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Abstract 

Background: Major efforts have been made in the last decade to develop and improve therapies for proximal spinal 
muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasem-
nogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule 
modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration.

Main body: Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-
mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low 
levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss 
of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell 
culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been 
introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part 
discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson’s 
and Alzheimer’s disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and 
gene therapies for these disorders.

Conclusion: RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders 
such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson’s and Alzheimer’s disease. The experiences 
made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spec-
trum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
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Background
Spinal muscular atrophy (SMA) is the most common 
form of a lethal pediatric neuromuscular disorder with 
autosomal recessive inheritance. It is caused by homozy-
gous loss of function (LOF) mutations of the Survival 
Motor Neuron 1 (SMN1) gene [170] on human chromo-
some 5(5q13.2). Thus, therapeutic approaches so far have 

focused on restoration of SMN expression. The specific 
architecture on human chromosome 5 with a second 
SMN gene (SMN2) is responsible for the cellular produc-
tion of low levels of SMN protein that are not sufficient 
to maintain structure and function of motoneurons. 
SMN2 differs from SMN1 by a single C to T transition 
in exon 7, leading to increased skipping of exon 7 [180, 
206]. Thus, approaches to suppress alternative splicing of 
this exon and an AAV9-based gene therapy for enhanced 
expression of the SMN protein in motoneurons have led 
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to success in treating degeneration of motoneurons in 
this disease.

Restoration of protein expression is also a central goal 
for therapy development in Duchenne-and Becker-type 
muscular dystrophies [52, 72, 155]. Thus, oligonucle-
otide-based therapies as well as gene therapies are cur-
rently tested in these disorders. Experience with such 
therapies is rapidly progressing, and this also has impact 
on therapy development for other neurodegenerative dis-
orders such as amyotrophic lateral sclerosis (ALS). Oligo-
nucleotide therapies do not exclusively offer the chance 
to increase expression of proteins such as SMN, but also 
to repress expression of mutant proteins with pathologi-
cal function in other neurodegenerative disorders. This 
offers further technical opportunities for interference 
with other neurodegenerative mechanisms.

Our review summarizes the development of antisense-
oligonucleotide (ASO) and gene therapy for SMA, based 
on the literature search via PubMed.gov and released data 
from https:// clini caltr ials. gov. The second part addresses 
opportunities and challenges associated with further 
development of these approaches for treatment of other 
neurodegenerative disorders and muscular dystrophies.

Spinal muscular atrophy (SMA): disease 
mechanisms and identification of targets 
for therapy
Disease presentation and classification of spinal muscular 
atrophy (SMA)
The severe form of proximal spinal muscular atrophy, 
also called Werdnig-Hoffmann disease [122, 123, 316], 
is the most common monogenetic lethal pediatric neu-
romuscular disorder. A milder form of proximal spinal 
muscular atrophy also exists that originally has been 
considered as a distinct neurological disease [160]. How-
ever, after the identification of the underlying gene defect 
[170], it became apparent that both diseases are caused 
by homozygous deletion of the Survival Motor Neuron 1 
(SMN1) gene on human chromosome 5q13.2. All forms 
of 5q-SMA (type 1–4) have an incidence of 1/6000–
10,000 world-wide [77, 229, 231, 305]. SMA follows 
autosomal recessive inheritance. Dysfunction and loss of 
spinal motoneurons is the most prominent pathological 
feature causing weakness and atrophy, notably in proxi-
mal muscle groups, and respiratory failure.

Depending on disease onset and severity, SMA is clas-
sified into four types ranging from the most severe type 
1 to intermediate type 2 and milder types 3 and 4 (with 
adult onset) [69, 70, 78, 230]. This classification mainly 
focuses on achieved motor milestones with the disadvan-
tage of frequent overlap between different types. Thus, 
an additional classification has been introduced to cover 
dynamic changes in the clinical phenotype after therapy 

as well. This new classification distinguishes non-sitters 
(type 1–2), sitters (type 2–3) and walkers (type 3–4) 
[197], summarized in Table 1.

SMA genetics
The two survival motor neuron genes: SMN1 and SMN2
Humans carry two SMN genes (SMN1 and SMN2) within 
a duplicated region on chromosome 5q. Homozygous 
loss or mutations of SMN1 cause SMA, whereas loss of 
SMN2 is usually not associated with the disease. During 
evolution, the duplication of the SMN gene occurred at 
the stage of non-human primates [251]. In laboratory 
mice and other rodents, the Smn gene is not duplicated 
[263, 264]. SMN1 and SMN2 differ only in a few nucleo-
tides. Of particular importance is the C to T transition in 
exon 7 of the centromeric SMN2 which causes alterna-
tive splicing of exon 7. Most transcripts from the SMN2 
gene lack exon 7-encoded domains, resulting in only 
5–10% full-length SMN protein in comparison to 100% 
full-length SMN protein from SMN1 transcripts (Fig. 1). 
Therefore, SMN2 can only partially compensate for 
SMN1 loss [180, 206, 207]. Most SMA patients carry 2–3 
SMN2 copies. This allows cellular production of approxi-
mately 10–30% full-length SMN protein in comparison 
to healthy controls with intact SMN1 gene copies. Thus, 
the SMN2 copy number is the most important genetic 
modifier of SMA disease severity [85, 319].

