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Although Artificial Intelligence (Al) has become a buzzword for self-organizing IT applications, its relevance to
software engineering has hardly been analyzed systematically. This study combines a systematic review of previous
research in the field and five qualitative interviews with software developers who use or want to use Al tools in
their daily work routines, to assess the status of development, future development potentials and equally the risks
of Al application to software engineering. The study classifies the insights in the software development life cycle.
The analysis results that major achievements and future potentials of Al are a) the automation of lengthy routine
jobs in software development and testing using algorithms, e.g. for debugging and documentation, b) the
structured analysis of big data pools to discover patterns and novel information clusters and ¢) the systematic
evaluation of these data in neural networks. Al thus contributes to speed up development processes, realize
development cost reductions and efficiency gains. Al to date depends on man-made structures and is mainly
reproductive, but the automation of software engineering routines entails a major advantage: Human developers
multiply their creative potential when using Al tools effectively.
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Introduction

Artificial intelligence has become a buzzword in popular
and academic media. The prophecies and futuristic leg-
ends connected to artificial intelligence are multiple and
well known: Computers will take over classical human
engineering and development jobs [1], could even fully
substitute human productivity by intelligent automation
[2] and - in the worst case — govern a machine domi-
nated brave new world [3]. In such scenarios classical
software engineers would possibly become obsolete since
machines could take over their tasks. Software would
possibly not require any external engineering any more
but develop self-reliantly [4—6]. Karpathy (2017) calls
neural networks as a “software 2.0” which in the long
run will supersede classical programming, like Java or
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C++, which mainly done by humans: AI could enable
computers to self-reliantly produce code and solve prob-
lems [7].

To date, however - as compared to these future visions
- artificial intelligence is in its beginnings, which shines
up when searching for a recognized definition of the
term. Intelligent biological and ideally intelligent artifi-
cial systems (e.g. machines) dispose of the ability to
“think and learn” [8, 9]. Differential psychology distin-
guishes intelligence - as rational reflection - from other
forms of mental activity, like emotionality and creativity.
Factor models analyzing intelligent behavior count
spatial perception, numerical abilities, memory, reason-
ing as well as verbal expression and interpretation
among intelligent mental abilities [10, 11].

Artificial intelligence today is an umbrella term used
for a set of computer-based routines which approximate
human intelligence in the way that alternatives are
weighed, new information is considered and integrated
into existing data structures and new conclusions are

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42467-020-00005-4&domain=pdf
https://orcid.org/0000-0002-6724-5542
https://orcid.org/0000-0001-8531-3273
http://creativecommons.org/licenses/by/4.0/
mailto:marco.barenkamp@lmis.de

Barenkamp et al. Al Perspectives (2020) 2:1

reached by inference from qualitative or quantitative
data or probabilistic estimates [12].

Al routines differ in their self-reliance and level of
automation i.e. in the extent to which they require hu-
man support or ask for human feedback before they im-
plement decisions or information [12]. They use a series
of technologies. Among the most important are big data
analytics, machine learning and more specifically, artifi-
cial neural networks [13, 14]:

e Big data analytics retrieves large amounts of data
from diverse sources and evaluates these using
particular queries and statistical evaluation routines
[15]. Artificial intelligence automates information
gathering and evaluation [16].

e Machine learning is a method of data analysis
directed to identify patterns in unstructured data
sets, which enables machines to draw conclusions
and take decisions based on these classifications
[17].

e Artificial neural networks frequently comprise
several layers of mathematical routines which
collect, classify and arrange data into new sets in
order to find “correct” parameters or solutions.
Neural network based deep learning is an approach
of information integration and selection across
several logical layers of an electronic information
network [18, 19]. In that process, large data sets are
repeatedly evaluated and interconnected using
statistical and probabilistic routines [20] to generate
comprehensive and systematic information and
decision frameworks [21]. Algorithms are used to
train neutral networks (backpropagation, variants of
gradient descent). Neural networks can be
distinguished by the type of data that they use
during training or test time (labeled, unlabeled,
categorical, numerical), their loss/error/cost/
objective function, their connection patterns, and
their optimization algorithm.

Applying these technologies artificial intelligence
manages complex tasks like natural language process-
ing [22], i.e. the understanding and translation of hu-
man language into other languages and codes, or
computer vision, i.e. the visual perception, analysis
and understanding of optical environmental informa-
tion [23].

Classifications of Al in software engineering in
earlier review-based studies

At first sight, Al application in software engineering seems
a contradiction in terms since artificial intelligence is
about routinizing operations by relying on “intelligent ma-
chines” while software engineering, is a creative and
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knowledge intensive activity, usually involving human ex-
perts. At second sight however, creative processes in soft-
ware engineering could be effectively supported by
machines, which backed by self-optimizing algorithms
take over organization and optimization tasks [24]. Artifi-
cial intelligence, understood as machine-based perception,
reasoning and interpretation of environmental and mental
constructs [25, 26], could multiply the approaches and
strategies of software engineering, i.e. the systematic ap-
proach to the analysis, design, assessment, implementa-
tion, test, maintenance and reengineering of software [27].

To discuss the potentials and limitations of Al for soft-
ware engineering, categories describing the impacts of
Al is useful. Previous reviews in the field use various
classifications, which are systematized as object-related,
function-related or process related in the following:

Object-related definitions of Al refer to the (usually
complex) performance output artificial intelligence pro-
vides: Lu et al. [28] explain the relevance of Al for robot,
automated driving, information and communication
technology. Al equally supports game programmers [29,
30] and language experts in the development of transla-
tion programs and computer languages [31-34]. Classi-
fying Al technologies by the output they generate entails
the difficulty that diverse Al functionalities interact to
produce a certain technical result. These are usually
hard to understand and to differentiate for outsiders not
involved in the development of the software and coding
process.

