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Noble gas separation by microporous materials is a promising alternative to energy-intensive cryogenic distillation
method by reducing the separation cost; however, developing novel microporous materials with excellent noble gas
separation performance is still challenging due to closing chemical and physical properties among the gases. In this
study, we propose to separate the noble gases (He, Ne, Ar, Kr and Xe) utilizing a metal organic framework (MOF),
named SIFSIX-3-Zn, with ultra-micron sized 1-dimenssional (1D) channels (3.84 A). Density functional theory (DFT)
calculations reveal that the 1D channels provide significant adsorption potential differences among the noble gas
molecules in various sizes: the larger the molecular size, the stronger the adsorption potential. Grand canonical Monte
Carlo (GCMC) simulations verify that the MOF exhibits exceptional equilibrium separation performance of noble gases.
Remarkably, Xe/He and Xe/Ne adsorption selectivity can be as high as 645 and 596, respectively, at 298 K and 10 kPa.
While Xe/Kr selectivity in mixed gas is around 12 with a Xe adsorption amount of about 2.27 mmol/g at 273 K and 100
kPa, making SIFSIX-3-Zn one of the promising materials for equilibrium separation of Xe/Kr mixtures.

Background

Noble gases, i.e. helium (He), neon (Ne), argon (Ar),
krypton (Kr) and xenon (Xe), play vital roles in our daily
lives, ranging from lighting and medicine to cryogenic
refrigerants [1]. Ne, Ar, Kr and Xe are commercially pro-
duced from air by gas liquefaction followed by cryogenic
distillation based on the differences in the boiling points
(e.g., 27 K for Ne, 87K for Ar, 120K for Kr, and 165K
for Xe) [2], which requires large amount of energy in-
puts. Therefore, developing novel approaches with lower
energy inputs is promising to reduce the separation cost
of noble gas production.

One of the promising approaches for low-cost noble
gas separation is physisorption onto microporous mate-
rials, such as activated carbons (ACs) [3], zeolites [4, 5]
and metal organic frameworks (MOFs) [6—11]; however,
achieving distinguishable equilibrium adsorption abilities
among the noble gases for separation is still challenging.
Recently, MOFs with open metal sites at the pore sur-
face have shown excellent performance on Xe/Kr
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separation due to strong interactions between the Xe
molecule and accessible open metal sites in the MOFs,
indicating that interaction strength plays vital roles on
noble gas separation [1]. Furthermore, by screening
670,000 porous material structures for Xe/Kr separation,
Simon et al. suggested that highly selective materials
should exhibit pore sizes around that of a Xe atom (3.9
A) to enhance the interaction strength of Xe [12]. This
agrees well with the fundamentals that the adsorption
potential of molecules in a porous material can be sig-
nificantly enhanced when the molecular size and pore
size closing to each other due to the overlap of van der
Waals (vdW) potentials that the molecule “feeling” from
the opposite walls of the pore surface, as called “curva-
ture potential” [13, 14].

The adsorption potential varies from molecules in
various sizes and porous materials, e.g. MOFs, with
thousands of different topologies [13]. Especially,
non-uniform sized pores in a material with intersecting
cages (Fig. 1a) usually introduce diverse adsorption po-
tentials to molecules, a drawback to achieve high sorp-
tion ability at low pressure range if no functional group
exist [13]. Therefore, porous materials with uniform
sized 1-dimensional (1D) channels (Fig. 1b) are attractive
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Fig. 1 Schematic representations of (a) channels with intersecting cage and (b) one-dimensional (1D) channels with uniform size. ¢ structure of
SIFSIX-3-Zn with specified Site-1 and Site-2 in this work. COP represents the center of the pore, while COW represents the atomic center of the
wall atoms. Yellow octahedron: Zn; green ball: Cl; blue ball: N; gray ball: C; and white ball: H