The majority of the severely affected SMA patients bear 
homozygous deletions of SMN1 whereas most SMA type 
2 and 3 patients show a homozygous absence of SMN1 
due to a gene conversion of SMN1 into SMN2 [37, 318]. 
Gene conversion is a common cause for SMN2 gene copy 
number variations, increasing the SMN2 gene copy num-
ber from 2 to 3 or 4 [40]. Four copies of SMN2 usually 
generate sufficient functional SMN protein for a milder 
disease phenotype [85, 185] in SMA type 3 patients.

In about 5% of SMA patients, point mutations are 
detected in the SMN1 gene mostly in exon 6 and 7 [320]. 
Such cases are termed “compound heterozygotes”—with 
a deletion/conversion in one allele and a point mutation 
in the other.

Apart from 5q-SMA, other forms of spinal muscular 
atrophies exist which can be classified into the following 
categories on the basis of disease phenotype and genetic 
inheritance: autosomal recessive and autosomal domi-
nant distal spinal muscular atrophies (DSMAs); auto-
somal dominant proximal spinal muscular atrophies; 
autosomal recessive non-5q spinal and bulbar muscular 
atrophies; X-linked recessive SMAs.

Genetic modifiers in SMA
A transcriptome-wide differential expression analysis 
of total RNA from lymphoblastoid cells, derived from 

https://clinicaltrials.gov
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Table 1 New classification of disease severity in SMA patients according to [69, 78, 230] and adapted to [70]

Fig. 1 Genetic cause of spinal muscular atrophy (SMA). The human survival motor neuron genes (SMN1 and SMN2) are located in an inverse 
duplicated region on chromosome 5q13.2. On DNA level, the two genes only differ by one functionally relevant nucleotide exchange within exon 
7. This transition from C to T results in the generation of an exonic splicing silencer (ESS) site leading to exon 7 skipping on mRNA level. While SMN1 
codes for the functional, full-length SMN protein, SMN2 predominantly (~ 90%) produces a truncated, non-functional version of the protein. SMA is 
caused by homozygous deletions of SMN1 resulting in highly reduced SMN protein levels. However, the number of SMN2 copies that determines 
the amount of functional SMN protein can modify disease severity
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SMN1-deficient siblings with discordant disease pheno-
type, revealed a significant association between disease 
severity and Plastin 3 (PLS3) expression [224]. PLS3 maps 
to Xq23 [282]. The gene is located on the X-chromosome 
and appears as a sex-specific modifier of SMA. Plastins 
are evolutionarily conserved and function as modulators 
of the actin cytoskeleton. Thus they play an important 
role in cell migration, adhesion and exo- and endocytosis 
[321]. Additional genetic modifiers in SMA include Neu-
rocalcin delta (NCALD) and Calcineurin-like EF-hand 
Protein 1 (CHP1). Both proteins act as  Ca2+-sensors and 
 Ca2+-binding proteins [124, 143, 246]. All three SMA 
protective modifiers are not active in the assembly of 
spliceosomal snRNPs. Since they are involved in modu-
lating various cellular processes including the rescue of 
impaired endocytosis in Smn-deficient cells and animal 
models [64, 124, 143, 246], these SMA modifiers turned 
into potential therapeutic targets.

The cellular and molecular function of SMN
The SMN protein is ubiquitously expressed and not 
only found in the nervous system especially in moto-
neurons. SMN acts in a protein complex that mediates 
spliceosomal snRNP assembly [91, 176, 194, 233]. Clas-
sical Smn gene knockout in mice causes early embryonic 
lethality [264], which is consistent with a fundamental 
role of Smn in all cell types as an essential cellular pro-
tein for pre-mRNA processing. Mice with homozygous 
gene knockout of endogenous Smn with 2 additional 
transgenic copies of human SMN2 develop severe SMA, 
thus mimicking SMA type 1 in humans [208]. However, 
mRNA levels in most organs of these mice including 
brain appear normal, and splicing of defined transcripts 
is unaffected [140]. This indicates that processing of 
pre-mRNAs including splicing in general is not affected 
in SMA. However, it cannot be excluded that few tran-
scripts require high levels of SMN protein and SMN com-
plex so that the levels of SMN that can be produced from 
up to four copies of SMN2 are not sufficient in such cells. 
Studies in Drosophila have provided evidence that spe-
cific transcripts requiring the U11/12 minor splice com-
plex appear more vulnerable to Smn depletion [132, 177, 
181] than the majority of transcripts that are processed 
via the U1, 2, 4, 5, 6-dependent major spliceosome com-
plex. However, these findings have been challenged by 
the observation that development of Smn-deficient flies 
in general is delayed and that U11/12-dependent pre-
mRNA splicing during normal development occurs only 
at later larval stages [98]. Thus, the lower levels of U11/12 
minor splice complex-dependent mRNA modifications 
could reflect a delay of larval development in Smn-defi-
cient flies. Although U11/12 as well as U2-dependent 
intron retention have been observed in transcripts in 

Smn-deficient flies and mice, only few were reproducibly 
confirmed, such as TMEM41B/Stasimon and Mdm2/4 
[66, 181, 275, 300]. Despite the observation that the res-
toration of Mdm2/4 expression improved motor func-
tions to some degree, this restoration of Mdm2/4 did not 
beneficially affect survival of SMA mice [300]. Beside the 
components of the classical SMN complex, additional 
SMN interaction partners have been identified; among 
them hnRNP R [256], TDP-43 [296], FUS [323] and HuD 
[82], which are involved in many neuronal functions 
including transcription regulation, nuclear pre-mRNA 
processing, nuclear export and subcellular transport of 
many mRNAs [4, 18, 81, 82, 102, 104, 110, 218, 255, 325, 
326]. In particular the axonal translocation of the β-actin 
mRNA is severely disturbed in Smn- [255], hnRNP R- 
[102] and TDP-43- [33] deficient neurons. HnRNP R as 
an interaction partner of SMN is found in the nucleus 
and the cytosol, including axons of motoneurons [68, 
256]. It is involved in subcellular transport of mRNAs 
and other types of RNA in axons [32, 34, 261].

