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Abstract

Automotive radar perception is an integral part of automated driving systems. Radar sensors benefit from their
excellent robustness against adverse weather conditions such as snow, fog, or heavy rain. Despite the fact that
machine-learning-based object detection is traditionally a camera-based domain, vast progress has been made for
lidar sensors, and radar is also catching up. Recently, several new techniques for using machine learning algorithms
towards the correct detection and classification of moving road users in automotive radar data have been introduced.
However, most of them have not been compared to other methods or require next generation radar sensors which
are far more advanced than current conventional automotive sensors. This article makes a thorough comparison of
existing and novel radar object detection algorithms with some of the most successful candidates from the image
and lidar domain. All experiments are conducted using a conventional automotive radar system. In addition to
introducing all architectures, special attention is paid to the necessary point cloud preprocessing for all methods. By
assessing all methods on a large and open real world data set, this evaluation provides the first representative
algorithm comparison in this domain and outlines future research directions.
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Introduction
Automated vehicles are a major trend in the current auto-
motive industry. Applications rank from driver assistance
functions to fully autonomous driving. The vehicle per-
ception is realized by a large sensor suite. The most
prominent representatives are camera, lidar, and radar
sensors. While camera and lidar have high angular reso-
lution and dense sensor scans, automotive radar sensors
have a good range discrimination. Due to their large wave-
length, radar sensors are highly robust against adverse
weather situations such as snow, fog, heavy rain, or direct
light incidence. Moreover, they are able to estimate a
relative (Doppler) velocity with a single sensor scan, or,
more recently, measure polarimetric information [1, 2].
From a manufacturer’s perspective, the affordability of
radar sensors is another advantage. In the radar com-
munity, the most common approach to utilize Doppler
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values is separating the perception task for stationary and
moving objects [3, 4]. In the static world, radar data can
be accumulated over long time frames, because moving
objects can be filtered out via their Doppler signature,
thus alleviating the data sparsity problem [5–7]. Owing to
their dynamic nature, moving objects require smaller time
frames, typically within a few hundred milliseconds. Most
detection and classification methods require an accumu-
lation of several measurement cycles to increase the point
cloud’s density as depicted in Fig. 1. Nevertheless, the
accumulation can be implemented in a sliding window
manner, enabling updates for every single sensor cycle.
So far, most research in the automotive radar domain is
concerned with solely classification or instance detection.
Fewer articles are available for multi-class object detec-
tion problems on dynamic road users. As the new field of
automotive radar-based object detection is just emerging,
many of the existing methods still use limited data sets or
lack a comparison with other methods.
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Fig. 1 The aim of this article is to detect and classify moving road users in automotive radar point clouds with help of real-time capable machine
learning models. To this end, several different approaches are discussed and evaluated against each other on a large and open real world data set

In this article, the focus lies entirely on object detec-
tion, i.e., the localization and classification of an arbitrary
number of moving road users. The utilized sensor system
consists of conventional automotive radar sensors, i.e., no
next-generation radar with high resolution, elevation, or
polarimetric information is available. The data set con-
sists of five different object classes, three vulnerable road
user (VRU) and two vehicle classes. Four very different
approaches plus a fifth additional combination thereof are
examined for object detection: a recurrent classification
ensemble, a semantic segmentation network, an image-
based object detection network, and an object detector
based on point clouds. The first two classification meth-
ods are extended by a clustering algorithm in order to
find object instances in the point cloud. All methods are
evaluated and compared against each other on a com-
mon data set. Final results indicate, advantages of the
deep image detection network and the recurrent neural
network ensemble over the other approaches.
Specifically, the following contributions are made:
• A representative study on five real-time capable

object detector architectures is conducted.
• For comparability, a large open data set is used.
• The majority of the utilized approaches is either

novel or applied for the first time to a diverse
automotive radar data set.

• An in-depth overview of the preprocessing steps
required to make these models accessible for
automotive multi-class radar point clouds is given.

• Additional non-successful experiments are included.

• The lessons learned lead to a discussion of future
research topics from a machine learning perspective.

Related work
Until recently, the majority of publications in automo-
tive radar recognition focused on either object instance
formation, e.g., clustering [8, 9], tracking [10, 11], or clas-
sification [12–16]. Object detection can be achieved, by
combining instance formation and classification meth-
ods as proposed in [10, 17, 18]. This approach allows
optimizing and exchanging individual components of the
pipeline. However, during training, consecutive modules
become less accustomed to imperfect intermediate data
representations compared to end-to-end approaches.
In contrast to classifying data clusters, a second fam-

ily of methods evolves around the semantic segmentation
networks PointNet [19] and PointNet++ [20]. In semantic
segmentation, a class label is predicted for each data point.
The PointNet++ architecture is adapted to automotive
radar data in [13]. The additional semantic information
can, e.g., be used to train an additional classifier which
aims to find objects [6]. It can also be used to regress
bounding boxes as shown in [21] and [22] but requires a
suitable pre-selection of patches for investigation. Since
the emergence of PointNet and PointNet++, other work
has focused on directly processing raw point clouds with
little to no postprocessing required, such as KPConv [23],
Minkowski networks [24] or various other architectures
[25–28]. As such, they can be used as a replacement for
PointNet(++) based semantic segmentation backbones,
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albeit with adjusted (hyper)parameters. This is discussed
in more detail in the Perspectives section.
Machine-learning-based object detection has made vast

progress within the last few years. The two image detec-
tors OverFeat [29] and R-CNN [30] introduced a new era
of deep neural networks. Mainly due to the use of convo-
lutional neural networks (CNN), these networks outper-
formed all previous approaches. Modern object detectors
can be divided into two-stage and one-stage approaches.
Two-stage models such as Faster R-CNN [31] create a
sparse set of possible object locations before classifying
those proposals. One-stage architectures combine both
tasks and return a dense set of object candidates with
class predictions, e.g., YOLO [32], SSD [33]. Single-stage
architectures are very intriguing for automotive appli-
cations due to their computational efficiency. RetinaNet
[34] further improves on those results by introducing a
new “focal" loss which is especially designed for single-
stage models. In parallel, also other approaches continue
to evolve, e.g., YOLOv3 [35] is a more accurate succes-
sor of the YOLO family. Due to their high performance,
deep CNN architectures have already made their way into
automotive radar object detection. For stationary objects
they can easily be applied by creating a pseudo image from
radar point cloud in form of grid map, e.g., [6, 7, 36]. In
[22], a YOLOv3 architecture is enabled by a grid map-
ping approach for moving objects, but the results on their
extremely sparse data set are not encouraging. The most
common approach for moving objects is to utilize a lower
data level than the conventional radar point cloud, e.g.,
range-azimuth, range-Doppler, or azimuth-Doppler spec-
tra [37–46] or even 3D areas from the radar data cube [47].
The advantage of these methods is that the dense 2D or
3D tensors have a format similar to images. Therefore they
can be applied much easier than point clouds. However,
these low level representations are usually not returned
from conventional automotive radars. This is mostly due
to extremely high data rates and merging problems when
accumulating multiple sensor scans from different times
or sensors.
Finally, CNN-based point cloud object detectors use

similar ideas to image detectors. Essentially, they incor-
porate the process of creating as pseudo image for image
detection into the model. This allows to directly train the
object detector on point cloud data end-to-end without
extensive preprocessing. Popular representatives of point
cloud object detectors are VoxelNet [48], PointPillars [49],
the structure aware SA-SSD [50], or more recently Point-
Voxel-RCNN [51]. PointPillars was already applied to
automotive radar in [52], but only for a non-conventional
state-of-the-art radar and without any details on the
implementation.
For better comparability, this article compares all four

approaches, i.e., cluster classification, semantic segmen-

tation, image-, and point-cloud-based end-to-end object
detection, plus a combination of the first two methods on
a common data set.