to achieve high adsorption ability by providing strong
and uniform adsorption potentials [15] if the channel
size is well constrained to angstrom level, such as <3.9
A (equals to the molecular size of Xe) for noble gas sep-
aration. One of promising porous materials exhibiting
such uniform 1D channels is SIFSIX-3-Zn MOF with a
channel size of 3.84 A, closing to the kinetic diameter of
Xe (3.9 A) [16, 17]. Despite the reported slight size dif-
ference between the adsorbate (Xe, 3.9 A) and adsorbent
(SIFSIX-3-Zn, 3.84 A), adsorption of Xe in the MOF is
considered in this work as the actual atomic diameter of
Xe defined in terms of the size of atom’s electron shell is
generally smaller than the kinetic diameter. Overall, pre-
vious studies have revealed that SIFSIF-3-Zn shows great
potentials on capturing CO, and C,H, due to the high
van der Waals (vdW) potential overlap endowed by the
ultra-micron channels and the surrounding basic SFg*~
sites [16, 17]. Here, we demonstrate that the vdW poten-
tials in the 1D channels of SIFSIX-3-Zn vary from noble
gas molecules in different sizes, resulting in dramatic
differences on gas adsorption abilities in the MOF for ef-
fective noble gas separation.

Results and discussion

In SIFSIX-3-Zn, the zinc (II) center is octahedrally coor-
dinated to the four nitrogen atoms of the pyz ligands as
well as the two SiF¢>~ ions (Fig. 1a). In the equatorial
plane, the pyz ligands bridge the zinc ions to produce

grids, while the SiFs>~ groups are coordinated axially
and bridge zinc ions, producing an open three-
dimensional framework. All pyz planes are parallel to
the c-axis to produce 1D channel, as presented by the
blue tubular surface using solvent surface with a radius
of 2 A (Fig. 1b). The 1D channel exhibits overall smooth
inner surface with some variations induced by the sur-
face atoms in different atomic radius, which are distin-
guished by Site-1 nearby the pyz ligands and Site-2
nearby the SiF¢> ions (Fig. 1b).

Density functional theory (DFT) calculations were per-
formed to derive the adsorption potentials of the noble
gases inside the channel of SIFSIX-3-Zn, as shown in
Fig. 2. Details of the DFT calculations can be found in
the Methods. As shown in Fig. 2a and b, the potentials
at the two different sites, i.e. Site-1 and Site-2 (Fig. 1b),
in the channel are different from each other for all gases.
Specifically, the potentials at site-2 surrounded by four
pyz linkers are much stronger than that of site-1 sur-
rounded by four SiFs>~ ions, indicating that the binding
of the noble gases are dominated by vdW interactions,
rather than electrostatic interactions with the basic SiFg>
~ ions. This agrees well the estimation that strong ad-
sorption/curvature potentials are induced when the mo-
lecular size closing to the channel size (3.84A),
especially for Xe (3.9A). The negligible effect of the
basic SiFs>~ ions on enhancing the adsorption of noble
gases is different from the cases of CO, and C,H,
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Fig. 2 Potential of noble gases in SIFSIX-3-Zn channel generated by DFT calculations. a Site-1; b Site-2; and (c) from Site-1 to Site-2 along channel
direction. COP represents the center of the pore, while COW represents the atomic center of wall atoms

adsorption, in which the SiFs*~ ions significantly en-
hance the adsorption due to electrostatic interactions.
Moreover, the potential energy for the gas molecules
show some variations along the channel direction from
Site-1 to Site-2 (Fig. 2c) since the channel surface is
formed by different atoms (F, C, N and H) with different
atomic radius.

The potential curves of He and Ne are different from
those of Ar, Kr and Xe because the vdW potentials have
no overlap for the smaller molecules (He and Xe) but
strong overlap for the bigger molecules (Ar, Kr and Xe),
which is further enhanced with the molecular size in-
creases. The highest potential energy of Ar, Kr and Xe at
Site-2 are — 25 kJ/mol, - 40 kJ/mol and - 60 kJ/mol, re-
spectively and therefore results in dramatic differences
on gas adsorption behaviors in the MOF due to the sig-
nificant differences on potential energy.