Regulation of SMN expression during development
The developmental expression of SMN in mice and 
humans shows unique dynamic features. SMN protein 
levels are high during prenatal development and decline 
during early perinatal stages [20, 38, 97, 140, 144, 240, 
241]. In blood, higher SMN expression levels are found 
in young children compared to adults [309, 330]. The 
median SMN protein level was 2.3-fold higher in pre-
natal healthy individuals in comparison to early post-
natal children younger than 3  months. This difference 
increases during development. SMN protein levels are 
about 6.5-fold reduced in human autopsy tissue sam-
ples (lumbar or thoracic spinal cord) in individuals aged 
3 months through 14 years [240, 241] when compared to 
samples from fetal stages. SMN levels are fourfold lower 
in human spinal cord samples from SMA patients at 
postnatal stages (up to 3  months of age) in comparison 
to healthy subjects. Downregulation of the high prena-
tal SMN protein levels at early postnatal stages was also 
observed in frontal cortex, diaphragm and skeletal mus-
cles [240, 241].

SMN protein levels correlate only modestly with total 
SMN1 and SMN2 mRNA transcript levels in prenatal 
tissue samples. The decline in median SMN1 full-length 
or SMN2 mRNA levels at early postnatal stages in tis-
sues from healthy controls is mild in comparison to the 
protein level [240, 241]. This indicates that SMN protein 
levels decline at early postnatal stages independent from 
SMN promoter activity [71, 206, 207, 257] via posttran-
scriptional mechanisms [53, 149]. In mice, Smn protein 
levels decline in spinal cord between embryonic day (E) 
14 and 19. This period is followed by a further decline 
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between postnatal day (P) 5 and 15 [140]. At the moment, 
the mechanisms which regulate SMN expression at post-
transcriptional and posttranslational levels are not fully 
resolved. Both, translational control and the regulation of 
Smn protein degradation could play a role. The instabil-
ity of SMNΔ7 protein is mediated by a degradation signal 
termed degron (SMNΔ7-DEG) which is created by the 
new C-terminus in the truncated protein from the SMN2 
gene [45]. Inactivation of SMNΔ7-DEG by a point muta-
tion stabilizes SMNΔ7, which in turn is able to compen-
sate for SMN loss in cell lines.

SMA: motoneuron and neuromuscular pathology
As stated before, relative SMN protein levels are highest 
at prenatal stages in humans and in mice (1 week before 
birth) [140, 240, 241] implying a crucial role of SMN in 
cellular differentiation. In motoneurons, this period of 
high SMN protein levels coincides with the developmen-
tal stage when these neurons grow out axons and form  
synaptic contacts with skeletal/striated muscle fibers to 
establish neuromuscular endplates. These findings sug-
gest that high amounts of SMN protein are necessary for 
proper development of the neuromuscular system [38, 
140, 141]. During early prenatal development, about half 
of the postmitotic motoneurons that have been origi-
nally generated in the spinal cord undergo physiologi-
cal cell death. Developmental cell death is controlled by 
neurotrophic factors [11, 116, 129, 234, 265, 266, 268]. 
In humans as well as in mice, SMN deficiency does not 
amplify motoneuron loss during this critical develop-
mental period. This developmental period of physiologi-
cal motoneuron death is followed by a ssynapses are 
eliminatedtage when supranumerary synapses are elimi-
nated [173], so that one muscle fiber receives synaptic 
input only from one motoneuron. This time window of 
polysynaptic elimination coincides with deterioration of 
motor function and motoneuron degeneration at least 
in mouse models of SMA type 1 and 2 [103, 126, 166]. 
During this stage, about 17–29% motoneurons are lost 
in SMA type 1 mouse models in comparison to healthy 
littermates [208]. Motoneuron loss continues after these 
early postnatal stages. In heterozygous Smn mice in 
which only one allele of Smn is deleted, resulting in a 
reduction of 50% Smn protein levels, about 50% of moto-
neurons are lost at a stage of 12 months [140, 274]. Like-
wise in children with SMA type 1, severe motoneuron 
loss has been observed at disease endstage. At an age of 
5–22  months, motoneuron loss in patients with type 1 
SMA increases to more than 70% [272].

When motoneurons are isolated from embryonic 
Smn−/−;SMN2 mice and cultured for periods up to 
7  days, cell death is not enhanced but axon extension 
is markedly altered. This axonal defect [139, 156, 255] 

appears as a prominent feature and is also observed in 
other Smn-deficient animal models such as zebrafish 
[192, 317]. Defective axon growth correlates with 
reduced actin dynamics [211, 255] and altered excit-
ability through voltage-gated  Ca2+-channels [139]. Treat-
ment of SMA and control mice with the calcium channel 
modulator R-Roscovitine results in an increased number 
of preserved and even regenerating neuromuscular junc-
tions (NMJs) [291]. Thus, defective presynaptic activity 
and reduced transmitter release apparently contribute to 
pathology and degeneration of neuromuscular junctions 
and axons in SMA.

