, in
two steps:

Step#1: Vary one or a combination of key parameters
and solve an optimization problem for each
combination, to determine the threshold values where
a change in the optimal technology happens.
Step#2: Extend the analysis to other product classes in
the category based on (1) the results for the base case,
if the same technology options are suitable for the
other classes, or (2) individual technology
considerations, if new technologies should be included.

Results and discussions
Study1 – extracellular insoluble light (EX NSL LT) products
For the EX NSL LT category, we choose an EX NSL LT
LQD CMD product as the representative base case. Note
that EX NSL LT products float on the top and are thus
naturally separated from the dense microbial cells. The
key parameters used are shown in Table 2. The base
case parameters have been chosen to represent typical
cases reported in the literature for products belonging to
EX NSL LT class such as terpenes [58, 59, 96]. The ana-
lysis range for the product titer has been chosen up to
250 g/L to reflect the possibilities of achieving higher
product concentrations due to advances in metabolic en-
gineering and bioreactor designs [97–99].

Superstructure and optimal solution
By simplifying the separation scheme of an EX NSL
product (provided in Additional file 1: Figure S. A1), we
obtain the superstructure for EX NSL LT LQD CMD
product shown in Fig. 2. In Stage I – phase isolation,
Sdm1 (sedimentation), and Cnt1 (centrifugation) separ-
ate the product as a top phase (isolated from the cells at
the bottom) while removing water at the same time. Ftt
(filtration) functions to only remove the cells. In Stage II –
concentration, Sdm2, Cnt2 and Mbr (membranes) can
separate the product from water, which can be bypassed if
enough concentration has been achieved in Stage I. In
Stage III – refinement, Ads (adsorption) further purifies
the product, which can also be bypassed if the
optimization model decides that the final product specifi-
cations have been satisfied. The optimization model com-
prises 601 equations, 486 continuous variables and 33
discrete variables and takes about a minute or two to solve
for one set of parameter values.
After solving the superstructure optimization model, we

obtain the cost-minimal separation network (Cnt1 in
Stage I followed by Cnt2 in Stage II), as represented by
the highlighted parts in Fig. 2, as well as the corresponding
cost distribution. The total minimum cost is 0.65 $/kg,
with the feed accounting for 60% of the total cost, Stage I

Table 2 Key parameters for the base case and further analysis for EX NSL LT LQD CMD product

Parameter category Parameter Base case (nominal) Range

Operation choices Production capacity (kg/h) 1000 –

Annual operation time (days) 330 –

Product streams Initial product titer (g/L) 5 1–250

Initial microbial cells (g/L) 2 –

Final product purity (wt%) 95 –

Separation technologies Sdm efficiency 70% –

Cnt efficiency 80% 70–95%

Ftt retention factor 80% 70–95%

Mbr rejection coefficient 97% –
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accounting for 38%, and Stages II for 2% of the total costs.
Cnt2 is also selected because Cnt1 alone is not able to
concentrate the product stream from 5 g/L (~ 0.5 wt%) to
the required final purity of 95 wt% due to concentrating
factor limitations (see centrifugation (Cnt) parameters in
Additional File).

Analysis for EX NSL LT LQD CMD product

Performance of phase isolation technologies Since the
major cost component in the optimal network is Stage I,
we vary parameters related to the phase isolation tech-
nologies: sedimentation (Sdm), centrifugation (Cnt) and
filtration (Ftt). The performance for Sdm1 and Cnt1 is
defined in terms of “efficiency” of the separation of prod-
uct from the aqueous phase. For Ftt, it is defined as the re-
tention factor of cells on the retentate side of the filter.
We vary the Cnt1 efficiency and Ftt retention factor be-
tween 70 and 95% simultaneously [81, 85, 100, 101] and
run the optimization model to obtain the optimal separ-
ation network and cost for each combination of these two
parameters. This analysis requires the solution of about
150–200 optimization problems to generate the complete
heatmap shown in Fig. 3. Note that for the efficiency of

Sdm1, there is limited scope for performance enhance-
ment [81], therefore, we fix it to 70%.
As a result, regardless of the Ftt retention factor vari-

ation, Ftt is not selected in the optimal solution (see
Fig. 3a). This is because Ftt can only separate the cells
from the product and water, while Cnt1 or Sdm1 func-
tions to remove water at the same time. The optimal
technologies selected are noted in the corresponding re-
gions in Fig. 3a. The readers can identify the optimal
separation network in Fig. 2 accordingly. The same nota-
tion is used in the subsequent figures. It can be seen,
when the Cnt1 efficiency is below 76.5%, Sdm1 is se-
lected in Stage I, and Cnt2 is selected in Stage II due to
lower cost; otherwise, Cnt1 and Cnt2 is selected. Since
the efficiency of Cnt2 is still fixed to 80%, Cnt2 is always
selected as the optimal technology in Stage II.