As shown in Fig. 3, grand canonical Monte Carlo
(GCMC) simulations confirms that the designated high
adsorption selectivity for noble gases is achieved by util-
izing the potential energy differences. First of all, the ad-
sorption abilities of the pure noble gases in SIFSIX-3-Zn
follows the order of Xe>Kr>Ar>Ne~He (Fig. 3a),
agreeing well with the decreasing order of molecular
size, ie. 3.9 A (Xe), 3.6 A (Kr), 34 A (Ar), 2.75A (Ne)
and 2.6A (He) (Fig. 3b) as well as the adsorption

potentials revealed by DFT calculations (Fig. 2). The
isosteric heats of the gases show the same trend (Fig.
3c-d). Remarkably, the adsorption amount of Xe in
SIFSIX-3-Zn is about 3.08 mmol/g at 298 K and 100 kPa,
a much higher value than those of other gases, ie. Kr
(1.30 mmol/g), Ar (0.54mmol/g), Ne and He (0.02
mmol/g). Promising adsorption selectivity for Ar/He,
Ar/Ne, Kr/He, Kr/Ne, Kr/Ar, Xe/He, Xe/Ne, Xe/Ar and
Xe/Kr based on the pure gas adsorption data are found
in SIFSIX-3-Zn (Fig. 4). Remarkably, the adsorption se-
lectivity is as high as 645 and 596 for Xe/He and Xe/Ne
gas pairs at 298 K and 10 kPa, respectively (Fig. 4a), indi-
cating the SIFSIX-3-Zn with 3.84 A 1D channels is
promising for equilibrium separation of noble gases.

To further elucidate the effects of the curvature poten-
tial in the 1D channels of SIFSIX-3-Zn on equilibrium
separation of noble gases at different conditions, we per-
formed detailed studies on Xe/Kr separation, one of the
most challenging topics in gas separation. Figure 5
shows pure gas adsorption behaviors of Xe and Kr at dif-
ferent temperatures (273 K, 298 K and 313 K) and pres-
sures up to 1000 kPa. The adsorption amounts of both
gases increase with the decrease of temperature with a
remarkable adsorption amount of Xe of 2.90 mmol/g at
298 K and 100 kPa (Fig. 5a), approximately 73% of the
saturation uptake amount of SIFSIX-3-Zn. As results,
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increasing the pressure from 100 kPa to 1000 kPa shows
little improvement on the adsorption amount of Xe due
to the limited sites left for sorption, whereas Kr adsorp-
tion is dramatically improved (Fig. 5b). Subsequently,
the Xe/Kr sorption selectivity based on pure gas sorption
data with equal molar concentration (50/50) decreases
with the increase of pressure (Fig. 6a); however, Xe/Kr
mixture adsorption studies simulating the realistic con-
ditions for Xe/Kr separation interestingly shows no loss

of separation performance with pressure change (Fig.
6a). This clearly shows that the strongly adsorbed Xe
molecules can always preferentially occupy the sorption
sites in SIFSIX-3-Zn and inhibit the adsorption of less
favorable Kr molecules, regardless the molar concentra-
tion of Kr in the mixture e.g. 20/80 or 50/50 (Fig. 6a).
Moreover, lowering the sorption temperature from 298
K to 273 K in mixed gas with a molar concentration of
20/80 (Xe/Kr) can dramatically enhance the Xe
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Fig. 4 Equilibrium selectivity of SIFSIX-3-Zn based on pure gas adsorption data at 298 K: a 10 kPa, and (b) 10-100 kPa
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adsorption and Xe/Kr selectivity (Fig. 6a), again, owing
to the favorable adsorption of Xe over Kr in the
SIFSIX-3-Zn  framework (Fig. 6b). Overall, the
well-maintained adsorption selectivity in mixed gas con-
ditions demonstrates that SIFSIX-3-Zn is a promising
material for Xe/Kr separation.