Function-related classifications of Al in software en-
gineering refer to the technologies of Al applied in the
software engineering process. Diverse function-related
classifications of AI have been suggested. Most earlier
review-based studies with a technical focus extract cer-
tain fields of Al application in software engineering from
earlier more specific discussions, which are evaluated
qualitatively or quantitatively: Jarrahi [35] for examples
sees the main potentials of Al in software engineering in
language processing i.e. the interpretation and recogni-
tion of human language), machine learning (the analysis
and adoption of work flows) and machine vision (stra-
tegic and target focused machine problem solution).
Similarly, Muenchaisri et al. [13] explain the AI func-
tions, e.g. machine learning, neural network, and natural
language processing. Savchenko’s et al. [14] review of 54
studies identifies the fields of big data and IoT technolo-
gies, programming and design assistance tools, machine
learning, knowledge management and recommendation
tools and system analysis tools, based on a more system-
atic quantitative classification of previous studies.
Function-related classifications of Al in software engin-
eering are empirically founded but risk that so far undis-
covered domains, which Al could plausibly support, are
neglected, since these are not yet explored empirically.
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Similarly, limitations of Al in particular domains could
be overlooked if no empirical analyses on these prob-
lems are available.

Process-related classifications of Al in software engin-
eering refer to the stages of software development and
analyze to what extent Al can support software engin-
eering at the respective stage. This approach is apt to
prevent the bias of neglecting Al limitations and devel-
opment requirements, functional classifications are sub-
ject to. Only two reviews using process related
classifications have been identified: Sorte et al. [36] and
Padmanaban et al. [37] suggest to classify Al applica-
tions according to three stages of the software engineer-
ing life cycle: the software development, testing and
deployment and maintenance phase. Their analyses
however lack topical sources, systematic data research
and in result are incomplete concerning the discussion
of opportunities and limitations of the technologies.
They are rather explorative than systematic.

Methodology

Research contributions

This study systematizes and empirically founds Padma-
naban al.’s [37] and Sorte et al.’s [36] approach of classi-
fying applications of Al for software engineering based
on the software engineering life cycle model. It amends
on earlier review-based research in three crucial points:

1. It intends a more differentiated discussion of the
impact of Al on a more comprehensive model of
the software development life cycle (compare
Fig. 1).

Stage 1

Planning

Stage 6

Maintenance

The Software
Development

stngom Life Cycle

Testing and
Integration

Stage 3

Design

Stage 4

Implementation

Fig. 1 Software Development Life Cycle (illustration adapted
from [38])
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2. As compared to earlier studies on the relevance of
Al in software engineering, which are mainly
focused on the potentials of the technology, this
study equally discusses possible limitations based on
a technical appraisal of available Al technologies.

3. Objectives 1 and 2 require a more comprehensive
method than a pure review: Earlier reviews in Al in
software engineering are incomprehensive
concerning the role of Al across the software
development life cycle, since they focus on
individual technologies.

This study uses a mixed method approach to realize a
more comprehensive perspective. It combines a review
of more than 60 previous studies in the field and own
empirical expert interviews. The exact methodology is
described in section 3.3.

Theoretical framework

To implement the review a six-stages-model of the soft-
ware engineering life cycle is referred to, which has
found broad application in academic software engineer-
ing literature [39-41] and software development practice
[42, 43]. It comprises the stages of project planning,
problem analysis, software design, implementation in
software code, software testing and integration and soft-
ware support and maintenance (Fig. 1).

Mixed-method approach

To assess the opportunities, limitations and potential
risks of Al applications at the six stages of the life cycle
comprehensively the study relies on two data sources —
a systematic review and qualitative expert interviews.
This combined qualitative research strategy is useful for
issues which are at an early stage of systematic explor-
ation, particularly, when established categories are not
yet available, but still have to be developed [44]:

The systematic review of prior empirical studies expli-
citly refers to experiences with AI application at the re-
spective stages of the development life cycle. The review
includes more than 60 publications in peer-reviewed
journals and conference papers published between 2010
and 2020, to ensure topicality and academic quality of
the results. The review results are evaluated by stage of
the software development life cycle.

Since the review results are mainly technical and fre-
quently positivistic, further practice experiences are use-
ful for a critical reflection of the status and future
potentials of Al in software engineering.

To provide a validated and critically forward-thinking
analysis expert-interviews with software engineers in-
volved at different stages of the software development
life cycle and in different fields of engineering [45] are
conducted to accomplish the review results. To avoid a
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Table 1 Characteristics and levels of education of the interview
participants

Characteristics Cohort (n =5)
Age in years 29 to 37

Sex 4 male, 1 female
Average years of work experience 9.2

Average number of software companies worked for 36
Average number of software products developed 18.5
Level of Education
Bachelors 1
Masters 3

Doctorate 1

bias towards the potentials of Al, explicitly software en-
gineers who are well informed on but not directly in AI
development but in general software engineering have
been recruited [44]. The interviewed experts, four men
and one woman, are aged between 29 and 37 and all
have studied computer sciences. Their average experi-
ence on the job is 9.2 years and the all have worked for
several software companies and have developed between
9 and 20 software products (Table 1). Four from five in-
terviewees rank themselves as excellent (2) or experi-
enced (2) experts in AI technologies due to their
practical experience on the job. Interviewee five indicates
average knowledge in the field.

The interviews are semi-structured and audio-
recorded and transcribed verbally (appendix). The inter-
view questions explicitly refer to the stages of the soft-
ware engineering life cycle but allow experts to detail
the relevant fields and the relevance of Al at these stages
according to their own impetus and experience. This
strategy avoids an interviewer’s bias concerning focus
and interpretation of Al potentials and risks [46]. The
interviews are evaluated in comparison and with regard
to perceived opportunities, limitations and future poten-
tials of Al at the stages of the software development life
cycle.