A common and characteristic pathological feature of 
SMA is that proximal muscle groups appear more vulner-
able than distal muscles. For example, muscle groups for 
finger movements appear less affected than the trapezius, 
deltoid, quadriceps or gastrocnemic muscles [69]. This 
appears on a first view counterintuitive because moto-
neurons with long axons are generally considered to be 
more vulnerable than those with shorter axons. However, 
motoneurons that innervate muscle groups for position 
control usually generate large motor units with highly 
branched motor axons up to several thousand terminals. 
In contrast, motor units for fine movements of fingers or 
posture are usually small. For example, the motor unit 
in finger muscles such as the first lumbrical muscle is in 
a range of 100 [84, 115]. In contrast, the gastrocnemius 
muscle has an innervation ratio of 1000–2000 muscle fib-
ers per motoneuron [84]. Thus, vulnerability of motoneu-
rons in SMA seems to correlate with the size of motor 
units. Axons of motoneurons contain relatively high 
levels of mRNAs which are transported into these distal 
neuronal compartments, where they are locally trans-
lated [34, 220, 261]. Transcripts encoding actin, mito-
chondrial proteins or components of presynaptic active 
zones are highly enriched in motor axons. The transport 
of these transcripts seems to be highly disturbed in Smn-
deficient motoneurons [34, 211, 261]. To some extent, 
defective translocation of transcripts for these proteins 
seems to be compensated in motoneurons with low num-
bers of axonal branches and corresponding low num-
bers of neuromuscular junctions that are served by these 
branches. However, in motoneurons of large motor units 
such compensatory processes might be limited, and then 
probably leading to degeneration of presynaptic com-
partments and retrograde degeneration of axons.

Muscle pathology in SMA
Motoneuron and skeletal muscle maturation closely 
correspond and depend on cellular contact between 
each other. Although muscle atrophy in SMA is primar-
ily caused by denervation, there is growing evidence that 
muscle-autonomous alterations also occur in SMA and 
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could contribute directly to disease pathogenesis. The 
Smn complex is localized at sarcomeric z-discs in stri-
ated myofibrils [311]. Muscle-specific Smn knockout in 
mice without reducing Smn expression in motoneurons 
results in massive muscular dystrophy [47], implying a 
cellular function of the Smn protein also in the skeletal 
muscle. Similar observations were recently reported by 
Kim et  al. [151], as muscle-specific Smn depletion in 
mice induces morphological alterations in myofibers 
and NMJs. This correlates with reduced ex  vivo force 
and impaired motor function by 6–7 months of age and 
reduced lifespan [151]. Other studies on selective resto-
ration of Smn protein expression by 50% in muscle sat-
ellite cells showed significant improvement of the SMA 
phenotype in mice [219]. The hypothesis of muscle-spe-
cific disease mechanisms has also been discussed on the 
basis of morphometric studies of human SMN-deficient 
skeletal muscle samples [22, 87, 187]. Initial studies, 
performed more than 20  years ago, already suggested 
that type 1 and 2 (but not type 3) SMA patient-derived 
myofibers degenerate after one to three weeks in co-
culture with wild type fetal rat spinal cord explants [30]. 
This indicates that myoblasts and myofibers from type 1 
and type 2 SMA patients have a higher vulnerability and 
propensity to undergo cell death. Abnormal expression 
of markers for skeletal muscle development such as slow 
and fast myosin [186] and defective myoblast fusion 
have also been reported [12, 31, 114, 190, 271]. Hence, 
these findings indicate that myogenesis is delayed in 
SMA.

Taken together, these data indicate that expression of 
SMN in skeletal muscles is important for proper devel-
opment and maintenance, and that SMN levels should 
not fall below a threshold that so far is not well-defined. 
The data from Braun et al. [30] suggest that SMN protein 
levels might be sufficient in SMA type 3 but not type 1 
SMA, although other studies on SMN in muscle reported 
contradictory effects [99, 137]. Muscle-specific over-
expression of Smn in the severe Smn−/−;SMN2 mouse 
model showed no beneficial phenotypic effect [99]. Sec-
ond, a muscle-specific Smn knockdown—via Myf5-Cre 
and the Cre-loxP recombination system—on a SMN2/
SMNΔ7 background did not cause any SMA symptoms 
[137]. The extensor digitorum longus muscle was inves-
tigated for this study [137], a muscle which is usually not 
heavily denervated in the SMNΔ7 mouse model [174]. 
However, these findings support the hypothesis that 
SMN thresholds could play a crucial role in different 
muscle types depending on the severity of the disease. It 
is still unclear how the SMN expression levels change in 
later life. It could be that the expression level in muscle 
also falls below a critical threshold when SMN expression 
decreases during later postnatal development.

This could lead to a situation that a myopathic disease 
mechanism could contribute to the disease phenotype or 
even pre-dominate neurogenic muscle atrophy in milder 
SMA types. SMN protein levels in muscle in general are 
much lower than in spinal cord or brain [50, 138], and 
these levels are also expected to decrease during life time. 
Relevant data from SMA patients to judge the extent of 
altered SMN protein expression during life are missing. 
This raises the point that ubiquitous SMN upregulation 
via a therapeutic approach with a small molecule such as 
Risdiplam might counteract the myopathic phenotype 
better at higher age than a therapeutic approach deliver-
ing the drug through intrathecal administration only to 
spinal cord and brain.