Data set
Important automotive data sets such as KITTI [53],
Cityscapes [54], or EuroCity Persons [55] include only
camera and at best perhaps some lidar data. In the auto-
motive radar domain, a few new data sets were recently
made public, namely nuScenes [56], Astyx [57], Oxford
Radar RobotCar [58], MulRan [59], RADIATE [60], CAR-
RADA [61], and the Zendar data set [62]. Despite the
increasing number of candidates, most of them are not
applicable to the given problem for various reasons.
The nuScenes data set comprises several sensors, but

the output of the radar sensor is very sparse even for an
automotive radar. Hence, pure radar-based experiments
do not seem reasonable. The Zendar data set suffers
from a similar problem. They use synthetic aperture radar
processing to increase the radar’s resolution by using
multiple measurements from different ego-vehicle loca-
tions. Whether this approach is sufficiently robust for
autonomous driving is yet to be determined. The Astyx
data set has a much higher native data density. However,
the limitations are its very low number of recordings,
missing time information due to non-consecutive mea-
surements, a high class imbalance, and biasing errors in
the bounding box dimensions. The Oxford Radar Robot-
Car data set,MulRan, and RADIATE use a totally different
type of rotating radar which is more commonly used on
ships. A major disadvantage of their sensor is lacking
Doppler information which makes it hardly comparable
to any standard automotive radar. Lastly, CARRADA uses
sensors on par with conventional automotive radar sys-
tems. Unfortunately, their annotations are only available
for 2D projections of the radar data cube, i.e., the data
set does not include the full point cloud information. This
leads to the situation, in which every research team is
currently developing their own proprietary data set.
The data set used in this article is one of these pro-

prietary examples and was announced only very recently
for public availability [63]. It is a large multi-class data
set using a setup of four conventional 77GHz automotive
radar sensors which are all mounted in the front bumper
of a test vehicle, cf. Fig. 2. It consists of annotated bird’s
eye view (BEV) point clouds with range, azimuth angle,
amplitude, Doppler, and time information. Moreover, the
ego-vehicles odometry data and some reference images
are available. The point-wise labels comprise a total of six
main classes1, five object classes and one background (or
static) class. The sensors are specified with resolutions in
range �r = 0.15m, azimuthal angle �φ ≤ 2◦, and radial
1Twelve classes and a mapping to six base categories are provided to mitigate
class imbalance problems.
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Fig. 2 Schematic sensor distribution: four sensors are located in the front bumper of the test vehicle. The origin of the coordinate system is located
at the center of vehicle’s rear axle. The area between 0m ≤ x ≤ 100m and −50m ≤ y ≤ 50m is used to create point cloud samples from the data
set as shown in the image background

velocity �vr = 0.1km s−1. The sensor cycle time �t is
60ms. Due to data sparsity, overlapping regions in the sen-
sors’ fields of view can be superposed by simple data accu-
mulation. In order to keep the sensors from interfering
with each other, the sensor cycles are interleaved.
In order to give all evaluated algorithms a common data

base, all sequences in the original data set are cropped
to multiple data frames of 500ms in time and 100m
× 100m in space. The time frame length is a com-
mon choice among several algorithms [12, 13, 15] which
were applied to the same data set prior to its publication.
The spatial selection is required to avoid expensive win-
dow sweeps for grid-based detection methods (cf. “Image
object detection network” and “Point-cloud-based object
detection network” sections). 100m is equal to the max-
imum sensor range, therefore, the crop window includes
the majority of radar points. The origin of the exam-
ined area is at the middle of the vehicles rear axle, with
orientation towards the driving direction of the car and
symmetrical with regards to the center line of the car as
depicted in Fig. 2. For this article, non-overlapping time
frames are used. However, it is straight-forward, to update
those time frames for every new sensor cycle. Details on
this first preprocessing step are given in the Methods
section. The class distribution of radar points and object
instances in the cropped data samples can be found in
Table 1. For the evaluation, this data set is split into
roughly 64% training, 16% validation, and 20% test data.

During training, only data from the train split is utilized.
Validation data is used to optimize the model hyperpa-
rameters, while the results are reported based on the test
data. The data splitting is done with respect to the indi-
vidual sequences, i.e., all samples from one sequence are
in the same split, because object instances may have sim-
ilarities between different samples of the same sequence.
In order to ensure a similar class distribution between all
splits, a brute force approach was used to determine the
best split among 107 sequence combinations.

Methods
In this section, all required algorithms and processing
steps are described. An overview of the five most suc-
cessful concepts can be gathered from Fig. 3. Additional
implementational details for all methods can be found in
the Appendix.

Preprocessing
As a first processing step, all range and azimuth angle val-
ues are converted to Cartesian coordinates x and y, and all

Table 1 Data set class distributions

Pedestrian Group Bike Car Truck BG

26915 31646 8085 53721 9118 -

5.1 · 105 1.1 · 106 2.7 · 105 2.1 · 106 9.0 · 105 1.3 · 108
Utilized object instance (upper row) and radar detection point (lower row)
distribution. The background (BG) class does not contain instances
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Fig. 3 Schematic method overview. Five main architectures are compared in this article: a utilizes a clustering algorithm followed by a recurrent
neural network classifier. bmakes the classification first via semantic segmentation and uses the extra information as additional input to a clusterer. c
comprises an image-based object detector made accessible for point clouds via a grid mapping approach. d omits the grid mapping stage by using
an object detector optimized for point clouds. Finally, e combines the first two methods in order to utilize the advantages of both architectures. All
methods use the same point cloud as input, i.e., a cropped version of the scenario in Fig. 1. Due to space constraints, the point cloud are only
displayed for the PointPillars method in d. Dependent on the different methods, cluster formations of boxes are returned as object predictions
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radial velocity values are compensated for the ego-motion
of the test vehicle. Let vego be the signed absolute veloc-
ity, φ̇ego the yaw rate of the ego-vehicle measured from
the center of the car’s rear axle, m the mounting position
and rotation of the corresponding sensor in x, y, and φ.
Then, the ego-motion compensated radial velocity ṽr can
be calculated as:

ṽr = vr −
(
vego + my · φ̇ego

mx · φ̇ego

)T
·
(
cos(φ + mφ)

sin(φ + mφ)

)
. (1)

Where the first term of the subtrahend represents the
velocity at the sensor and the second term extracts its
radial component towards the compensated radar point at
the azimuth angle φ.
To create the data samples for all methods described

in this section, all data set sequences are sampled and
cropped to frames of 500ms in time and 100m × 100m
in space. When accumulating multiple sensor cycles, it is
imperative to transform all data to a common coordinate
system. Therefore, all spatial coordinates are first rotated
and translated from their original sensor coordinates to a
car coordinate system originating from the middle of the
car’s rear axle. Rotation and translation values are given by
the sensors’ mounting positions. Second, for every sensor
scan step during one 500ms time frame, all coordinates
are transformed again to the car’s coordinate system at
the beginning of the time frame. This time, translation
and rotation are equal to translation and rotation of the
ego-vehicle between the sensor scan.

Clustering and recurrent neural network classifier
As a first objection detectionmethod, amodular approach
is implemented which was previously used in [18] on a
two-class detection task, cf. Fig. 3a. The point cloud is first
segmented using a two-stage cluster algorithm consisting
of a filtering and clustering stage based on DBSCAN [64].
The utilized two-stage clustering scheme was first intro-
duced in [9] and is summarized in Fig. 4. In the following
step, for each cluster, a set of feature vectors is created
and passed to an ensemble of recurrent neural network
classifiers based on long short-term memory (LSTM)
cells [65].