The integration of review results and interviews pro-
vides a new technically founded but still critical perspec-
tive on the potentials, limitations and development
requirements of Al in software engineering.

Al in the software engineering life cycle

The review results on the potentials, limitations and de-
velopment requirements of Al applications in software
engineering are presented by software development life
cycle stage in the following sections:

Al in software project planning
At the stage of software project planning software devel-
opers and clients come together to determine the project
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objectives and customer requirements [47, 48] Software
development scheduling and planning is of crucial im-
portance to ensure the technical effectiveness and eco-
nomic efficiency of software projects [41].

Search-based software engineering is involved with the
optimization of project targets e.g. costs, duration and
quality under certain constraints and has originated in
the late 1990ies. While early algorithms were based on
conventional linear programming, increasingly coeffi-
cient interdependencies, non-linearities, several decision
layers, dynamic conditions and uncertainties have been
included in the models [49]. Growing complexity of de-
cision layers and the reference to previous experiences
and documentations in external data-bases justify the
label of artificial intelligence which is increasingly
assigned to innovative scheduling systems:

Duration and cost of projects are contradicting goals
at first sight and human planners struggle to harmonize
both objectives. Al tools are useful to support this
process [50].

Task assignment in the project planning phase is an
issue of conflict for developers and project planners and
optimal task, time and budget allocation regularly exceed
human planning capacities [51]. Artificial intelligence is
useful to support software project management at the
stage of task assignment and human resource allocation.
Conventional scheduling models face the challenge of a
very broad search space, comprising multiple input fac-
tors and scenarios and usually have to make simplifying
assumptions to deliver reproducible results [52]: Al algo-
rithms based on non-linear and self-optimizing algo-
rithms, like ant colony optimization can solve such
problems successfully by iteratively reducing decision
complexity [53].

Fenton et al. [54] suggest a Bayesian network algo-
rithm for the simultaneous optimization of cost and
quality outcomes. Other than conventional optimization
models, Bayesian models are able to integrate large
amounts of co-determiners and coefficients and cope
with missing and uncertain data and subjective judge-
ments. The Bayesian network integrates several levels of
cause and effect interrelationships. Stochastic models are
used to predict uncertain future conditions. Dynamic
Bayesian networks add a time-dependent variable to the
model to modify the coefficients and determiners de-
pending on previous developments. Bayesian models re-
quire an exact mathematical pre-formulation of the
problem set and thus depend on prior human planning
and problem analysis.

More recent Al scheduling models rely on self-
optimizing iterative algorithms to avoid this problem:
Mahadik [52] and Han et al. [53] use a Max-Min Ant
System algorithm in Software project planning to
minimize the cost and duration of the project by



Barenkamp et al. Al Perspectives (2020) 2:1

assigning tasks adequately. Han et al’s [53] ant colony
optimization algorithm approximates ideal work assign-
ment iteratively and delivers an adaptive time and func-
tion plan (PERT and Gantt). Mahadik’s [52] ant
algorithm provides a plan in the form of a task list and
an employee allocation matrix which simultaneously op-
timizes employee allocation and task scheduling. Stylia-
nou & Andreou [51] compare the optimization results of
several algorithms in multi-objective task optimization
with cost and duration targets in diverse case studies
and find Al based algorithms superior to conventional
linear planning. Peischl et al. [55] suggest an expert sys-
tem which is able to select an ideal planning routine de-
pending on the project characteristics. It refers to a
knowledge base of earlier projects and uses a constraint-
based reasoning mechanism to select and compute rele-
vant items for project task definition.

Athavale et al. [56] use Al to predict the interactions
between human entities and their environment in soft-
ware project operation in order to realize an ideal as-
signment of tasks and to maximize team performance.
The model considers human personality traits and
affective states as well as competencies, learnability and
individual interactions to compose performing teams as
measured by output quantity and development speed.
The routine is adaptive to modifications like team
changes, work force failure and illness. Practice perform-
ance proofs in a real-life team context are outstanding.

Chicano [50] integrate algorithms for task and func-
tion scheduling under cost and duration objectives into
an adaptive AI model which relies on an external project
archive to select a scheduling algorithm adequate to the
problem set. Five multi-objective solver algorithms are
compared and tested in order to optimize their applica-
tion in a multidimensional scenario space.

Summing these results up, to date, Al requires human
assistance to select an adequate planning algorithm for
the respective problem set. The practical application of
AT algorithms for devising and scheduling new projects
is yet to be done.

Al at the stage of problem analysis

At the stage of problem analysis in the software develop-
ment life cycle, the problem set is defined in terms of
software tools and development requirements by the
software development team [41, 47, 48]. Computers have
long been employed for problem analysis and the com-
pilation of big data. Analytical Al systems are more
comprehensive in the complexity of statistical ap-
proaches and dispose of embedded self-reliant learning
algorithms that distinguish patterns based on a series of
similar or recurring characteristics to enable new cre-
ative solutions Al analytics takes recourse to external
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data bases to get “informed” and further develop estab-
lished routines [57].

AT analytics is partly applied in at the stage of problem
analysis in software engineering e.g. to predict of project
success and risk an essential routine required to assess
and select prospective software projects:

Elzamly et al. [58] use discriminant analysis to predict
and classify risk factors in software development. Dis-
criminant analysis is based on a weighted linear model
that includes interrelationships between the risk factors
and moderators. Artificial intelligence can be used to
calculate risk weights in a dynamic process and cluster
risk factors. Hybrid technology road mapping is an Al
based planning device applied to assess the potentials
and risks of novel technologies and could successfully be
applied in the analysis and selection of software projects.