Muscle pathology in non‑5q‑SMA
Spinal muscular atrophy with respiratory distress type 
1 (SMARD1) also referred to as DSMA1 (distal spinal 
muscular atrophy type 1), is a fatal motoneuron disor-
der which usually starts in infancy and early childhood 
[23, 109]. SMARD1 is characterized by dysfunction and 
progressive degeneration of motoneurons in the ventral 
horn of the spinal cord, resulting in a neurogenic atro-
phy of striatal and skeletal muscle fibers [107]. In addi-
tion, diaphragm and heart muscle are primarily affected 
in the mouse model. This results in a mixed phenotype 
comprising both primary and neurogenic muscle degen-
eration. Muscle weakness in SMARD1 patients predomi-
nantly affects distal muscle groups, usually starting in the 
lower limbs. The most prominent and defining symptom 
of SMARD1 is a life-threatening respiratory distress due 
to a severe paralysis of the diaphragm [107, 108, 259]. The 
neuromuscular degeneration (Nmd2J) mouse is a model 
system for the juvenile form of SMARD1 [51]. The path-
ological features of the Nmd2J mouse are comparable to 
humans. However, muscle fiber degeneration in the dia-
phragm does not correlate with motor axon loss in the 
phrenic nerve [106, 158, 307]. That means there is a clear 
distinction between motoneuron degeneration and myo-
pathy in this form of spinal muscular atrophy.

Approved therapies for SMA
Significant advances in basic research and clinical studies 
paved the way for FDA- (Food and Drug Administration, 
USA) as well as EMA- (European Medicines Agency, 
EU) approved SMA therapies. All of these approved 
therapies focus on strategies aiming at increased SMN 
protein expression, either by modulation of SMN2 splic-
ing to increase exon 7 inclusion via Antisense Oligo-
nucleotides (ASOs: Nusinersen/Spinraza™) or small 
molecules (Risdiplam/Evrysdi™), or by viral gene trans-
fer for introduction of an intact additional SMN1 cDNA 
copy (Onasemnogene abeparvovec/Zolgensma™) (Fig. 2). 
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Figure 2 summarizes all studies which are described and 
discussed in more detail hereinafter. More information 
can be obtained from https:// clini caltr ials. gov. All thera-
pies have been developed in mouse models for SMA, and 
their efficacies have been optimized with established cell 
culture models. They thus stand as a success story for 
translational research from basic cellular and molecular 
neuroscience models towards new therapies for treat-
ment of a neurodegenerative disease.

At present, there are three different therapies for SMA 
approved by the FDA and the EMA that use different 
strategies to enhance functional, full-length SMN protein 
levels. Antisense Oligonucleotides (ASOs), known under 
the name Spinraza™, are intrathecally injected and are 
designed to inhibit exon 7 skipping in SMN2 transcripts. 
Small molecules such as Evrysdi™ are applied orally and 
modulate exon 7 inclusion similarly to ASOs. The third 
treatment option is gene therapy via systemic intrave-
nous application of a non-replicating self-complemen-
tary adeno-associated virus 9 (scAAV9) that introduces 
SMN1 cDNA (Zolgensma™) into infected cells.

Antisense oligonucleotide strategies
Nusinersen/Spinraza™: an ASO‑approach
ASOs are short strands of synthetic nucleic acids which 
bind target-RNA by complementary base pairing to 
modulate RNA stability, structure and function [247]. 

Nusinersen is an 18-mer ASO modified by 2‘-O-2-meth-
oxyethyl phosphorothioate to protect it from rapid deg-
radation. It was designed to block the binding of hnRNP 
A1 to the intronic splicing silencer N1-(ISS-N1) motif in 
intron 7 of the SMN2 gene. The block of hnRNP A1 bind-
ing to this domain in turn disrupts a splice inhibitor site 
and thus promotes exon 7 inclusion in the pre-mRNA 
that is derived from the SMN2 gene [128]. Due to their 
size, ASOs cannot cross the blood–brain barrier (BBB) 
and have to be applied by intrathecal administration so 
that they can be taken up by motoneurons from the cer-
ebrospinal fluid (CSF).

Nusinersen was the first drug that has been approved 
for the treatment of SMA by the FDA in December 2016 
and by the EMA in June 2017. Currently 31 clinical trials 
have been reported by https:// clini caltr ials. gov. Herein 
we report a selection of studies focusing on dose find-
ing with already disclosed data. The first phase 1 clini-
cal trial with Nusinersen (CS1, NCT01494701 and CS10, 
NCT01780246) was conducted with 28 patients (2  to 
14 years of age) with SMA type 2 and type 3. This study 
provided evidence that intrathecal delivery of a single 
dose of Nusinersen (1 mg, 3 mg, 6 mg, or 9 mg) is safe 
and well tolerated. Nusinersen more than doubled SMN 
protein levels in the CSF in the 6 mg and 9 mg treatment 
groups. This was accompanied by a significant increase 
in motor function illustrated by the Hammersmith 

Fig. 2 Gene therapies in SMA. Overview of the currently available therapies for spinal muscular atrophy (SMA): Antisense Oligonucleotide (ASO: 
Nusinersen), small molecule (Risdiplam), AAV9 gene delivery approach (Onasemnogene abeparvovec)—and corresponding clinical trials