Point Cloud Filtering Prior to the clustering stage, a
data filter is applied to improve the effectiveness of the
DBSCAN algorithm. In this stage, all points below some
absolute velocity threshold which depends on the num-
ber of spatial neighbors Nn are removed. This allows for
choosing wider DBSCAN parameters in the second stage
without adding an excessive amount of unwanted clutter.
The filtering process can be described by the following
equations:

Fig. 4 Two-stage clustering scheme: A density-dependent velocity
threshold is used to prefilter the point cloud. A customized DBSCAN
algorithm identifies object instances, i.e. clusters, in the data.
Optionally, both, the filter and the clusterer can be extended by a
preceding semantic segmentation network that provides additional
class information. The image indicates where each processing step is
utilized among the compared methods

∃i. |vr| < ηvr,i ∧ Nn(dxy) < Ni,

with i ∈ {1, . . . , 5},N ∈ N
5, ηvr ∈ R

5
>0, (2)

where the velocity threshold ηvr , the spatial search radius
dxy, and the required amount of neighbors N are empir-
ically optimized parameter sets. The filter can be effi-
ciently implemented using a tree structure, as commonly
deployed for DBSCAN, or even a modified DBSCAN
algorithm, hence, the term “two-stage clustering”.

Clustering In the second stage, a customized DBSCAN
is used to create cluster formations on the filtered point
cloud. A standard DBSCAN algorithm has two tuning
parameters: the minimum number of neighborsNmin nec-
essary for a point to count as a core point, e.g., to spawn
a new cluster and the distance threshold ε for any two
points to be classified as neighbors. This standard algo-
rithm is adjusted in the following ways: An additional core
point criterion |vr| > vr,min is used in accordance with
[66]. Instead of a fixed value for Nmin, a range-dependent
variant Nmin(r) is used. It accounts for the radar’s range-
independent angular resolution and the resulting data
density variations by requiring less neighbors at larger
ranges. Details on the implementation of Nmin(r) can be
found in the Appendix or in the original publication [9].
Furthermore, a new definition for the ε region, i.e., the

multi-dimensional neighborhood distance around each
point incorporates spatial distances �x and �y, as well as
Doppler deviations �vr between points:√

�x2 + �y2 + ε−2
vr · �v2r < εxyvr ∧ �t < εt . (3)

In comparison to a single ε threshold, the three parame-
ters εvr , εxyvr and εt allow for more fine-tuning. The time t
is not included in the Euclidean distance, i.e., �t is always
required to be smaller or equal than its corresponding
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threshold εt due to real-time processing constraints. All
tuning parameters are adjusted using Bayesian Optimiza-
tion [67] and a V1 measure [68] optimization score. As
amplitudes often have very high variations even on a
single object, they are neglected completely during clus-
tering.

Feature Extraction Once the data is clustered, a classifier
decides for each cluster, whether it resembles an object
instance or is part of the background class. In order to
extract features for each candidate, all clusters are sam-
pled using a sliding window of length 150ms and a stride
equal to the sensor cycle time, i.e., 60ms. This results in
7 samples per time frame. The 150ms time frame is an
empirically determined compromise between minimum
scene variation within a single sample and a maximum
amount of available data points. For each of those sam-
ples, a larger vector of almost 100 handcrafted feature
candidates is extracted. Features include simple statisti-
cal features, such as mean or maximum Doppler values,
but also more complex ones like the area of a convex hull
around the cluster. A full list of all utilized features can
be found in [15]. In the following classification ensemble,
each member receives an individually optimized subset
of the total feature set. Subsets are estimated by applying
a feature selection routine based on a guided backward
elimination approach [69]. The combined feature extrac-
tion and classification process for the entire ensemble is
depicted in Fig. 5.

Classification An ensemble of multiple binary classifiers
which was found to outperform a single multi-class model

on a similar data set in [12] is used for classification.
The ensemble resembles a combined one-vs-one (OVO)
and one-vs-all (OVA) approach, with K(K + 1)/2 classi-
fiers, where K is the total amount of classes. Note, that
in order to reject a cluster proposal, it is necessary, to
train the networks not only on object classes as usu-
ally done in object detection, but also on the background
class. Thus, for the given six classes, the ensemble con-
sists of 21 classifiers as indicated by the lines and circle
of the classifier stage in Fig. 3a and Fig. 5. The individual
classifiers each consist of a single layer of LSTM cells fol-
lowed by a softmax layer. They are configured to accept
exactly the seven consecutive feature vectors within one
time frame. During training, class weighting is used to
mitigate data imbalance effects. Training is performed on
ground truth clusters. To predict the class membership
of each cluster, all pairwise class posterior probabilities
pij from corresponding OVO classifiers are added. Sub-
scripts i and j denote the corresponding class identifiers
for which the classifier is trained. Additionally, each OVO
classifier is weighted by the sum of corresponding OVA
classifier outputs qi. This correction limits the influence
of OVO classifier outputs pij for samples with class id
k /∈ {i, j} [70]. The combined class posterior probabilities
y(x) of the ensemble for a given feature vector x are then
calculated as:

y(x) = softmax
i∈{1,...,K}

K∑
j=1,j �=i

pij(x) · (qi(x) + qj(x)), (4)

where the maximum probability in y among non-
background classes defines the identified class as well as
the corresponding confidence c for this detection.

Fig. 5 Ensemble classification: A combined OVO and OVA scheme splits the decision problem into 21 binary classifiers. Each classifier obtains a
custom feature set that is customized for the particular binary model. The final class decision is the product of a collaborative class decision. This
process is repeated for every cluster in a point cloud
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As an additional variant to this first approach, the
LSTM networks in the ensemble are replaced by ran-
dom forest classifiers [71] with 50 decision trees in each
module (amount optimized in previous work [12]). Ran-
dom forests are very fast and powerful representatives of
the traditional machine learning methods. Within some
limits, they allow some interpretation of their predic-
tions. This may be advantageous when trying to explain
the behavior in some exceptional cases. Instead of using
samples from seven different time steps, a single fea-
ture vector is used as input to each classifier in the
ensemble. Hence, the feature vector is calculated over
the whole 500ms. Due to previous classification studies
[12], random forests are not expected to improve the per-
formance. However, it is interesting whether the results
differ a lot when compared to LSTM networks for object
detection.

Semantic segmentation network and clustering
One of the limitations of the previous approach is its
dependence on good clustering results, which are often
not present. The idea behind this second approach is to
improve the clustering results, by switching the order of
the involved modules, i.e., classification before instance
formation similar to [6]. That way, additional information,
namely the class prediction, is available for the clustering
algorithm as additional feature, cf. Fig. 3b. This approach
requires a semantic segmentation network for point-wise
class predictions.

Semantic Segmentation The utilized model is a Point-
Net++ architecture [19], more specifically a version spe-
cialized for automotive radar data and described in detail
in [13]. It uses three multi-scale groupingmodules and the
same number of feature propagation modules resembling
the structure of autoencoders [72]. Themulti-scale group-
ing modules use an elaborate down-sampling method
which respects local spatial context and a mini PointNet
to produce features for each point of the down-sampled
point cloud. Similar to deep CNNs this down-sampling
process is repeated multiple (three) times. The down-
sampled feature tensor is then propagated back to the
point cloud by means of the feature propagation modules.
This step repeatedly up-samples the point cloud, using a
k-nearest neighbor approach and fully connected layers
to interpolate and process the features from the coarser
layer to the finer one. In addition, features are pulled in via
a skip connection. From the final feature set, more fully
connected layers are used to predict a class label for each
original point.
The network is parameterized equally to [13] with two

exceptions: PointNet++ expects a fixed number of input
points, otherwise the point cloud has to be re-sampled.
Instead adjusting the accumulation time to meet the size

constraint, random up-sampling or point cloud splitting
is used in order to use fixed time slices. Furthermore, the
number of input points is optimized from 3072 to 4096
points.