Zhang et al. [59] integrate qualitative and quantitative
data to a target-driven technology-road-mapping decom-
position model which relies on an expert knowledge data
base and uses semantic and fuzzy set analysis strategies
in order to evaluate project perspectives based on mul-
tiple interdependent determiners.

In future, AI systems could be developed further to
decompose complex real-world problems into their
fuzzy elements and probabilistic components to struc-
ture program codes managing these routines. Software
engineering problems can be reformulated as
optimization problems to enable computerized solutions.
So far however, the structuring of the problem set has to
be done by humans, while machines can only reproduce
predefined structures and apply probabilistic routines to
assess uncertainties [60]. Further development in the
field of software problem analysis is required to develop
analytic competencies in machines.

Al at the stage of software design

In the design phase, the software project is clearly struc-
tured and development tasks are assigned [41, 47,
48]. According to Karpathy [7], software 2.0, used syn-
onymously to neural networks and artificial intelligence
in his blog, will develop own program codes, based on a
simple input (the problem set). The code will gain in
complexity in the process of neural network processing
and will not have to be understood or reviewed by hu-
man beings any more. Visual recognition, speech recog-
nition, speech synthesis, self-driving car routines and
gaming are early manifestations of self-improving and
developing program codes.

Al search takes a supportive function in the design of
computer games for instance and is applied to model,
generate or evaluate content and agent behavior in the
game story. Al simulates play throughs and thus contrib-
utes to enhance and develop the game, create believable
actors and a conclusive computational narrative [61]. Al
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software is further employed to continuously test new
game routines for practicability and has been employed
to train future developers in a university environment
[62].

When developers are confronted with probabilistic
problem sets and have to develop codes for ill-defined,
noisy and incomplete information environments they
rely on the stochastic approximations and iterations Al
provides [60].

Although neural networks are self-enhancing, they still
operate on man-defined routines in the phase of soft-
ware design. There are tools for specifying and structur-
ing particular problem sets, but the work strategy and
the actual design of the software still has to be defined
by the human engineer [63]. Although computer aided
software engineering, which supports the process of soft-
ware design by automated activities is common practice
today, artificial intelligence implementation still requires
clearly structured tasks and the support of human devel-
opers to get established. Steps that can be run automat-
edly have to be defined and integrated in an automated
development environment package, which can then per-
form these functions self-reliantly [64].

Artificial intelligence could in future enhance
computer-aided software engineering competencies by
intellectual skills and might substitute human activity in
that process to some extent [64]. Future Al systems
could, according to Lake et al. [63], build causal models
that self-reliantly explain real-world phenomena instead
of recognizing pre-programmed patterns only. They
should be self-adjusting and self-learning in-stead of just
optimizing pre-defined routines. The interaction of Al
and SE could unleash new creativity potentials in
humans by automating routine tasks [65].

Al at the stage of software implementation
Software implementation comprises the actual coding
process of the software application [41, 47, 48].

Neural networks have been developed to assist soft-
ware coding: Processing natural language into software
code is a capability of which has been researched since
the 1980ies and with increasing complexity of pattern
recognition routines has advanced to class-model
builders in recent years [66]. Gathered data are trans-
formed into contingent vectors and are used for model
training to interconnect code levels systematically [21].
Al software generates prototypes of codes from human
language, which then are refined and adjusted by human
programmers [66]. Al Classification strategies are useful
to directly transform human language and real-world
phenomena into pieces of code and software models
[67]. Husain et al. [68] develop an Al for automated se-
mantic code search, ie. the retrieval of relevant code
from a natural language query. The software contains
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several million functions for automatic queries form nat-
ural language , which dissect and systematizes human
language elements.

Recently, previously established linear statistical
models (which are no artificial intelligence), which make
part of neural networks, are partly replaced by autoen-
coding mechanisms, which apply non-linear routines
[21]. Autoencoders use a feature fusion process which is
trained to use certain elements in order to realize de-
sired characteristics of a data set, e.g. reduce dimension-
ality, reduce redundant information or select and classify
certain classes or categories. Autoencoders consist of
several (at least two) layers. The hidden layers inform
and train the consecutive ones based on an underlying
objective function. The selection of items or other tasks
are performed by assigning each selected items weights
and bias probabilities, to determine the relevance of the
item to the learning process [21]. The so trained neural
network can ideally support software engineering by
providing comprehensive code elements for certain
problem sets. Deep learning strategies thus facilitate and
speed up Software development processes [69]. In soft-
ware coding, deep learning and autoencoding take over
computational search and optimization, probabilistic
reasoning functions as well as classification routines,
coding and prediction functions [60]. Autoencoders can
reduce feature sets by fusing several codes [21]. The pro-
gramming language Swift uses iterative optimization
processes which are mathematically implemented by
analyzing and optimizing the incremental change of an
existing function, to the desired result. In this way, a
gradual approximation to defined targets is realized in
an automated mathematical process [70].

Today, Al in software implementation however still re-
quires specific and well-defined problem sets e.g. equa-
tions to fit and probabilistic environments for
simulation. Open analysis in the intention to discover
new ideas, new parameters to be optimized or even new
problems remains a field of creative human mental ac-
tivity so far [60].

In future, artificial intelligence could be developed to
produce more coherent codes and possibly even imple-
ment the code into existing routines self-reliantly. Feldt
et al. [12], however, see the risk that software generated
automatically could not be understood by human beings
anymore and could damage existing routines. Al could
ignore risks involved with the automated implementa-
tion of autogenerated software codes. Mechanisms to
control automatic programming routines will have to be
developed to avoid Al related coding risks [12].