https://clinicaltrials.gov
https://clinicaltrials.gov
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Functional Motor Scale Expanded (HFMSE) scores in 
the 9  mg group [44]. A subsequent phase 2, open-label 
study (CS3A; NCT01839656) with SMA type 1 patients 
with 2–3 SMN2 copies (3  weeks to 6  months of age) 
was conducted with multiple doses of Nusinersen. Four 
patients received ascending doses of 6 to 12 mg and 16 
patients a 12  mg intrathecal injection. The patients in 
the 12 mg group exhibited incremental achievements 
in developmental motor milestones on the Hammer-
smith Infant Neurological Examination-2 (HINE-2) score 
(from baseline to last visit p < 0.0001), improvement in 
Children’s Hospital of Philadelphia Infant Test of Neu-
romuscular Disorders (CHOP INTEND) motor function 
scores (p = 0.0013) and significantly increased CMAP for 
abductor digiti minimus and tibialis anterior via stimula-
tion of the ulnar nerve or the peroneal nerve. Probability 
of permanent ventilation-free survival was also signifi-
cantly increased. Examination of post mortem tissue 
revealed an even distribution of Nusinersen throughout 
spinal cord, including motoneurons and brain that coin-
cided with an enhanced exon 7 inclusion in SMN2 and 
an increase of the SMN protein [88]. Subsequent stud-
ies with Nusinersen treatment in 28 patients with SMA 
type 2 and type 3 (age 2—5  years) for approximately 
3 years showed a long-term benefit (CS2; NCT01703988 
and CS12; NCT02052791). The patients started with 
ascending doses (3, 6, 9, 12 mg over 253 days) followed 
by a period of treatment with 12 mg every 6 months for 
more than two years (CS12) [54]. This was followed by 
the SHINE study (NCT02594124) via continuing 12 mg 
Nusinersen applications to assess the long-term clinical 
effects of Nusinersen. The treatment over the first three 
years resulted in motor function improvements and dis-
ease activity stabilization that differed significantly from 
the natural disease history. Participants with later-onset 
SMA in CS2/CS12/SHINE displayed increases in walk-
ing distances that were not observed in natural history 
cohorts [210] with stabilization in fatigue and improve-
ments of ambulatory function over the period of Nusin-
ersen treatment (~ 5.5 years) [209]. The phase 1/2 results 
encouraged the design of two large, multicenter, rand-
omized, sham-controlled, phase 3 studies with Nusin-
ersen: ENDEAR (NCT02193074) in SMA type 1 patients 
and CHERISH (NCT02292537) in SMA type 2 patients. 
The ENDEAR study (NCT02193074) included 122 SMA 
type 1 patients at 7 months of age or younger. They were 
randomized to receive multiple intrathecal doses of 
Nusinersen or a sham procedure at a ratio of 2 to 1 [89]. 
In the CHERISH study (NCT02292537) 126 children 
were randomly assigned, in a 2:1 ratio, to receive mul-
tiple doses of 12  mg Nusinersen or a sham procedure. 
The median age at study onset was 4  years (2–9  years) 
in the Nusinersen group and 3  years (2–7  years) in the 

control group [196]. In both studies, treated children 
showed a significant improvement in motor function 
compared to control groups. In the ENDEAR study the 
overall survival was higher in the Nusinersen-treated 
group than in the control group. A very striking obser-
vation was made, as infants with shorter disease dura-
tion at the study onset were more likely to benefit from 
Nusinersen than those with longer disease duration. The 
crucial timing of initiation of Nusinersen treatment for 
maximal therapeutic benefit is currently under inves-
tigation in a phase 2 study of pre-symptomatic patients 
(NURTURE, NCT02386553). The 25 included patients 
are still alive and do not require permanent ventilation. 
All patients are able to sit without support and achieved 
walking with or without assistance and still without ven-
tilation support [59]. In December 2016 Nusinersen/
Spinraza™ became available at a recommended dose of 
12  mg per treatment for all patients. Currently, safety 
and efficacy of higher doses are in focus of the DEVOTE 
study (NCT04089566). DEVOTE is subdivided into part 
A, B, C. Part A is an open-label study focusing on safety 
and tolerability of Nusinersen (3 × 28  mg loading doses 
and 2 × 28 mg maintenance doses). Part B should demon-
strate that higher doses improve participants’ outcomes 
measured by CHOP INTEND and motor skill ability. 
This part is designed as a randomized, double-blind, 
active-controlled study with infants and later-onset SMA 
patients. Patients will receive 4 × 12  mg loading doses, 
followed by 2 × 12  mg maintenance doses or 2 × 50  mg 
loading doses and 2 × 28 mg maintenance doses. Partici-
pants receiving the FDA-approved 12 mg of Nusinersen 
will serve as controls. The open-label part C will evaluate 
the safety and tolerability of transitioning patients that 
have already been treated with Nusinersen for at least 
one year. They will receive a single initial 20 mg dose fol-
lowed by two 28 mg maintenance doses at four and eight 
months after therapy onset. The DEVOTE trial will then 
be followed by the open-label extension study ONWARD 
(NCT04729907) as a long-term extension.

Expanded access programs (EAPs) for Nusinersen had 
been initiated in several countries to verify therapeu-
tic benefit with motor function improvements [10, 83, 
100, 199, 232]. Two studies on SMA patients with adult 
onset (mean age 16–65 and 18–72) have been recently 
reported by Hagenacker et al., and Maggi et al. [111, 184]. 
The primary outcome in both studies was an increase of 
the HFMSE score. Maggi et al. additionally reported that 
RULM (Revised Upper Limb Module) score improved 
significantly in sitters [184]. Both studies provide evi-
dence of Nusinersen safety and efficacy in SMA type 2 
and type 3 patients.

In some patients, hydrocephalus has been reported as a 
potential side effect [10, 83, 100, 199, 232, 287]. The most 
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commonly occurring side effects include lower respira-
tory infection and constipation in SMA infants whereas 
headache, vomiting and back pain are also observed in 
SMA patients with later onset (summarized in https:// 
www. drugs. com/ sfx/ nusin ersen- side- effec ts. html).