Class-Sensitive Filtering and Clustering Instances for-
mation on the classified point cloud is achieved by an
adapted version of the two-stage clustering method in the
Clustering and recurrent neural network classifier section.
To incorporate the class labels, both, the filtering stage
and the clustering stage aremodified. In the filtering stage,
Eq. 2 is replaced by a very simple yet effective method
where a point is filtered out if:

|vr| < ηvr ∧ argmax y = background_id. (5)

For the clustering stage, a new class-sensitive clustering
concept is introduced. Therefore, the DBSCAN neighbor-
hood criterion from Eq. 3 is extended by a class distance,
yielding:

C ·
√

�x2 + �y2 + ε−2
vr · �v2r < εxyvr ∧ �t < εt ,

with C = (1 + εc�cij) and �c ∈ R
K×K
≥0 , (6)

where �c is a symmetric matrix which encodes the dis-
tance between each pair of classes and εc is an additional
weighting factor that is optimized. Instead of a single run,
with the proposed new neighborhood criterion, multiple
clustering runs are performed, one for each of the five
object classes. This enables to optimize all tuning param-
eters towards the best setting for the corresponding class.
To prevent points from object classes other than the cur-
rently regarded one to form clusters, the weights in �c
during the clustering run for class k are set to:

�cij =
⎧⎨
⎩
0, if i = j = k
1, if i �= j ∧ (i = k ∨ j = k)
106, otherwise.

(7)

For parameter optimization of the clustering algorithm
the PointNet++ label prediction is replaced by the ground
truth label which is randomly altered using the probabili-
ties from the class confusion matrix of the corresponding
model on the validation set. Instead of this fixed setting
for�c in Eq. 7, all values could also be optimized individu-
ally. However, this would require extensive computational
effort.
Note that without the class label predictions from Point-

Net++, it is not possible to choose class-specific optimal
cluster settings as the clustering cannot be limited to the
data points of a single class.

Class and Confidence Prediction Finally, for each clus-
ter instance, a class label and a confidence value have to
be selected. For the label id, a voting scheme is used to
decide for the class with the most occurrences among all
label predictions within the cluster. The confidence c is
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then estimated by the mean posterior probability for this
class within the cluster.

Image object detection network
As discussed, there are several approaches for applications
of low level radar spectra to CNN-based image object
detectors. In order to use point cloud data, a preprocess-
ing step is required to arrange all data in a fixed image-like
structure. In static radar processing, this is usually done
via grid mapping, cf. [6, 7, 36]. The same approach can be
used in dynamic processing, however, opposed to static
grid maps, the data accumulation has to be limited in
time to avoid object smearing. In [22], three grid maps are
extracted, an amplitude map and one Doppler map for the
x and y components of the measured radial velocity.

Grid Mapping For this article, a similar approach as
depicted in Fig. 3c is used. The utilized CNN requires the
grid size to be a multiple of 32. It is empirically optimized
towards 608 × 608 cells, i.e., each cell has an edge length
of ≈ 0.16m. As in [22], three grid maps are extracted.
For the first one, each grid cell is assigned the maximum
amplitude value among all radar points that fall within the
cell. The other two comprise the maximum and minimum
signed Doppler values. This adds additional information
about the Doppler distribution in each cell, in contrast to
[22], where the x and y components of the radial veloci-
ties are also encoded in the cell coordinates. During grid
map processing, a fourth map counts the number of accu-
mulated radar points per cell. The map itself is not prop-
agated to the object detector, but its information is used
to copy all cells where this number exceeds an empirically
set threshold, to adjacent cells. The higher the number
of detections, the more neighbor cells are overwritten if
they are empty. The propagation scheme is visualized in
Fig. 6. When plotting the value distributions among the
populated grid map cells, amplitudes resemble a normal

Fig. 6 Cell propagation scheme: if multiple radar points fall within a
single cell, empty neighboring cells are populated with the same cell
values. The color-coded blurring filter mask depends on the number
of points N in the original cell

distribution, whereas the absolute Doppler information is
extremely heavy-sided towards zero. In order to ease the
model’s task of Doppler interpretation, a strictly mono-
tonic increasing part of a fourth order polynomial is used
to skew all Doppler values. The Doppler distribution of
the training set before and after feature skewing as well
as the skewing polynomial are depicted in Fig. 7. During
training, grid maps are randomly rotated by multiples of
30◦ for data augmentation.

Object Detection For object detection, a YOLOv3 [35]
model which poses good compromise between strong
object detection accuracy and computational efficiency is
applied. The implementation is based on the code pro-
vided by [73]. YOLOv3 is a one-stage object detection
network. To extract features from a given image it uses
Darknet-53 as a backbone. Darknet-53 is a fully convo-
lutional network (CNN) comprised of 53 convolutional
layers. The majority of those layers are arranged in resid-
ual blocks [74]. The original image is down-sampled by
factors of 8, 16, and 32 to produces features at different
scales. At each scale, a detection head is placed with three
anchor boxes each. Hence, a total of nine anchor boxes
are determined by k-means clustering on ground truth
boxes. Each detection head has additional convolutional
layers to further process the features with three different
losses attached. First, an objectness loss Lobj to predict
whether an object is present at a given bounding box loca-
tion. Second, a classification lossLcls to predict the correct
class label. And third, a localization lossLloc to regress the
position of the bounding box and its size. Both, the classi-
fication and localization loss are only calculated for boxes
where an object is present. The objectness loss is calcu-
lated at all locations and the total loss is the sum of all
losses:

L = Lobj + Lcls + Lloc. (8)

For this article, an extension is implemented to also
regress a rotation. The angular loss Lang is implemented
as a l1-loss and regresses the rotation of a given bounding
box. To make the loss more stable, the network is able to

Fig. 7 Doppler value skewing: Doppler values are heavily biased
towards extremely small values. Using the depicted polynomial
scaling function, the distribution is widened in order to ease the
feature extraction process. Amplitude values are distributed almost
normal, hence no amplitude skewing is performed
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either predict the ground truth rotation or its 180◦ equiv-
alent. As with the Lcls and Lloc, this loss is only calculated
if an object is present.
At inference time, this results in multiple box predic-

tions which are pre-selected using a confidence threshold
and non-maximum suppression (NMS) [30] to discard
overlapping predictions on the same location.

Point-cloud-based object detection network
The advantage of point-cloud-based object detectors is
that the intermediate pseudo image representation does
not need to be optimized anymore but is now part of the
training routine, cf. Fig. 3d. To this end, a PointPillars [49]
architecture is examined. It uses PointNets to learn the
intermediate representation, which is a two-dimensional
arrangement of vertical pillars in the original form. There-
fore, the adapted variant for the BEV data in this article
has a similar structure to the previously introduced grid
maps. This structural resemblance and the fast execution
time are major advantages for processing radar data with
PointPillars compared other similar network types.
PointPillars consists of three main stages, a feature

encoder network, a simple 2D CNN backbone, and a
detection head for bounding box estimation. In the fea-
ture encoder, the pseudo image is created by augmenting
a maximum of N points per pillar within a maximum of P
non-empty pillars per data sample. From this augmented
tensor, a miniature PointNet is used to infer a multidimen-
sional feature space. In the CNN backbone, features are
extracted at three different scales in a top-down network
before being up-sampled and passed on to the detec-
tion head. The detection head uses the focal loss Lobj for
object classification, another classification loss for class
label assignment Lcls, and a box regression loss consisting
of a localization loss Lloc, a size loss Lsiz, and an angular
loss Lang to regress a predefined set of anchor boxes to
match the ground truth. The introduction of Lcls allows
training a single model instead of individual ones for every
class. In comparison to the original PointPillars, Lloc and
Lsiz are limited to the 2D parameters, i.e., the offset in x
/ y and length / width, respectively. Also, no directional
classification loss is used since the ground truth does not
contain directional object information. The total loss can
be formulated as:

L=βobjLobj + βclsLcls+βlocLloc+βsizLsiz+βangLang (9)

The loss weights β(·) are tunable hyperparameters. Besides
adapting the feature encoder to accept the additional
Doppler instead of height information, the maximum
number of pillars and points per pillar are optimized to
N = 35 and P = 8000 for a pillar edge length of
0.5m. Notably, early experiments with a pillar edge length
equal to the grid cell spacing in the YOLOv3 approach,

i.e. 0.16m, did deteriorate the results. PointPillars per-
forms poorly when using the same nine anchor boxes
with fixed orientation as in YOLOv3. Therefore, only five
different-sized anchor boxes are estimated. Each is used
in its original form and rotated by 90◦. This results in a
total of ten anchors and requires considerably less com-
putational effort compared to rotating, i.e. doubling, the
YOLOv3 anchors. For box inference, NMS is used to limit
the number of similar predictions.
After initial experiments the original CNN backbone

was replaced by the Darknet-53 backbone from YOLOv3
[35] to give more training capability to the network.
Results of this improved PointPillars version are reported
as PointPillars++.