Al at the stage of software testing and integration
In the testing phase, the developer and client test the
functionality of the software product in practice, identify
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and analyze errors and tailor the product to practice re-
quirements [41, 47, 48]. Al uses strategies of pattern rec-
ognition and machine learning to support software
testing and integration [71]:

Automated software testing refers to the transference
of a certain sections of a program into a script, which is
then repeatedly executed by a machine, which then col-
lects, stores and interprets the test results [72]. Al Pro-
gram Browsers check existing codes for necessary
changes automatically and suggest changes to the pro-
gram code in order to make it work [67]. Probabilistic
routines support error detection by predicting the likeli-
hood of failure occurrence based on experiences with
large data sets. According to Perreault et al. [73], Al
based software defect analysis (neural networks) a out-
performs classical testing routines.

Software integration refers to the compilation of differ-
ent codes into a uniform software system [74]. SOA aim
at integrating open software standards into firm specific
solutions. Rodriguez et al. [75] refer to service-oriented
architectures (SOA) to explain how Al can support this
process. Al assists developers in integrating different
platforms into service-oriented designs and enhances the
management of generic quality attributes. Al captures
conversation semantics prevalent in different web -based
architectures and identifies unifying elements by pattern
recognition. Al discovers similar architectures and elimi-
nates redundant code units in the SOA and thus sup-
ports developers in clearing up software interfaces so
that a contingent SOA tailored to the requirements of
specific businesses results [75]. Fuzzing is an automated
software testing technique that is not itself based on Al
but sometimes combined with Al elements. Fuzzing uses
invalid, partly incomplete or random data as inputs to
test programs systematically and evaluates the effects,
such exceptions to routines take on the program course.
The fuzzing results are summarized in the form of an
output protocol [76]. Xie et al. [78] and Liang et al.
[79] use deep neural networks (DNN) to combine sev-
eral error routines in order to identify complex code de-
fects. The DNN adapts to program reactions in a
metamorphic way in order to identify rare and linked er-
rors and systematically enhance code quality. Al fuzzers
prove superior to manual or hybrid fuzzing routines.

Although automated Al based testing and integration
functions today are self-improving and use dynamically
changing routines, to date human coders are required to
define the testing process and requirements to the pro-
gram, while the test implementation can be done by the
machine. A survey among 328 experts comes to the con-
clusion that about 35% assume that a complete substitu-
tion of human programmers by machines in the testing
phase will never be possible [79]. Al however abbreviates
the testing process and saves manpower to perform,
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document and evaluate the tests. Time to market and
development costs are they reduced [80]. Human control
and intervention to date remains necessary to prevent
erroneous testing routines and to critically reflect the
validity and reliability of test results [72].

Al in software maintenance

In the maintenance phase the software company assists
the customer in product application, provides regular
upgrade and makes further adjustments upon client re-
quirement [41, 47, 48].

Al instruments successfully support the maintenance
and updating process of software to changing require-
ments in an internet environment [82].

In the maintenance phase, Al can support the classifi-
cation of user queries, which is useful to classify and dir-
ect software users depending on their query pattern
(Suresh et al. [82].

Filieri et al. [81] develop a runtime decision engine to
adapt an application to respond to unpredictable events.
The self-adaptive system continuously reconfigures soft-
ware components depending on network requirements.
This routine saves human support and updating activity
and ensures on-time adaptivity, security and program
stability.

Using principles of pattern recognition and machine
learning, Al equally supports software modernization.
In ancient codes, structural information is frequently
lost due to poor documentation. Al pattern recogni-
tion techniques are useful to extract coherent sets of
code. Machine learning functions are used to trace
and check their functionality [83]. Pattern tracing
functions extract redundant elements from codes and
automatically generate implementation artifacts and
test software functions [84].

Al neural networks that are trained by deep learn-
ing algorithms are useful for software security assess-
ment. Al identifies and simulates attack patterns to
discover security gaps, defects and errors in a targeted
way [69]. Neural network error and security gap
tracking works by slicing software code into formal
routines prone to typical attack patterns in a system-
atic way and exploring a broad set of viral strategies
to each element. Neural security assessment networks
reach an accuracy of more than 90% in an empirical
test on a network architecture [85].

In future, Al software systems could be useful to man-
age critical large-scale software infrastructure, like
servers, and adapt these to environmental changes or
new unexpected conditions. To date, however, there is
no single Al system that could manage this task self-
reliantly [86] (Davis et al., 2016). Lacking human under-
standing of autonomously regulating Al units could in-
duce self-enforcing cycles which would be beyond



Barenkamp et al. Al Perspectives (2020) 2:1

human control risks. Unmanaged Al autonomy could
entail unpredictable risks to electronic and even physical
infrastructures [12].

Empirical results

From the review of previous studies in the field of Al in
software engineering it is obvious that there is significant
uncertainty on the remaining potentials and risks of Al
Al comprises several novel technologies and their devel-
opment lines are still open. To accomplish and validate
the review results on potentials, risks and future per-
spectives of Al in software engineering, interviews with
five software developers according to the scheme de-
scribed in chapter 3 have been conducted and are evalu-
ated comparatively in the following.

Opportunities of Al for software development

The participants agree with earlier studies that as of
today Al tools have facilitated the software development
life cycle. In correspondence with the review, the inter-
view results on opportunities of Al are evaluated by life
cycle stage.

Project planning

As of today, Al indirectly enhances project planning
mechanisms, according to participant 2. The analysis of
data pools of earlier projects provides realistic estimates
of failure quotas and iteration routines in earlier projects
and locates potential areas of difficulties. New software
projects can be planned more diligently and customer
time and cost expectations are met more reliably on the
basis of big data analytics.

Participant 4 explains that Al already has eased the
prediction of development timelines and enhances esti-
mates of the necessary development steps, which will
provide customers as well as engineers with higher clar-
ity on project cost, timing and outcome in future.