In SMA patients with significant scoliosis or patients 
who had received surgical spinal fusion, the intrathe-
cal application of Nusinersen is challenging. It usually 
requires the use of computer-tomography guidance, 
video fluorangiography, ultrasound, or alternative admin-
istration techniques such as subcutaneous intrathecal 
catheters [199, 283, 314]. However, such new devices for 
Nusinersen administration have not been approved so far 
by the relevant regulatory authorities.

For unknown reasons, some patients respond better 
to the ASO than others [54]. A problematic issue with 
Nusinersen/Spinraza™ is the lack of systemic availability 
and the potential lack of efficacy to counteract long-term 
adverse effects of low SMN levels in peripheral tissues. 
Nusinersen restores SMN expression only in the central 
nervous system. There are preclinical data indicating that 
restoration of SMN protein levels might also be impor-
tant for peripheral tissues such as liver, kidney, muscle 
and heart [112, 127].

The small molecule and splicing modifier Risdiplam/
Evrysdi™

Another option to restore SMN protein levels through 
increasing exon 7 inclusion in SMN2 transcripts is via 
small molecules. Such small molecules appear of advan-
tage especially when they can cross the BBB. When 
administered systemically, they then could act on the pro-
cessing of the SMN2 gene transcript in peripheral organs. 
Such small molecules have also been shown to modulate 
SMN2 splicing. They are bioavailable after oral adminis-
tration and distributed systemically, thus targeting not 
only the central nervous system but also the peripheral 
nervous system and non-neuronal organs and tissues 
[217, 242, 243]. A potential disadvantage of the small 
splice modifiers in comparison to ASO-based drugs is 
the higher propensity for off-target effects [28]. To bypass 
such unspecific effects, a high throughput screening for 
SMN2 splicing modifiers was performed to receive opti-
mal candidates such as RO073406/RG7916 (Risdiplam) 
[217, 237, 242]. Risdiplam increases SMN protein lev-
els not only in CNS but also in peripheral tissues in two 
mouse models of SMA [237]. This effect is achieved by 
stabilizing the U1:5’ss duplex at the 5’ss of SMN2 exon 7 
[39, 227, 276]. Nevertheless, Risdiplam still produces off-
target effects on splicing of exons of several other tran-
scripts such as those coding for STRN3, FOXM1, APLP2, 
MADD, SLC25A17 [242, 276]. Administration at 1 mg/kg 
of body weight produces a robust enhancement in SMN 

levels in brain and quadriceps muscle in a SMA mouse 
model. It counteracts NMJ pathology and reduces moto-
neuron loss [242, 243, 276]. Higher levels of Risdiplam 
(10 mg/kg body weight) improve life expectancy in SMA 
mouse models to the same level as for healthy littermates 
[217].

On the clinical level, the evaluation of safety, tolerabil-
ity, and efficacy of this drug was tested in SMA patients in 
the FIREFISH trial (SMA type 1 patients, NCT02913482) 
and the SUNFISH trial (SMA type 2 and 3 patients, 
NCT02908685) [223]. The FIREFISH trial was designed 
for infantile-onset SMA as a two part non-randomized 
open-label study in which 41 patients (1–7  months) 
were enrolled and studied for one year. All patients had 
a homozygous deletion of SMN1 gene and two copies of 
SMN2. 29% of patients were able to sit independently for 
at least 5 s after 12 months treatment, reaching relevant 
motor milestones, and 42% could live without perma-
nent ventilation [55]. Treatment with Risdiplam caused 
an increase of SMN protein levels in blood [19]. SUN-
FISH is a two part trial with later-onset SMA patients 
(2 to 25 years), randomized and placebo-controlled. The 
first part with 51 participants is a dose-finding and safety 
tolerability study whereas part 2 with 180 SMA patients 
focusses on efficacy and safety [223]. The motor function 
skills of the Risdiplam-treated patients surpassed signifi-
cantly those of the untreated patients after 24 months of 
treatment. No treatment-related adverse effects leading 
to withdrawal or treatment discontinuation during the 
24  months trial period have been reported (Dr. Eliza-
beth Kichula CureSMA Meeting 2021; SUNFISH Part 2: 
Later-Onset SMA).

The JEWELFISH study (NCT030321725) was 
designed as a subsequent multicenter, open-label 
study primarily evaluating the safety and tolerability 
of once-daily oral administration of Risdiplam in SMA 
patients aged 6 months to 60 years who have previously 
enrolled in other studies including those with RG7800 
(NCT02240355), Nusinersen, Olesoxime and Onasem-
nogene abeparvovoec [239]. The JEWELFISH popula-
tion is heterogeneous with a broad spectrum of motor 
impairment at baseline. 174 SMA type 2 and 3 patients 
with 3 or 4 SMN2 copies have been enrolled, including 
non-sitters but also walkers, some of them with scolio-
sis and hip subluxation or dislocation. No serious adverse 
events related to the drug was reported. No ophthalmo-
logical findings attributable to Risdiplam exposure were 
reported [270] as in preclinical studies with cynomolgus 
monkeys. Retinal toxicity was observed in these monkeys 
consisting of photoreceptor degeneration and microcys-
toid macular degeneration (MMD) in the central retina 
after 5–6  months of daily treatment [242]. On August 
7, 2020 FDA approved Risdiplam (Evrysdi™) under the 