Product titer Sdm1 and Cnt1 equipment sizes are the
major phase isolation cost drivers, and they depend on
the product titer in the feed entering the separation
network (affecting the total input stream flow rate).
Product titer depends on the microbial strain, substrate
utilization, microbial-conversion pathways, and bioreac-
tor design. It has the potential to be altered by metabolic
engineering tools [17, 102–105]. We vary the product
titer from 1 to 250 g/L and obtain the costs and the cor-
responding optimal technology selection in Fig. 3b.

Fig. 2 Superstructure with all technologies and streams and
highlighted optimal solution for EX NSL LT LQD CMD product. The
active streams are shown by bold red lines and selected
technologies are highlighted in different colors corresponding to
each stage: red for stage I, green for stage II, blue for stage III and
Byp for bypassing a stage. Cost distribution is shown by the
numbers on the left bar

Fig. 3 Analysis on technology selection and cost variation for EX
NSL LT LQD CMD product. a Analysis with varying Cnt1 efficiency
and Ftt retention factor; b analysis with varying product titer. The
optimal technologies selected are labeled in the corresponding
regions. The fitted functions are shown, where y-axis represents the
cost, and x-axis represents the Cnt1 efficiency and product titer in
(a) and (b), respectively. The base cases are marked with short
dashed lines with “Base case” labels next to them
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It can be seen that at high titer (≥ 32 g/L), Cnt1 alone
is able to achieve the required product purity. When the
titer is 14–32 g/L, another concentration technology is
required in Stage II, and Mbr is preferred to Sdm2 and
Cnt2 because the product loss is lower. When the titer
is 4–14 g/L, Cnt2 becomes a better option than Mbr in
Stage II because the low titer requires large Mbr equip-
ment size and more costs associated with Mbr replace-
ments. When the titer is 1.57–4 g/L, Sdm1 is a cheaper
option than Cnt1 in Stage I because the major cost of
Sdm is equipment cost, which is scaled with the equip-
ment size based on the power scaling rule; however, in
addition to equipment cost, Cnt also has electricity cost,
which is scaled linearly with the equipment size. There-
fore, when the titer is low (leading to large equipment
size), Cnt1 electricity cost is high, and thus Sdm1 is a
cheaper option. Finally, when the titer is < 1.57 g/L, Sdm1
in Stage I is limited by its maximum concentrating factor
and thus is not able to concentrate the product enough
for Stage II to reach the required purity. Therefore, Cnt1,
with a higher concentrating factor, is selected.

Extension to other classes of EX NSL LT products
The other properties determining the superstructure for
EX NSL LT products are the physical state (LQD/SLD)
and intended use (CMD/SPC) (see Fig. 1b). The SPC
(specialty) products have a high purity requirement, thus
require additional treatment technologies which make
their recovery more expensive in comparison to com-
modity products.
For a SLD product, Ftt in Stage I cannot separate the

product from the cells, and thus it should be removed
from the superstructure. However, since Ftt is not se-
lected in the optimal network, our base case analysis is
still able to reflect the potential technologies and the
overall separation network for SLD product.
For an SPC product, separation technologies in Stage III

need to be more stringent to meet the purity require-
ments. Thus, technologies such as Chr (chromatography)
and Blc (bleaching - to remove pigments) can be included
in the superstructure, and a similar analysis can be per-
formed to identify the impact of variation in technology
parameters in Stage III. However, the Stage III parameters
are not selected for further analysis because, for high-
value specialty chemicals, quality is a major concern and
cost minimization becomes secondary [106].

Study2 – extracellular insoluble heavy (EX NSL HV)
products
For this category, we choose EX NSL HV SLD CMD
product as a representative base case. The key parame-
ters used are the same with those in the EX NSL LT
base case (refer Table 2). Other parameters can be found
in the Additional file. Some representative products

belonging to the EX NSL HV class are hyaluronic acid
[54–56], and xanthan gum [62, 63].