Problem analysis

Participant 3 esteems predictive analysis equipment
which as of today accesses large online data pools to
predict trends and outcomes of new applications. Pre-
dictive analyses enable software designers to plan their
products more proactively and adjust to new techno-
logical trends in their emergence. Big data analytics has
improved the competitiveness of his company in an in-
creasingly dynamic software market.

Software design

Al, according to participant 1, provides structured access
to immense amounts of data which are retrieved from
earlier similar projects, for instance. The number of ex-
pected bugs and their location is reliably predicted on
that basis and error avoidance routines are established
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more effectively. Al has sped up the design speed of soft-
ware projects, according to participant 2, by enabling
programs to execute routine tasks, which previously had
to be done by human developers. These use their freed
creative resources for software design to a larger extent
now.

The automation of coding and testing routines using
AT has accelerated ideation and planning processes, par-
ticipant 2 and 3 explain. AI thus has got indirect positive
effects on the creative processes of software definition
(participant 2). Software designers’ creative capacities are
strengthened since Al takes over pain-taking daily rou-
tines (participant 3).

Software implementation and debugging

Participant 1 is working with AI based programming as-
sistants for Kite for Python which automatically docu-
ment software codes and provide debugging routines
that offer automated suggestions for improvement or de-
liver code examples for particular problem sets. The tool
has reduced software development times and improves
output quality. Critical developer resources are freed for
more creative jobs than debugging and routine
memorization.

Participant 2 estimates the high quality of AI for bug
detection and the prediction of future test outcomes. Al
debugging instruments discover links and integrations
across data automatically, which eases the identification
of anomalies and possible inefficiencies in codes (Partici-
pant 4). The automation of software testing routines
saves development costs and facilitates the job of soft-
ware engineers (Participant 2).

Participant 3 is experienced with automated code
compliers, which support the transformation of high-
level programming language codes in machine-
executable instructions. Al guided compliers do this job
much faster than former manually directed compilers,
which enhances software development efficiency.

According to participant 5, Al improves the efficiency
of software delivery processes, it eases team collabor-
ation and the integration of customer feedback in code.

Software testing & integration

Deep learning and machine learning today enable sys-
tems to integrate apps more comprehensively and thus
support limited human reflection capacity (Participant
1). Instead of reading of lengthy documentations and de-
bugging codes, software developers today have gained
more freedom due to Al support. Participant 4 sees Al-
based testing and compilation software as a personal as-
sistant, providing him with the required hints and infor-
mation. Participant 5 agrees that Al greatly speeds up
the process of debugging according to his practice ex-
perience. Al tools trace bugs through the code and
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enable their systematic elimination. At the same time,
they predict errors early in the programming stage and
in this way enable programmers to prevent bugs in their
codes from the beginning. This technology is effective as
of today and will certainly further evolve in future.

Software maintenance

Al maintenance instruments could in future support
businesses in clearing their software products of redun-
dant features. Al tools today identify unnecessary and
redundant (double) routines and processes in the course
of automated run throughs. Al is more reliable and fol-
lows a more complex analytical approach than human
analyzers possibly can. While these tasks will be fully au-
tomatized in future, human engineers will gain creative
potential for planning and design tasks (participant 3)

Limitations of Al in software development

Participant 4 explains that software developers will keep
a leading and defining role in the development and im-
provement of software, since creative not just rationally
thinking minds are required to innovate in software so-
lutions. Al in his opinion can never be creative. Partici-
pant 5 agrees that developers can foresee and advocate
for change, while Al routines can only apply and process
existing knowledge. Participant 5 admits that the poten-
tial to draw on infinite data bases of knowledge is the
most fascinating promise of Al, however explains that
predicting the future of Al based on its present develop-
ment is impossible.

Certainly, software developers will be required to use
their creative potential to an even larger extent than be-
fore in order to avoid their substitution by machines for
routine jobs. Software developers have to keep innovat-
ing, improving and learning to use Al effectively in their
daily practice (Participant 2) and as participant 3 asserts
— certainly will have to be “smarter” in future in order to
use novel Al technologies to their potentials. Another
final limitation of Al-based software engineering is that
most tools are not available yet. We cannot evaluate
tools that might be available at some point in the future
with respect to their practical relevance.

Further development requirements to enhance Al
applicability in software engineering practice

The participants classify future potentials of Al and ex-
pected role of human software developers in that
context:

Participant 1 expects that Al will manage huge data
volumes even more effectively in the near future and
provide critical information to project structuring and
planning. Problems that become obvious in the process
of software development only today, will be avoided
from the beginning in future. The development of Al
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tools to more effectively access and structure informa-
tion stored in big data pools is preconditional to this de-
velopment (participant 2).

Software developers have got the challenging role of
utilizing Al technologies in engineering practice (partici-
pant 5). According to participant 1, the role of software
engineers is to expand their understanding for the “dis-
ruptive role of AI” [Disruptive technologies are innova-
tions, which fully substitute the success or market
advantage of an existing product and turn the invest-
ments of other market participants obsolete.]. Software
developers should understand themselves as creative in-
novators and leading parties in change processes. As
such they should welcome Al innovations in software
design and development (participant 5) and should pro-
mote enhanced Al application and integration. The ap-
plication of Al instruments in software engineering
meets the market requirement for self-adapting and self-
learning software products (participant 2).

Al can, according to participant 3 make software de-
velopment processes “faster, smarter and more efficient”.
The future potential of Al is high considering the fast
and eminent progress of software development in other
fields (participant 3). Participant 5 sees particular poten-
tials of AI for rapid prototyping, which could benefit
from big data analysis and neural networks. Al will fur-
ther facilitate the coding process by automatic routines
allowing to put language into code and or by recognizing
visual objects.