Combined semantic segmentation and recurrent neural
network classification approach
In addition to the four basic concepts, an extra combina-
tion of the first two approaches is examined. To this end,
the LSTM method is extended using a preceding Point-
Net++ segmentation for data filtering in the clustering
stage as depicted in Fig. 3e. This aims to combine the
advantages of the LSTM and the PointNet++ method by
using semantic segmentation to improve parts of the clus-
tering. All optimization parameters for the cluster and
classification modules are kept exactly as derived in the
Clustering and recurrent neural network classifier section.
As the only difference, the filtering method in Eq. 2 is
replaced by the class-sensitive filter in Eq. 5.

Additional non-successful experiments
A series of further interesting model combinations was
examined. As their results did not help to improve the
methods beyond their individual model baselines, only
their basic concepts are derived, without extensive evalu-
ation or model parameterizations.

1) YOLO or PointPillars boxes are refined using a
DBSCAN algorithm.

2) YOLO or PointPillars boxes are refined using a
PointNet++ model.

3) Instead of just replacing the filter, an LSTM network
is used to classify clusters originating from the
PointNet++ + DBSCAN approach.

4) A semantic label prediction from PointNet++ is used
as additional input feature to PointPillars.

Approaches 1) and 2) resemble the idea behind Frustum
Net [20], i.e., use an object detector to identify object
locations, and use a point-cloud-based method to tighten
the box. Therefore, only the largest cluster (DBSCAN)
or group of points with same object label (PointNet++)
are kept within a predicted bounding box. As neither of
the four combinations resulted in a beneficial configura-
tion, it can be presumed that one of the strengths of the
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box detections methods lies in correctly identifying object
outlier points which are easily discarded by DBSCAN or
PointNet++. Method 3) aims to combine the advantages
of the LSTM and the PointNet++methods by using Point-
Net++ to improve the clustering similar to the combined
approach in the Combined semantic segmentation and
recurrent neural network classification approach section.
Opposed to that method, the whole class-sensitive clus-
tering approach is utilized instead of just replacing the
filtering part. However, results suggest that the LSTMnet-
work does not cope well with the so found clusters. Finally,
in 4), the radar’s low data density shall be counteracted
by presenting the PointPillars network with an additional
feature, i.e., a class label prediction from a PointNet++
architecture. At training time, this approach turns out
to greatly increase the results during the first couple of
epochs when compared to the base method. For longer
training, however, the base methods keeps improving
much longer resulting in an even better final performance.
This suggests, that the extra information is beneficial at
the beginning of the training process, but is replaced by
the networks own classification assessment later on.

Evaluation
For evaluation several different metrics can be reported.
In this section, the most common ones are introduced.
Results on all of them are provided in order to increase the
comparability.

Metrics
In image-based object detection, the usual way to decide if
prediction matches a ground truth object is by calculating
their pixel-based intersection over union (IOU) [75].
This can easily be adopted to radar point clouds by cal-

culating the intersection and union based on radar points
instead of pixels [18, 47]:

IOU = |predicted points ∩ true points|
|predicted points ∪ true points| . (10)

An object instance is defined as matched if a prediction
has an IOU greater or equal than some threshold. The
threshold is most commonly set to 0.5. However, for a
point-cloud-based IOU definition as in Eq. 10, IOU ≥ 0.5
is often a very strict condition. As an example, Fig. 8 dis-
plays a real world point cloud of a pedestrian surrounded
by noise data points. The noise and the elongated object
shape have the effect, that even for slight prediction varia-
tions from the ground truth, the IOUdrops noticeable. For
experiments with axis-aligned (rotated) bounding boxes,
a matching threshold of IOU ≥ 0.1 (IOU ≥ 0.2) would
be necessary in order to achieve perfect scores even for
predictions equal to the ground truth. While this may be
posed as a natural disadvantage of box detectors com-
pared to other methods, it also indicates that a good

Fig. 8 IOU example of a single ground truth pedestrian surrounded
by noise. On the left, the three different ground truth definitions used
for different trainings are illustrated: point-wise, an axis-aligned, and a
rotated box. Notably, the box variants may include noise even in the
ground truth. The evaluation for all methods is solely point-based. As
an example, in the middle image a slightly rotated version of the
ground truth box is used as a prediction with
IOU=green/(green+blue+yellow)=5/13

detector might be neglected to seemingly bad IOUmatch-
ing. Hence, in this article, all scores for IOU ≥ 0.5 and
IOU ≥ 0.3 are reported.
Once a detection is matched, if the ground truth

and the prediction label are also identical, this corre-
sponds to a true positive (TP). Other detections on the
same ground truth object make up the false positive
class (FP). Non-matched ground truth instances count
as false negatives (FN) and everything else as true neg-
atives (TN). The order in which detections are matched
is defined by the objectness or confidence score c that
is attached to every object detection output. For each
class, higher confidence values are matched before lower
ones.

Average precision &mean average precision
The most common object detection evaluation metrics
are the Average Precision (AP) criterion for each class
and the mean Average Precision (mAP) over all classes,
respectively. AP uses c as control variable to sample the
detector’s precision Pr(c) = TP(c)/(TP(c) + FP(c)) at
different recall levels Re(c) = TP(c)/(TP(c) + FN(c)):

AP = 1
11

∑
r∈{0,0.1,...,1}

max
Re(c)≥r

Pr(c). (11)

For the mAP, all AP scores are macro-averaged, i.e.,
opposed to micro-averaging the score are calculated for
each object class first, then averaged:

mAP = 1
K̃

∑
K̃

AP, (12)

where K̃ = K − 1 is the number of object classes.
As mAP is deemed the most important metric, it is used

for all model choices in this article.
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Log averagemiss rate
The log average miss rate (LAMR) is about the inverse
metric to AP. Instead of evaluating the detectors precision,
it examines its sensitivity. Therefore, it sums the miss rate
MR(c) = 1 − Re(c) over different levels of false positives
per image (here samples) FPPI(c) = FP/#samples. Using
the notation from [55], LAMR is expressed as:

LAMR = exp

⎛
⎝1
9

∑
f

log
(
MR(argmax

FPPI(c)≤f
FPPI(c))

)⎞
⎠, (13)

where f ∈ {10−2, 10−1.75, . . . , 100} denotes 9 equally log-
arithmically spaced FPPI reference points. As for AP,
the LAMR is calculated for each class first and then
macro-averaged. Only the mean class score is reported
as mLAMR. Out of all introduced scores, the mLAMR is
the only one for which lower scores correspond to better
results.

F1 object score
A commonly utilized metric in radar related object detec-
tion research is the F1, which is the harmonic mean of Pr
and Re. For object class k the maximum F1 score is:

F1,k = max
c

2TP(c)
2TP(c) + FP(c) + FN(c)

. (14)

Again the macro-averaged F1 score F1,obj according to
Eq. 12 is reported.