Superstructure and optimal solution
By simplifying the separation scheme of an EX NSL
product (see Additional file 1: Figure S.A1), we obtain
the superstructure for EX NSL HV SLD CMD product,
as shown in Fig. 4. Since the product is extracellular
(EX), Stage I consists of phase isolation and cell removal.
Phase isolation (i.e., the separation of the product-
containing phase from other components in the stream),
can be achieved using Slb (solubilization) or Ddg (differ-
ential digestion). Slb is used to dissolve the product in a
suitable solvent to separate it from cells and other solid
impurities. Ddg is used to dissolve the Non-Product
Containing Materials (NPCM). Cell removal technolo-
gies include Sdm, Cnt, Ftt, and Mbr. Multiple technolo-
gies may be required in series depending on the initial
product and cell concentration in the inlet stream. Flc
(flocculation), as an optional pretreatment technology,
can enhance the separation efficiency of subsequent
tasks by enabling the formation of flocs of cells, which
are then easier to isolate from the aqueous phase.
Stage II is required if the process stream undergoes

solubilization (Slb) in Stage I. Stage II includes precipita-
tion (Prc) followed by the phase separation technologies
which are similar to the ones used for cell removal. If
Ddg is selected in Stage I, then Stage II is not required.
Stage III involves bleaching (Blc) and drying (Dry) op-
tions for final product purification.
The optimization model comprises 1618 equations,

1137continuous variables and 30 discrete variables and
takes about a minute or two to solve to optimality for
one set of parameter values. The solution of the super-
structure optimization model yields the cost-minimal
separation network, as represented by the highlighted
parts in Fig. 4, as well as the corresponding cost distri-
bution shown on the left bar alongside the superstruc-
ture. The technologies selected in Stage I are Ddg
(differential digestion) for phase isolation and Cnt3 (cen-
trifugation) and Cnt4 for cell removal. The final product
refinement involves Blc (bleaching) to remove undesired
color imparting impurities and Dry (drying) to retrieve
product in the solid form. The overall process cost is
4.20 $/kg, where the separation cost contribution is
$3.81/kg (91%). Stage I is the highest cost contributor
(51%).

Analysis for EX NSL HV SLD CMD product

Performance of phase isolation and cell removal
technologies Since Ddg is used for phase isolation,
Stage I is the major cost contributor in the optimal con-
figuration, 41% of the overall cost). Its competing
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technology is Slb, hence, we vary the required amount of
the NPCM digestion agent and the solubilizing solvent,
as shown in Fig. 5a. Ddg is the preferred option even if
the digestion agent is required in higher amounts as
compared to Slb solvent. This is because Slb selection
adds additional cost in Stage II, where Prc (precipitation)
followed by phase separation is required.
The second major cost component is Blc (28% of the

overall cost). However, there is limited room for per-
formance improvements since the Blc efficiency is typic-
ally high ~ 99%. This is reasonable as Blc is a Stage III
technology which already has the input stream with the
product in concentrated form with traces of color-
imparting impurities.
The next major cost component is Cnt3 (8.4% of the

overall cost) for cell removal, and its performance affects
product loss and Stage III cost. Therefore, we also vary
the Cnt3 efficiency and Ftt3 retention factor between 70
and 95% simultaneously, while fixing Sdm3 efficiency to
70%, for the same reason discussed in the previous case
study for EX NSL LT products. The analysis is shown in

Fig. 5b. Cnt3 is the preferred option in most cases be-
cause its capital cost is lower than that of Sdm3, and
Ftt3 filter replacement costs are high.

Product titer We vary the product titer from 1 to 250
g/L. The costs and the corresponding optimal technol-
ogy selection are obtained and presented in Fig. 5c. We
observe that when the titer is greater than 52 g/L, Ddg-
Cnt3-Dry (differential digestion-centrifugation-drying) is
the optimal selection; from 15 to 52 g/L, further concen-
tration by Cnt4 (centrifuge) is needed to achieve the
final purity requirement; from 2.2 to 15 g/L, the amount
of color imparting impurities is substantial compared
with the amount of product present, and thus Blc
(bleaching) is required; when the titer is less than 2.2 g/
L, MF4 (microfiltration) replaces Cnt4 due to limitations
of Cnt4 concentrating factor. Note that we have as-
sumed that color imparting impurities exist and thus Blc
is required in some cases. To account for cases where
no such impurities exist (and thus Blc is not necessary),
we also present the corresponding cost-titer curve in

Fig. 4 Superstructure with all technologies and streams and highlighted optimal solution for EX NSL HV SLD CMD product. The active streams
are shown by bold red lines and selected technologies are highlighted in different colors corresponding to each stage: red for stage I, green for
stage II, and blue for stage III. Cost distribution is shown by the numbers on the left bar
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Additional file 1: Figure S.A2. Sometimes larger product
titers for NSL products at high temperatures can lead to
viscous process streams. However, in our technology
models, we have accounted for heat dissipation effects in
a centrifuge and considered appropriate cooling utility
to maintain the normal operating temperatures.