Although according to participant 1, theories govern-
ing software development will remain the same in the
future, AI has got the potential to speed up software de-
velopment and enhance development efficiency. Al pro-
grams could take recourse to knowledge resources
which due to their complexity and size are inaccessible
to the human mind and this knowledge will “upgrade
developers’ competencies (participant 1). According to
participant 5, the largest potential of AI lies in the
utilization of big data structures in the programming
process. The availability of a coding data base will enable
software developers to use their creative and innovative
potential to a larger extent and to the benefit of the final
software product.

Discussion
Summative integration of interview and review results
Table 2 summarizes technologies, achievements, limita-
tions and future development potentials of Al for the six
stages of the software engineering life cycle as available
from previous studies and the interviews. The review re-
sults are indicated by bullets and additional insights
gained from the interviews are indicated by checks.

The review has shown that the basic principles and tech-
nologies underlying Al supported software engineering are
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Table 2 Overview on review results by software life cycle stage
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Life Cycle Stage

Technologies

Achievements of Al

Limitations

Perspectives

Project
planning

Problem
analysis

Software design

Software
implementation

Software testing
& integration

Software
maintenance

« Search-based software
engineering

- Probabilistic planning

« Ant colony optimization

- Bayesian network
algorithm

- Self-learning algorithms
- Big data strategies

- Search based software
engineering
« Probabilistic planning

- Artificial neural networks/
deep learning

« Non-linear statistical analysis

- Probabilistic routines

- Big data
- Pattern recognition
« Machine learning

- Pattern recognition
- Artificial neural networks

« Cost & duration prognosis
and optimization

- Effective task assignment

- Efficient delimitation of
search and scheduling
space

« Improvement of quality
outcomes

« Improved project planning

« Usage of data pools of
pervious experiences

- Time and cost targets
are met

« Success and risk
prediction of software

- Evaluation of expert
knowledge information
pools

- Predict trends and
programming outcomes

« Analysis of conclusiveness
of code or story (in gaming)

« Test program logics

« Probabilistic analysis

v Structured access to

previous design patterns

v Free creative potential and

ideation process by taking

over routine tasks

- Natural language
processing into code

- Autoencoding routines

« Automatic debugging and
improvement routines

« Reduced implementation
times & costs

« Improved team
collaboration

« Checking and testing of
scripts

« Probabilistic error
prediction using big data

- Abbreviation and cost
efficiency of test process

« Integration of existing
programs (SOA)

- Efficiency gains by
automated debugging
& compiling

- Classification of queries;
evaluation of errors

- Self-adaptive software
routines

« Clear redundant code

« Speed up and ease
maintenance

+ Manual definition of
adequate algorithm
- No creative potential of Al

- Causal problem analysis is
done by man, while
machines only assist

« Basic structure is man-made
and only checked by machine
« Automated routines have
to be clearly defined
v Higher technical requirements
to developers

- Dependence on well-
defined problem sets and
man-prepared structures

- predefinition of control
routines is required

- Smarter developers are
needed to handle automated
routines

- Man-defined task sets and
structures are required
- Human control of results

- Selection of ideal planning

algorithm

- unleash creative potential in

human developers

- Rapid Al based prototyping

« Decomposition of complex

problem sets for systematic
analysis and optimization

+ Human like skills to interpret

real-world phenomena self-
reliantly by own learning

- Application as a

comprehensive data base

- Self-reliant coding and

routine implementation

- Loss of human control
- Big data as reference

- Higher self-reliance of

testing and integration

- Software developers as

innovation protagonists

- Higher self-reliance and

independence of
maintenance and repair
functions

similar across the life cycle stages. Artificial intelligence has
proven for the automation of routines and analytical pro-
cesses, when the fundamental structure and organization of
the process is clear and its implementation requires lengthy
calculation or the analysis of huge data volumes. However,
Al comes to its limits when novel insights are sought and

new problem sets are meant to be discovered and, innova-
tive routines have to be developed. These fundamental ac-
tivities so far remain at the hands of human designers and
developers. Future Al routines could become more self-
reliant if they could compose new tasks and solutions with-
out human support. However, this development would
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Maintenance

¢ Automatic code clearing
« Self-adaptive routines

Testing &
Integration

* Automated test routines

¢ Probabilistic error
prediciton

* Automated code
integration

Implementation
in code

Software ’ Software project

* Big data based
analysis

* Free creative
resources

Artificial

intelligence
in software
engineering

* Autoencoding

* Automatic debugging

* Improved team
collaboration

s

Fig. 2 Artificial intelligence tools in the software development life cycle

planning

* Predict problems & risks
* by expert systems

Problem analysis

¢ Structured access to design
patterns

* Free creative potential
of human developers

Software Design

entail the initially mentioned risks that man would lose un-
derstanding and control of machine-made routines and
electronic systems.

Comparing the review and the interview results, the
latter have specifically highlighted the capacity and fu-
ture potential of AI to support software developers
which results in important the economic opportunities
to software development companies:

Al tools support human developers by taking over routine
tasks at every stage of the software development life cycle:

e At the planning stage, Al supports data base search
to retrieve and structure information required for
planning processes,

e At the stage of problem analysis, Al is useful to
assess risk factors of software development process.

e At the stage of software design, Al searches and structures
previously developed similar codes and code snippets.

e At the stage of software implementation Al tools
transform human language into code and code into
machine language automatically.

e At the stage of testing and implementation, Al
provides automatic debugging and error tracing
routines and supports the integration of individual
software routines into comprehensive architectures.

e At the stage of software maintenance, Al is useful
for clearing and adapting old code to new
requirements.

The major potential of Al at the present stage thus is
the support of software engineering by taking over auto-
mated routines, while human developers gain time to
focus on the creative aspect of software engineering i.e.
the planning and design of new software concepts. This
work sharing between artificial and human intelligence
contributes to reduce development time, enhances soft-
ware quality output and thus increases the efficiency and
market success of software development companies.