F1 point score
Another variant of F1 score uses a different definition for
TP, FP, and FN based on individual point label predictions
instead of class instances. For the calculation of this point-
wise score, F1,pt, all prediction labels up to a confidence c
equal to the utilized level for F1,obj score are used. While
this variant does not actually resemble an object detec-
tion metric, it is quite intuitive to understand and gives
a good overview about how well the inherent semantic
segmentation process was executed.

Results
The test set scores of all five main methods and their
derivations are reported in Table 2. Additional ablation
studies can be found in the Ablation studies section.

YOLOv3 Among all examined methods, YOLOv3 per-
forms the best. At IOU=0.5 it leads by roughly 1% with
53.96% mAP, at IOU=0.3 the margin increases to 2%. The
increased lead at IOU=0.3 is mostly caused by the high AP
for the truck class (75.54%). Apparently, YOLO manages
to better preserve the sometimes large extents of this class
than other methods. This probably also leads to the archi-
tecture achieving the best results in mLAMR and F1,obj
for IOU=0.3. In the future, state-of-the-art radar sensors
are expected to have a similar effect on the scores as when

lowering the IOU threshold. Another major advantage of
the grid mapping based object detection approach that
might be relevant soon, is the similarity to static radar
object detection approaches. As discussed in the begin-
ning of this article, dynamic and static objects are usually
assessed separately. By combining the introduced quickly
updating dynamic grid maps with the more long-term
static variants, a common object detection network could
benefit from having information about moving and sta-
tionary objects. Especially the dynamic object detector
would get additional information about what radar points
are most likely parts of the surroundings and not a slowly
crossing car for example.

PointNet++ + DBSCAN + LSTM Shortly behind
YOLOv3 the combined PointNet++ + DBSCAN + LSTM
approach makes up the second best method in the total
ranking. At IOU=0.5, it leads in mLAMR (52.06%) and
F1,obj (59.64%), while being the second best method in
mAP and for all class-averaged object detection scores at
IOU=0.3. Despite, being only the second best method, the
modular approach offers a variety of advantages over the
YOLO end-to-end architecture. Most of all, future devel-
opment can occur at several stages, i.e., better semantic
segmentation, clustering, classification algorithms, or the
addition of a tracker are all highly likely to further boost
the performance of the approach. Also, additional fine
tuning is easier, as individual components with known
optimal inputs and outputs can be controlled much bet-
ter, than e.g., replacing part of a YOLOv3 architecture.
Moreover, both the DBSCAN and the LSTM network are
already equipped with all necessary parts in order to make
use of additional time frames and most likely benefit if
presented with longer time sequences. Keeping next gen-
eration radar sensors in mind, DBSCAN clustering has
already been shown to drastically increase its performance
for less sparse radar point clouds [18]. Therefore, this
method remains another contender for the future.

DBSCAN + LSTM In comparison to these two
approaches, the remaining models all perform consider-
ably worse. Pure DBSCAN + LSTM (or random forest)
is inferior to the extended variant with a preceding
PointNet++ in all evaluated categories. At IOU=0.3 the
difference is particularly large, indicating the comparably
weak performance of pure DBSCAN clustering without
prior information. However, even with this conceptually
very simple approach, 49.20% (43.29% for random forest)
mAP at IOU=0.5 is achieved.

PointNet++ The PointNet++ method achieves more
than 10% less mAP than the best two approaches. As a
semantic segmentation approach, it is not surprising that
it achieved the best segmentation score, i.e., F1,pt. Also for
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both IOU levels, it performs best among all methods in
terms of AP for pedestrians. This is an interesting result,
as all methods struggle the most in finding pedestrians,
probably due to the latters’ small shapes and number of
corresponding radar points. The fact, that PointNet++
outperforms other methods for this class indicates, that
the class-sensitive clustering is very effective for small
VRU classes, however, for larger classes, especially the
truck class, the results deteriorate. To pinpoint the rea-
son for this shortcoming, an additional evaluation was
conducted at IOU=0.5, where the AP for each method
was calculated by treating all object classes as a sin-
gle road user class. This effectively removes all classi-
fication errors from the AP, leaving a pure foreground
object vs. background detection score. Calculating this
metric for all classes, an AP of 69.21% is achieved for
PointNet++, almost a 30% increase compared to the real
mAP. Notably, all other methods, only benefited from
the same variation by only ≈ 5–10%, effectively making
the PointNet++ approach the best overall method under
these circumstances. The high performance gain is most
likely explained by the high number of object predictions
in the class-sensitive clustering approach, which gives an
above-average advantage if everything is classified cor-
rectly. However, it also shows, that with a little more
accuracy, a semantic segmentation-based object detection
approach could go a long way towards robust automo-
tive radar detection. Nevertheless, currently it is probably
best to only use the PointNet++ to supplement the cluster
filtering for the LSTMmethod.

PointPillars Finally, the PointPillars approach in its orig-
inal form is by far the worst among all models (36.89%
mAP at IOU=0.5). It performs especially poorly on
the pedestrian class. Normally, point-cloud-based CNN
object detection networks such as PointPillars would be
assumed to surpass image-based variants when trained on
the same point cloud detection task. The reason for this is
the expectation, that the inherent pseudo image learning
of point cloud CNNs is advantageous over an explicit grid
map operation as used in the YOLOv3 approach. Probably
because of the extreme sparsity of automotive radar data,
the network does not deliver on that potential. To alleviate
this shortcoming, the original PointPillars backbone was
replaced by a deeper Darknet-53 module from YOLOv3.
The increased complexity is expected to extract more
information from the sparse point clouds than in the orig-
inal network. In fact, the new backbone lifts the results
by a respectable margin of ≈ 9% to a mAP of 45.82% at
IOU=0.5 and 49.84% at IOU=0.3. These results indicate
that the general idea of end-to-end point cloud processing
is valid. However, the current architecture fails to achieve
performances on the same level as the YOLOv3 or the
LSTM approaches. A natural advantage of PointPillars

is that once the network is trained, it requires a min-
imal amount of preprocessing steps in order to create
object detections. In turn, this reduces the total number
of required hyperparameter optimization steps.

Time vs. performance evaluation
While the code for the utilized methods was not explicitly
optimized for speed, the main components are quite fast.
In Fig. 9, a combined speed vs. accuracy evaluation is dis-
played. The values reported there are based on the aver-
age inference time over the test set scenarios. For modular
approaches, the individual components are timed indi-
vidually and their sum is reported. The fastest methods
are the standard PointPillars version (13ms), the LSTM
approach (20.5ms) and its variant with random forest
classifiers (12.1ms). The latter two are the combination of
12ms DBSCAN clustering time and 8.5ms for LSTM or
0.1ms for random forest inference. For the DBSCAN to
achieve such high speeds, it is implemented in sliding win-
dow fashion, with window size equal to εt . The so achieved
point cloud reduction results in a major speed improve-
ment. Moreover, as the algorithm runs in real time, only
the last processing step has to be taken into account for the
time evaluation. As the method with the highest accuracy,
YOLOv3 still manages to have a relatively low inference
time of 32ms compared to the remaining methods. For all
examined methods, the inference time is below the sen-
sor cycle time of 60ms, thus processing can be achieved
in real time.

Visual evaluation
Qualitative results on the base methods (LSTM, Point-
Net++, YOLOv3, and PointPillars) can be found in Fig. 10.