Extension to other classes of EX NSL HV products
The other properties determining the superstructure for
EX NSL HV products are the physical state (LQD/SLD)
and intended use (CMD/SPC) (see Fig. 1b). For a LQD
product, instead of using Ddg or Slb (see Fig. 4), Ftt or
Mbr (depending on the size of solid impurities) can be
used directly to separate the product from cells, followed
by concentration using Sdm, Cnt or Mbr. Also, Dry in
Stage III is only applicable to SLD products and thus
should be removed. Therefore, for LQD product, the
separation cost will be lower. We modify the base case
superstructure to account for LQD product, and the op-
timal technology selections are Flc-Ftt-MF-Blc (floccula-
tion-filtration-microfiltration-bleaching), and the cost is
decreased from 4.2 $/kg (for SLD) to 3.52 $/kg (for
LQD), as shown in Additional file 1: Figure S.A3. For a
SPC product, separation technologies in Stage III need
to be more stringent for high purity requirements. Simi-
lar considerations mentioned for EX NSL LT products
will be valid here.

Study3 – extracellular soluble (EX SOL) products
For this category, we choose EX SOL LQD NVL CMD
product as the base case. The key parameters used are
the same as those in the EX NSL LT base case (refer
Table 2). The remaining parameters can be found in the
Additional file 1: Table S.C.B1. The typical examples for
EX SOL products from microbial sources include propa-
nediol [107, 108] and butanediol [64–67].

Superstructure and optimal solution
By simplifying the separation scheme of an EX SOL
product (see Additional file 1: Figure S.B1), we obtain
the superstructure for EX SOL LQD NVL CMD prod-
uct, as shown in Fig. 6. In Stage I, cells are first removed,
and thus the aqueous phase containing the product is
isolated. Then, in Stage II, Dst (distillation), Atpe (aque-
ous two-phase extraction), and Ext (extraction) are con-
sidered as concentrating technologies. Finally, in Stage
III, Pvp (pervaporation) can be used to remove small
amount of remaining impurities, if necessary. The
optimization model comprises 969 equations, 754 con-
tinuous variables and 25 discrete variables and takes
about 30 min to 5 h to solve the problem to optimality
for one set of parameter values. This is due to the pres-
ence of the distillation and extraction model equations
which include logarithmic and exponential terms involv-
ing mole fractions of components.
After solving the superstructure model, we obtain the

cost-minimal separation network represented by the
highlighted parts in Fig. 6, as well as the corresponding
cost distribution. The technologies selected in stage I are
Flc (flocculation), Cnt1 (centrifuge), and Cnt2. Atpe,
followed by MF3 (microfiltration) and MF4, is selected

Fig. 5 Analysis on technology selection and cost for EX NSL HV SLD
CMD product. a Analysis with varying required amount of Ddg
agent and Slb solvent; b analysis with varying Cnt3 efficiency and
Ftt3 retention factor; c analysis with varying product titer. The fitted
cost-titer functions are shown in (c), where y-axis represents the
cost, and x-axis represents the product titer. The based cases are
marked with asterisks in (a) and (b) and a short dashed line with
“Base case” label next to it in (c)
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for concentration in Stage II. Stage III is bypassed. The
total minimum cost is 3.98 $/kg, with the feed account-
ing for 7%, Stage I 16% and Stage II 77%. Stage II is the
major cost component because the separation for sol-
uble product requires concentration of the product
present in water-rich phase.

Alternative concentration options in stage II
Atpe (aqueous two-phase extraction) is selected in the
optimal network for the base case. However, we also
analyze the separation networks when Ext (extraction)
or Dst1 (distillation) is selected in Stage II, thus account-
ing for cases where effective Atpe using alcohol-salt
[109], polymer-salt [110] or polymer-polymer [111, 112]
phases for the product may not exist.