To evaluate the potential of the identified MOF with
strong curvature potential, the separation efficiencies
(Xe/Kr selectivity vs Xe adsorption amount) of
SIFSIX-3-Zn in mixed gas conditions (20/80) are further
compared with other MOFs (Fig. 7). At 298 K and 100
kPa, the Xe/Kr separation efficiency of SIFSIX-3-Zn is
comparable to that of NiIMOF-74, and greatly surpasses
those of CuBTC and IRMOF-1. Remarkably, the Xe/Kr
separation efficiency of SIFSIX-3-Zn overcomes all the
porous materials reported by far by simply decreasing
the sorption temperature from 298 K to 273 K, a much
less challenging operation temperature comparing with
cryogenic distillation method (<< 165K). Therefore,
equilibrium separation of Xe/Kr using SIFSIX-3-Zn at
lower temperatures (e.g. sub-ambient temperature, but
still much higher than that in cryogenic distillation

conditions) could be a promising approach to balance
the separation efficiency and energy input, maximizing
the overall Xe/Kr separation efficiency. This is similar with
the idea to separate CO,/CH, using a hybrid separation
process combining membrane with low temperature sys-
tem; however, detailed studies involving capital invest-
ments evaluation and operation temperature optimization
are required in future [18].

Conclusions

In conclusion, we have demonstrated that noble gases
can be efficiently separated by the equilibrium separation
method utilizing the curvature potential difference of
the gas molecules in the well-chosen SIFSIX-3-Zn MOF
with ultra-micron sized 1D channels. Future works will
focus on further revealing the relationship between the
separation efficiency and 1D channel sizes for different
noble gas pairs, and screening more MOF materials with
1D channels for the application. Experimental verifica-
tions of the prediction results based on theoretical un-
derstandings and simulations are also required in future
works.
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Methods

Density functional theory calculations

The structure of SIFSIX-3-Zn was constructed from the
experimental XRD data [16]. The potential energies for
noble gas molecules in the channel of SIFSIX-3-Zn were
calculated by the DFT method based on hundreds of
configurations for each gas molecule. Specifically, the
gas molecule is manually moved from center of the
channel to the wall at one side of the channel with a step
distance of 0.1 A to generate the configurations for the
molecule by considering different site, Site-1 and Site-2.
The potential energy (PE) was calculated for each con-
figuration to generate the final potential curve using the
following equation:

PE = E(AB)-(E(A) + E(B)) (1)

where E(A) is the zero-point energy of the adsorbate,
E(B) is the zero-point energy of the substrate, and E(AB)
is the zero-point energy of the adsorbate/substrate sys-
tem. The potentials along the channel direction were
generated using the same method based on configura-
tions by placing the gas molecule Site-1 initially and
moved toward to Site-2 with a step distance of 0.5 A.
The periodic boundary condition was considered in all
calculations. The Becke exchange plus Lee-Yang-Parr
correction (BLYP) exchange-correlation functional [19]
with double numeric polarization (DNP) basis set [20]
and DFT semicore pseudopots (DSPP) are used. A
real-space orbital global cutoff of 4.0 A was applied, and
the convergence threshold parameters for the
optimization were 2 x 10> (energy), 4 x 10”2 (gradient),
and 5 x 10~ 2 (displacement), respectively. To further im-
prove the accuracy of the results, Grimme method for
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DFT-D approach, which is a semi-empirical combination
of DFT approach with pairwise corrections, were used
[21].

Force field

Conventional Universal force field was used in this work.
The interaction of gas-adsorbent and gas-gas were mod-
eled as a combination of site-site Lennard-Jones (L]):

o=l G2 e

Bej

where g, is the permittivity of the vacuum, and o, and
gqp are the collision diameter and well depth, respect-
ively. The L] cross-interaction parameters were deter-
mined by the Lorentz-Berthelot mixing rules.

Grand canonical Monte Carlo (GCMC) simulation

A 8 x 8 x 8 unit cell system of SIFSIX-3-Zn with periodic
boundary conditions applied in all three dimensions
were constructed, and the framework was treated as
rigid with atoms frozen at their crystallographic posi-
tions during GCMC simulations. As previously de-
scribed, the cutoff radius for the L] interactions was set
to 12 A. For each state point, GCMC simulation consists
of 1.0 x 107 steps to guarantee the equilibration, followed
by additional 1.0 x 10” steps to sample the desired ther-
modynamics properties. The following equation was
used to define the selectivity for component A relative
to component B: S = (aa/ap)(Ba/Ps), where o and P are
the molar fractions of the components in the adsorbed
and gas phases, respectively.
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