Fig. 9Method execution speed (ms) vs. accuracy (mAP) at IOU=0.5.
According to the rest of the article, all object detection approaches are
abbreviated by the name of their main component. LSTM++ denotes
the combined LSTM method with PointNet++ cluster filtering
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Fig. 10 Qualitative results plus camera and ground truth references for the four base methods excluding the combined approach (rows) on four
scenarios (columns). Ground truth and predicted classes are color-coded
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In the four columns, different scenarios are displayed. A
camera image and a BEV of the radar point cloud are used
as reference with the car located at the bottom middle of
the BEV. The radar data is repeated in several rows. In the
first view, ground truth objects are indicated as a refer-
ence. The remaining four rows show the predicted objects
of the four base methods, LSTM, PointNet++, YOLOv3,
and PointPillars. For each class, only detections exceeding
a predefined confidence level c are displayed. The confi-
dence level is set for each method separately, according to
the level at the best found F1,obj score.
While for each method and scenario both positive and

negative predictions can be observed, a few results shall
be highlighted. In the first scenario, the YOLO approach
is the only one that manages to separate the two close-
by car, while only the LSTM correctly identifies the truck
on top right of the image. For the second scenario, only
YOLOv3 and PointPillars manage to correctly locate all
three ground truth cars, but only PointNet++ finds all
three pedestrians in the scene. The third scenario shows
an inlet to a larger street. Despite missing the occluded car
behind the emergency truck on the left, YOLO has much
fewer false positives than the other approaches. Regarding
the miss-classification of the emergency vehicle for a car
instead of a truck, this scene rather indicates that a strict
separation in exactly one of two classes can pose a prob-
lem, not only for a machine learning model, but also for a
human expert who has to decide for a class label. The last
scene is much more crowded with noise than the other
ones. Here, the reduced number of false positive boxes of
the LSTM and the YOLOv3 approach carries weight. Over
all scenarios, the tendency can be observed, that Point-
Net++ and PointPillars tend to produce too much false
positive predictions, while the LSTM approach goes in the
opposite direction and rather leaves out some predictions.
While this behavior may look superior to the YOLOv3
method, in fact, YOLO produces the most stable predic-
tions, despite having little more false positives than the
LSTM for the four examined scenarios.

Ablation studies
A series of ablation studies is conducted in order to help
understand the influence of some method adjustments.
All results can be found in Table 3.
For the LSTM method, an additional variant uses the

posterior probabilities of the OVO classifier of the chosen
class and the background class as confidence level. For the
LSTM method with PointNet++ Clustering two variants
are examined. For the first, the semantic segmentation
output is only used for data filtering as also reported in
the main results. The second variant uses the entire Point-
Net++ + DBSCAN approach to create clusters for the
LSTM network. From Table 3, it becomes clear, that the
LSTM does not cope well with the class-specific cluster

setting in the PointNet++ approach, whereas PointNet++
data filtering greatly improves the results.
To test if the class-specific clustering approach improves

the object detection accuracy in general, the PointNet++
approach is repeated with filter and cluster settings as
used for the LSTM. Results indicate that class-sensitive
clustering does indeed improve the results by ≈ 1.5%
mAP, whereas the filtering is less important for the Point-
Net++ approach.
As mentioned above, further experiments with rotated

bounding boxes are carried out for YOLO and Point-
Pillars. Obviously, for perfect angle estimations of the
network, these approaches would always be superior to
the axis-aligned variants. In contrast to these expecta-
tions, the experiments clearly show that angle estimation
deteriorates the results for both network types. A possible
reason is that many objects appear in the radar data as
elongated shapes. This is due to data accumulation over
time and because, radars often just measure the object
contour facing the sensors. As indicated in Fig. 8, a small
offset in box rotation may, hence, result in major IOU
drops. Apparently, these effects outweigh the disadvan-
tages of purely axis-aligned predictions.
Moreover, the YOLO performance is also tested without

the two described preprocessing step, i.e., cell propagation
and Doppler skewing. While both methods have a small
but positive impact on the detection performance, the net-
works converge notably faster: The best regular YOLOv3
model is found at 275k iterations. Without cell propa-
gation, that number goes up to 300k, without Doppler
scaling up to 375k, and 400k training iterations without
both preprocessing steps. This supports the claim, that
these processing steps are a good addition to the network.

Conclusion
In this article, an object detection task is performed on
automotive radar point clouds. The aim is to identify
all moving road users with new applications of exist-
ing methods. To this end, four different base approaches
plus several derivations are introduced and examined
on a large scale real world data set. The main con-
cepts comprise a classification (LSTM) approach using
point clusters as input instances, a semantic segmentation
(PointNet++) approach, where the individual points are
first classified and then segmented into instance clusters.
Moreover, two end-to-end object detectors, one image-
based (YOLOv3) architecture, and a point-cloud-based
(PointPillars) method are evaluated. While end-to-end
architectures advertise their capability to enable the net-
work to learn all peculiarities within a data set, modular
approaches enable the developers to easily adapt and
enhance individual components. For example, if longer
time frames than used for this article were evaluated, a
straight-forward extension of the introduced clustering
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approach would be the utilization of a tracking algo-
rithm. Overall, the YOLOv3 architecture performs the
best with a mAP of 53.96% on the test set. It has the
additional advantage that the grid mapping preprocess-
ing step, required to generate pseudo images for the
object detector, is similar to the preprocessing of static
radar data. Therefore, in future applications a combined
model for static and dynamic objects could be possi-
ble, instead of the separation in current state-of-the-art
methods.
As close second best, a modular approach consisting of

a PointNet++, a DBSCAN algorithm, and an LSTM net-
work achieves a mAP of 52.90%. While the 1% difference
in mAP to YOLOv3 is not negligible, the results indi-
cate the general validity of the modular approaches and
encourage further experiments with improved clustering
techniques, classifiers, semantic segmentation networks,
or trackers.
As a representative of the point-cloud-based object

detectors, the PointPillars network did manage to make
meaningful predictions. However, with 36.89% mAP it
is still far worse than other methods. In order to miti-
gate these shortcomings, an improved CNNbackbonewas
used, boosting the model performance to 45.82%, outper-
forming the pure PointNet++ object detection approach,
but still being no match for the better variants. This
shows, that current object detectors for point clouds -
or at least the PointPillars model - are not yet ready to
fully utilize the advantage from end-to-end feature pro-
cessing from very sparse automotive point clouds and take
over the lead from image-based variants such as YOLOv3.
However, it can also be presumed, that with constant
model development, e.g., by choosing high-performance
feature extraction stages, those kind of architectures will
at least reach the performance level of image-based vari-
ants. At this point, their main advantage will be the
increased flexibility for different sensor types and likely
also an improvement in speed.
In future work, novel model architectures with even

fewer data constraints such as the anchor free approaches
DETR [76] or the pillars variation in [77] shall be exam-
ined. By allowing the network to avoid explicit anchor
or NMS threshold definitions, these models supposedly
improve the robustness against data density variations
and, potentially, lead to even better results.

Perspectives
On the way towards fully autonomous vehicles, in addi-
tion to the potentials for the currently available data sets,
a few additional aspect have to be considered for future
algorithmic choices.

Next Generation Radar Sensors A first one is the
advancement of radar sensors. It can be expected that

high resolution sensors which are the current state of the
art for many research projects, will eventually make it
into series production vehicles. These new sensors can be
superior in their resolution, but may also comprise addi-
tional measurement dimensions such as elevation [57] or
polarimetric information [1]. It was already shown that
an increased resolution greatly benefits radar point clus-
tering and consequently object detection when using a
combined DBSCAN and LSTM approach [18]. Current
high resolution Doppler radar data sets are not sufficiently
large and diverse to allow for a representative assessment
of various deep neural network architectures. While it is
expected that all methods will somehow profit from better
resolved data, is seems likely that point-based approaches
have a greater benefit from denser point clouds. At least
for the current grid mapping techniques, having more
radar points fall within the same grid cells should have
a much smaller impact. Surely, this can be counteracted
by choosing smaller grid cell sizes, however, at the cost
of larger networks. Contrary, point cloud CNNs such as
PointPillars already have the necessary tools to incorpo-
rate the extra information at the same grid size. Polari-
metric sensor probably have the least benefit for methods
with a preceding clusterer as the additional information
is more relevant at an advanced abstraction level which
is not available early in the processing chain. In compar-
ison, PointNet++ or PointPillars can be easily extended
with new features and an auxiliary polarimetric grid map
[78] may serve to do the same for YOLOv3. The incorpo-
ration of elevation information on the other hand should
be straight forward for all addressed strategies. Elevation
bares the added potential that such point clouds are much
more similar to lidar data which may allow radar to also
benefit from advancements in the lidar domain.