The interview results thus accomplish the theoretical
understanding of the contribution of Al to software en-
gineering in the software development life cycle. The ap-
plication of Al instruments at every stage of the
development process results in an efficiency increase of
the whole process flow, as illustrated in Fig. 2:

Classification of empirical results in in the context of
previous research

The review and particularly the empirical section of the
analysis have thus accomplished the understanding of
the relevance of Al to the software development life
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cycle. By structuring the review of previous empirical
studies of Al in software development according to the
six stages of the software development life cycle, the
study has systematically explored, how AI supports every
life cycle stage by technical solutions. The so far limita-
tions of Al in software engineering have been discussed.
As compared to earlier reviews in the same field the ana-
lysis distinguishes by differentiating six life cycle stage
and elaborating on the concrete technologies relevant at
each stage. So far technology-oriented studies however
lack an analysis of the contribution of Al to the whole
software development process, since each team of au-
thors’ focusses in particular algorithms and routines.

The interview section of this study has contributed to
classify the technological advancements in the context of
Al in the software development life cycle. Interviews
with practitioners in the application of Al equipment in
program design and coding have illustrated how Al tools
save human developers’ efforts, development time and
cost at every stage and thus enhance the creative poten-
tial of development companies as a whole.

Earlier studies are partly blurred on the limitations and
future development requirements of Al, since they lack this
comprehensive perspective. This study has worked out that
at present Al in software development takes a supportive
function by automatizing routines based on big data analyt-
ics and lengthy calculations. Al to date is not creative in the
sense that new plans for software projects are suggested,
new problem sets are defined or new product ideas are sug-
gested. These functions remain at the hands of human soft-
ware engineers. But these benefit of the automation and
calculation speed of Al tools and gain time and mental re-
sources to focus on creative development tasks.

The interviewees see the future development poten-
tials of Al in software engineering rather in the perfec-
tion of the supportive functions of AI than in its
evolution towards own innovative and creative capabil-
ities. In this regard the interviewees distinguish from
some of the reviewed studies, which partly express the
hope that Al will in future be able to decompose com-
plex problem sets and develop humanlike skills of real-
world interpretation and self-reliant learning [57, 59,
64]. The divergence in the assessment of Al potentials
between technology focused empirical Al researchers
and the interviewed software developers, probably is a
matter of perspectives: Al researchers dispose of a deep
structural understanding of the theoretical capabilities of
neural networks. Software engineers are concerned with
involved with the daily problems and routines of coding
and the aptitude of running AI systems successfully to
solve their daily problems. To date, there is a divergence
between the theoretical understanding of what AI could
possibly achieve and the practical capabilities of available
Al programs.

Page 12 of 15

Practical development lines for Al development in
software engineering

The interview results provide important information for
software developers and development companies on the
relevance of Al and strategies of Al integration in the
business process, which are summarized in some bullet
points for management purposes here.

e Al is a future technology and can support every
stage of the software development life cycle by
automatizing data research, calculations, debugging,
compiling and software integration today already.

e Software developing companies benefit of the
application of Al tools which speed up development
processes by automation, improve team
collaboration by enhancing knowledge
documentation and interchange, save developers’
resources and time efforts and hence reduce
development costs while product quality improves.

e The most important aspect is the potential of Al to
free the creative and innovative capacity of human
software developers by taking over routine
functions. Neural networks have even proven
creative in practice tests, e.g. in abstract landscape
painting [87]. However, the combination of reason
and creativity and the combination of diverse
modalities and abstraction levels still make the
human software engineer much better than any
machine today. Development companies adopting
Al tools enjoy a competitive advantage by increasing
the innovation potential of their workforce.

Conclusions

Software developers and their companies however have
to fulfil some requirements to use the opportunities of Al:
Software developers have to continuously adapt their
competencies and qualifications to keep up with the dy-
namic and rapid development of Al tools in software en-
gineering. They have to be open minded to apply these
instruments in their daily work practice. Software com-
panies should encourage employees’ engagement by pro-
viding leadership support and making the necessary
investments in new Al programs and hardware
infrastructure.

Software developers who ignore the potentials of Al in
the software development life cycle and stick to routine
jobs, which are more reliably and cost-efficiently done
by automated routines risk being substituted and losing
their established jobs in the long run. In future, software
developers will require higher creative potential and
have to be smarter to compete with artificial intelligence.
Software development businesses rejecting the adoption
of Al risk being pushed out of the market by more in-
novative competitors who realize software products
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faster and at higher quality by relying on AI support. Al
is an emerging future technology in software engineering
and early adopters multiply their competitiveness.

Limitations and call for further research

Although the combination of systematic review and
practitioner interviews in this study has developed some
visionary insights on the potentials of Al, which are rele-
vant to developers and mangers alike, the study results
remain explorative and require further empirical founda-
tion: The topic Al in software engineering is too broad
to be discussed comprehensively within the framework
of a journal article and the range of about 60 studies
evaluated for the review is not sufficient to analyze all
relevant Al technologies, their potentials and limitations
comprehensively. Future studies should focus on select
stages of the value cycle in order to deepen and validate
the qualitative results of this review.

The interview section comprises five in-depth inter-
views with software developers, which of course is not a
representative number. The selection of the interview
participants necessarily is arbitrary to some extent and
the participants have not been informed on all potential
AT technologies since they are software developers not
Al researchers in their daily practice. Future research
could amend on this problem by bringing Al researchers
and software developers together in discussion rounds
and assess to what extent developers’ requirements are
already met or can be supported by Al technology in fu-
ture. Such an approach would at the same time forward
Al research in the field of software engineering. More
extensive collaboration between both research fields is
desirable and necessary to make Al a comprehensive
technology for software engineering in future.
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