When Ext (as well as its auxiliary Dst 2) is selected (by
setting the binary variable for Ext to 1 to ensure selec-
tion), the technologies selected (see Fig. 7a) in Stage I in-
clude Flc, Cnt1, and Cnt2. Stage III is bypassed. The
overall process cost is 4.06 $/kg, and the separation cost
contribution is 3.77 $/kg (94%). Stage II is still the major
cost contributor (80%).
When Dst1 is selected, the technologies selected (see

Fig. 7b) in Stage I include Flc, Cnt1, and Cnt2. Stage III is
bypassed. The overall process cost is 8.19 $/kg, and the sep-
aration cost contribution is 7.93 $/kg (97%). Stage II is still
the major cost contributor (90%). Direct Dst is costly be-
cause a large amount of water needs to be vaporized in
Dst1, which increases the heating utility costs in the system.
We can see a major difference in the cost distribution

for soluble products based on their localization. From

Fig. 6 Superstructure with all technologies and streams and highlighted optimal solution for EX SOL LQD NVL CMD product. The active streams
are shown by bold red lines and selected technologies are highlighted in different colors corresponding to each stage: red for stage I, green for
stage II, and blue for stage III. Cost distribution is shown by the numbers on the left bar
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the previous study on intracellular products [51], the
major cost driver was Stage I irrespective of the other
properties of the product, however, for extracellular
products, Stage II costs take precedence and have a
major impact on the overall downstream separation net-
work selection.

Analysis for EX SOL LQD NVL CMD product
Since Stage II is the major cost driver, we perform the
analysis with varying parameters related to Atpe, Ext
and Dst1.

Partition coefficient for Atpe The major cost driver of
Atpe is the equipment size, which is a function of the
flowrates of feed and added separating agents (alcohol/
polymer for the top phase and salt for the bottom
phase). The amount of agents required is affected by the
partition coefficient for the top phase (KpT), which we
vary from 3 to 10 while fixing Atpe selection. These are
valid choices for the KpT values based on the literature
for typical Atpe systems [66, 109]. In Fig. 8a, we observe
that the overall cost decreases from 4.25 $/kg to 3.63
$/kg with the increase of partition coefficient from 3 to
10, which enables more product to be extracted into the
top phase and thus reduces the amount of separating
agents required. When the Atpe partition coefficient is
below 3.7 (thus cost> 4.06 $/kg), Atpe becomes a more
expensive option than Ext, assuming the base case pa-
rameters for Ext (see Fig. 7a).

Ext parameters –solvent solubility, cost and partition
coefficient For Ext, the solvent is the major cost con-
tributor, and thus we vary solubility of solvent in water
from 0.0002 to 0.03 kg/kg and vary the cost of solvent
from 0.2 to 1.5 $/kg while fixing Ext selection, and the
analysis result is shown in Fig. 8b. Compared with the
base case, if the solubility decreases from 0.02 to 0.0002
kg/kg and the solvent cost decreases from 1.2 to 0.2
$/kg, then the overall cost will be reduced from 4.06 to
1.06 $/kg, a 74% reduction. Thus, if both parameters can
be improved such that the overall cost is lower than 3.98
$/kg, then Ext becomes a cheaper option than Atpe, as-
suming the base case parameters for Atpe (see Fig. 6).
Also, note that the change in partition coefficient usually
does not have a significant impact on the Ext cost when
compared with the solvent cost and solubility (see
Additional file 1: Figure S.B2). Therefore, targeting
solvents with low water solubility and cost, even if the
partition coefficients are low, can help reduce cost
because less solvent will be lost.

Dst parameter- relative volatility For Dst1, we vary the
volatility of water relative to the product from 1.1 to 3,
and the result is shown in Fig. 8c, where the cost ranges
from 4.34 to 20.35 $/kg. Thus, even if relative volatility
of 3 can be achieved, direct Dst is still more expensive
than Atpe or Ext, assuming their base case parameters.

Product titer We vary the product titer from 1 to 250 g/L.
As a result, the costs and the corresponding optimal tech-
nology selection are obtained and presented in Fig. 9. We

Fig. 7 Technologies selected for Extraction (Ext) and direct Distillation (Dst) options in stage II for EX SOL LQD NVL CMD product. a Technologies
selected when Ext is selected; b technologies selected when Dst1 is selected. The active streams are shown by bold red lines and selected
technologies are highlighted in different colors corresponding to each stage: red for stage I, green for stage II, and blue for stage III. Cost
distribution is shown by the numbers on the left bar
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observe that when the titer is greater than 7.5 g/L, Ext se-
lection is optimal; otherwise, Atpe selection is optimal.