Low-Level Data Access and Sensor Fusion A second
import aspect for future autonomously driving vehicles is
the question if point clouds will remain the preferred data
level for the implementation of perception algorithms.
Earlier in this article, several approaches using low level
radar data were mentioned. Currently, the main advan-
tage of these methods is the ordered data representation
of the radar data before point cloud filtering which facil-
itates image-like data processing. If new hardware makes
the high associated data rates easier to handle, the omis-
sion of point cloud filtering enables passing a lot more
sensor information to the object detectors. The ques-
tion of the optimum data level is directly associated with
the choice of a data fusion approach, i.e., at what level
will data from multiple radar sensor be fused with each
other and, also, with other sensor modalities, e.g., video
or lidar data. Different early and late fusion techniques
come with their own assets and drawbacks. The methods
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in this article would be part of a late fusion strategy gener-
ating independent proposals which can be fused in order
to get more robust and time-continuous results [79]. Fol-
lowing an early fusion paradigm, complementary sensor
modalities can be passed to a common machine learning
model to increase its accuracy [80, 81] or even its speed
by resolving computationally expensive subtasks [82]. In
order to make an optimal decision about these open ques-
tions, large data sets with different data levels and sensor
modalities are required.

Advances in General Purpose Point Cloud Processing
The importance of such data sets is emphasized when
regarding the advances of related machine learning areas
as a final third aspect for future automated driving tech-
nologies. Themain focus is set to deep end-to-endmodels
for point cloud data. Deep learning on unordered sets is a
vast topic, specifically for sets representing actual geomet-
ric data such as point clouds. Many data sets are publicly
available [83–86], nurturing a continuous progress in this
field.
The main challenge in directly processing point sets is

their lack of structure. Images consist of a regular 2D
grid which facilitates processing with convolutions. Since
the notion of distance still applies to point clouds, a lot
of research is focused on processing neighborhoods with
a local aggregation operator. Defining such an opera-
tor enables network architectures conceptually similar to
those found in CNNs.
As the first such model, PointNet++ specified a local

aggregation by using a multilayer perceptron. Ever since,
progress has been made to define discrete convolution
operators on local neighborhoods in point clouds [23–28].
Those point convolution networks are more closely related
to conventional CNNs.
Until now, most of this work has not been adapted to

radar data. Most end-to-end approaches for radar point
clouds use aggregation operators based on the PointNet
family, e.g. [6, 13, 21, 22]. The selection and adapta-
tion of better suited base building blocks for radar point
clouds is non-trivial and requires major effort in find-
ing suitable (hyper)parameters. In return, it provides a
great opportunity to further propel radar-based object
detection. With the extension of automotive data sets,

an enormous amount of research for general point cloud
processing may find its way into the radar community.
Another algorithmic challenge is the formation of object

instances in point clouds. In this article, an approach
using a dedicated clustering algorithm is chosen to group
points into instances. Qi et al. [87] use offset predic-
tions and regress bounding boxes in an end-to-end fash-
ion. Offset predictions are also used by [6], however,
points are grouped directly by means of an instance
classifier module. SGPN [88] predicts an embedding (or
hash) for each point and uses a similarity or distance
matrix to group points into instances. Finding the best
way to represent objects in radar data could be the
key to unlock the next leap in performance. Similar to
image-based object detections where anchor-box-based
approaches made end-to-end (single-stage) networks
successful.

Appendix
Appendix In this supplementary section, implementation
details are specified for the methods introduced in the
Methods section.
As stated in the Clustering and recurrent neural net-

work classifier section, the DBSCAN parameter Nmin is
replaced by a range-dependent variant. Accounting for the
radar’s constant angular resolution and the following data
density variations at different ranges, for a given range r,
the new number of minimum neighbors is:

Nmin(r) = N50·
(
1 + αr ·

(
50m

clip(r, 25m, 125m)
− 1

))
.

The tuning parameters N50 and αr represent a baseline
at 50m and the slope of the reciprocal relation, respec-
tively. Clipping the range at 25m and 125m prevents
extreme values, i.e., unnecessarily high numbers at short
distances or non-robust low thresholds at large ranges.
Additional model details can be found in the respec-

tive tables for the LSTM approach (Table 4), PointNet++
(Table 5), YOLOv3 (Table 6), and the PointPillars method
(Table 7). The parameters for the combined model in the
Combined semantic segmentation and recurrent neural
network classification approach section are according to
the LSTM and PointNet++ methods.

Table 4 LSTM approach

Model part Implementation details

Clustering Filter and modified DBSCAN with parameters: εxyvr=1.04, εvr=1.03, εt=0.25, Nmin,50=3.87, vr,min=1.00, αr=0.99

Feature Extraction 21 individually optimized feature vectors from a feature list of 98 handcrafted features (full list in [15])

Classification Ensemble 15 OVO + 6 OVA classifiers with customized feature vectors

LSTM Classifier Single LSTM layer with 80 cells followed by a softmax layer, learning rate 10−3

Random Forest Classifier 50 trees, Gini impurity, max split
√
feats., no restrictions on depth or split amount

Class Proposal Proposal equal to clusters, ensemble score defines class decision and confidence level
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Table 5 PointNet++ approach

Model part Implementation details

Preprocessing Random up-/down-sampling to 4096 points

Architecture Three MSG and FP modules, parameters adopted from [13]

Clustering Class-sensitive filtering and clustering, cf. Semantic segmentation network and clustering section

Class Proposal Class label via cluster point voting, confidence equal to mean posterior for that class

Table 6 YOLOv3 approach

Model part Implementation details

Grid Mapping 3 maps: max amplitude, min and max Doppler map, 608 × 608 cells (0.164m)

GridMap
Postprocessing

Use cell population to propagate highly populated cells to neighbors, skew heavy-sided Doppler values, cf. Image object
detection network section

Architecture YOLOv3 base implementation from [73], learning rate 10−5, decay by a factor of 10 every 250k iterations, anchors: [(42m,
46m), (33m, 17m), (14m, 30m), (20m, 5.1m), (4.6m, 12m), (11m, 12m), (7.0m, 5.6m), (3.3m, 3.3m), (1.4m, 1.5m)]

Class Proposal Top 200 NMS boxes @ IOU 0.5, proposal equal to points within predicted boxes

Table 7 PointPillars approach

Model part Implementation details

Architecture Max points N=35 and max pillars P=8000 (edge length 0.5m). Loss weights adjusted to βobj=2.5, βloc=0.5, βsiz=2, βang=2
(axis-aligned βang=0), and βcls=0.5. Learning rate 3 · 10−4, 10 anchors: [(6.1m, 18.0m), (2.4m, 15.3m), (2.8m, 7.6m), (1.5m,
4.4m), (0.6m, 1.5m)]. Anchors used in original form and rotated by 90◦ . Pos./neg. IOU thr. 0.5 / 0.2

PointPillars++ Backbone replacement by Darknet-53

Class Proposal Top 200 NMS boxes @ IOU 0.5, proposal equal to points within predicted boxes
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Abbreviations
AP: Average Precision; BEV: bird’s eye view; BG: background; CNN:
convolutional neural network; FN: false negative; FP: false positive; FPPI: false
positives per image; IOU: intersection over union; LAMR: log average miss rate;
LSTM: long short-term memory; mLAMR: mean log average miss rate; mAP:
mean Average Precision; MR: miss rate; NMS: non-maximum suppression; OVA:
one-vs-all; OVO: one-vs-one; Pr: precision; Re: recall; TN: true negative; TP: true
positive; VRU: vulnerable road user
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