Extension to other classes of EX SOL products
The other properties determining the superstructure for
EX SOL products are physical state (LQD/SLD), volatil-
ity (VOL/NVL), and intended use (CMD/SPC) (see
Fig. 1b).

For a SLD product (such as a soluble salt), Mbr and
Prc can be used for product concentration as an alterna-
tive to Dst, Atpe, and Ext in Stage II. Also, in Stage III,
Ads (adsorption), Crs (crystallization) and Dry (drying)
can be considered. However, the cost will not likely be
influenced because the desired product purity is already
achieved without Stage III in the base case.
For a volatile (VOL) product, the product will be ob-

tained at the top instead of at the bottom in Dst. Also, dir-
ect Dst is typically cheaper than Ext or Atpe when the
relative volatility is greater than 1.05 [51, 113]. For a spe-
cialty (SPC) product, the same argument about additional
purification and stringent requirements in Stage III tech-
nologies will be valid due to high purity requirements.

Conclusions
This work focuses on the synthesis and analysis of separ-
ation processes for extracellular (EX) chemicals gener-
ated from microbial bioconversions. We first categorized
EX products into (1) NSL LT, (2) NSL HV, and (3) SOL
based on their physical properties. For each category, we
presented a representative base case, for which a super-
structure was generated, modeled and solved to identify
the cost-minimal process and key cost drivers. Next, we
analyzed the influence of key parameters on technology
selection and cost, which is depicted in the form of sen-
sitivity curves and heat maps. Finally, we extended the
discussion to account for other classes of products in
the category.
For NSL LT products, the overall cost (including feed-

stock cost and separation cost) of the base case (5 g/L
product titer) is 0.65 $/kg. Out of the separation cost of
0.26 $/kg, Stage I (phase isolation) accounts for 96%,
and Stage II (concentration) accounts for 4%. Cnt effi-
ciency and product titer are identified to be the major
influencers for technology selection and cost. Cnt is the
preferred option in most cases.
For NSL HV products, the base case cost is 4.20 $/kg.

Out of the separation cost of 3.81 $/kg, Stage I accounts
for 56%, and Stage III (refinement) accounts for 44%.

Fig. 8 Cost analysis for EX SOL LQD NVL CMD product. a Analysis
with varying Atpe partition coefficient when Atpe selection is fixed;
b analysis with varying solvent solubility and cost when Ext selection
is fixed; c analysis with varying relative volatility when Dst1 selection
is fixed. The fitted cost-titer functions are shown in (a) and (c),
where y-axis represents the cost, and x-axis represents the Atpe
product partition coefficient and Dst1 relative volatility, respectively.
The based cases are marked with asterisks in (b) and short dashed
lines with “Base case” labels next to them in (a) and (c)

Fig. 9 Analysis with varying product titer for EX SOL LQD NVL CMD
product. The fitted cost-titer functions are shown, where y-axis
represents the cost, and x-axis represents the product titer
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The required amount of Ddg agent and Slb solvent, Cnt
efficiency, Ftt retention factor, and product titer are
identified to be the major influencers for technology se-
lection and cost. Ddg and Cnt are the preferred options
in most cases.
For SOL products, the base case cost is 3.98 $/kg. Out

of the separation cost of 3.7 $/kg, Stage I accounts for
17%, and Stage II accounts for 83%. Atpe partition coef-
ficient, Ext solvent solubility and cost, Dst relative vola-
tility, and product titer are identified to be the major
influencers for technology selection and cost. Atpe or
Ext is the preferred option in most cases.
In comparison, a NSL LT product has the lowest sep-

aration cost because it floats to the top and is thus nat-
urally separated from the microbial cells settling to the
bottom. Also, concentrating an NSL product is easier
than concentrating a SOL product.
In this work, we have included most of the common

technologies to generate reliable insights. However, new
technologies can be incorporated by changing model pa-
rameters and/or adding new constraints for the corre-
sponding technologies. The insights from the base case
results, as well as the predictions associated with the
varying model parameters, provide important guidance
on the selection of economically promising chemicals
generated from microbial conversions [114], and on the
design of cost efficient separation processes. Some in-
sights regarding future research directions for technol-
ogy enhancement as well as product titer improvements
are also provided for low cost production of bio-based
chemicals.
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