https://www.drugs.com/sfx/nusinersen-side-effects.html
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fast-track designation and rare pediatric disease prior-
ity review process [223, 276]. Data across SUNFISH, 
FIREFISH and JEWELFISH suggest that Risdiplam has a 
favorable safety profile. In accordance to this safety pro-
file, the RAINBOWFISH trial (NCT03779334) focusing 
on pre-symptomatic SMA patients has been started but 
the enrollment of the patients is still ongoing. It is a mul-
ticenter open-label study to analyze efficacy, safety, and 
pharmacokinetics/dynamics of Risdiplam in infants aged 
from birth to 6  weeks. Risdiplam is orally administered 
once daily for 2  years followed by an open-label exten-
sion (OLE) phase of at least 3  years. A follow-up of at 
least 5 years for each participant enrolled will finalize the 
RAINBOWFISH study. In general, the most frequently 
observed adverse effects include fever, diarrhea, and 
rash. Especially in SMA infants, respiratory tract infec-
tions, pneumonia, bronchiolitis, hypotonia, constipation 
and vomiting have been observed (listed in https:// www. 
drugs. com/ sfx/ risdi plam- side- effec ts. html).

Another small molecule termed Branaplam is still 
under investigation. Branaplam (previously known as 
LMI070) is a pyridazine derivative that interacts with 
SMN2 pre-mRNA and enhances exon 7 inclusion to 
increase the level of functional SMN protein [227, 279]. 
Like Risdiplam, Branaplam can be orally administrated. 
Branaplam was originally expected to be tested in SMA 
type 1 infants in an open-label, two-part phase 1/2 study 
(NCT02268552). However, this study has not been initi-
ated yet.

SMN1 gene‑therapy: Onasemnogene abeparvovec/
Zolgensma™

An alternative way to increase SMN protein levels in 
motoneurons and other cell types is the SMN1 gene 
therapy. Since SMA is a monogenetic autosomal reces-
sive disorder that is caused by loss of function of the 
SMN protein, it appears as an excellent target for gene 
therapies. The small SMN1 cDNA can be easily packed 
into a non-replicating self-complementary (sc)AAV9 
vector and delivered systemically. scAAV9 cannot only 
deliver the SMN1 cDNA to muscle and other periph-
eral tissue, but also cross the BBB to reach the CNS 
and spinal motoneurons [92, 93, 195, 299]. Preclinical 
studies confirmed elevated SMN expression from AAV-
mediated gene transfer in motoneurons and peripheral 
tissues in a mouse model of SMA [17, 93]. SMA mice 
that were treated with scAAV9-mediated SMN1 gene 
therapy exhibited a significant extension of life span to 
over 250  days [93]. This successful viral gene delivery 
system for SMN1 was termed as Onasemnogene abepar-
vovec. Onasemnogene abeparvovec commonly known 
as AVXS-101 is commercialized under the name Zol-
gensma™. Onasemnogene abeparvovec became the first 

gene therapy to be approved in the U.S. for the treatment 
of pediatric SMA patients (up to two years of age), and 
by the EMA. The recommended dose of 1.1 ×  1014 vector 
genomes (vg) per kilogram (kg) body weight is delivered 
via a single intravenous injection. It appeared to be well 
tolerated in patients with SMA type 1 or 2 and pre-symp-
tomatic SMA infants [125].

Two clinical trials AVXS-101-CL-101 (START, 
NCT02122952) and CL-303 (STR1VE-US, 
NCT03306277; STR1VE-EU, NCT03461289; STR1VE 
AP, NCT03837184) were performed with symptomatic 
SMA type 1 patients carrying a two-allelic SMN1 muta-
tion and two SMN2 copies [57, 58, 195, 198]. START 
was an open-label study with 15 SMA type 1 infants 
enrolled in two cohorts. Three infants were given a low 
dose of Onasemnogene abeparvovec (6.7 ×  1013 vg/kg). 
All patients in the cohort (n = 15) were still alive without 
permanent ventilation at 20 months of age. In the high-
dose cohort (12 patients, 1.1 ×  1014 vg/kg), an increase 
from baseline of 9.8 points at 1 month and 15.4 points at 
3  months in the CHOP INTEND score became detect-
able. In addition, 11 of the high-dose patients sat unas-
sisted, 9 rolled over, 11 fed orally and could speak, and 
2 walked independently. Elevated serum aminotrans-
ferase levels occurred in 4 patients and were treated by 
prednisolone [195]. The STR1VE-US study was an open-
label, single-dose phase 3 trial. SMA patients with bial-
lelic SMN1 mutations (deletion or point mutations) and 
one to two SMN2 copies were younger than 6  months 
and symptomatic. They received a single intravenous 
Onasemnogene abeparvovec dose of 1.1 ×  1014 vg/kg 
body weight for 30–60  min. The monitoring of the 22 
SMA patients was initially scheduled once per week and 
after 4 weeks once per month. All patients were able to 
sit independently for 30  s. 20 patients were free from 
permanent ventilation. All but one of the 12 patients in 
the high-dose cohort had gained significant motor mile-
stones such as unassisted sitting, and serial incremental 
increases on the CHOP INTEND score of 50–60 points 
[57, 58]. Based on the data that had been collected in 
these trials, a long-lasting beneficial effect of Onasem-
nogene abeparvovec on motor function is expected. 
Adverse effects were bronchiolitis, pneumonia and res-
piratory distress. Only two patients showed elevated 
aminotransferases. The mechanisms of the immune and 
especially the hepatic response observed in these clinical 
studies are still not fully understood. One patient devel-
oped signs of hydrocephalus for which the mechanism is 
unclear. The CHOP INTEND results depicted early and 
fast benefits. The patients were able to thrive and swallow 
effectively without any cardiac pathology at the end of the 
study [57, 58]. Another clinical trial with Onasemnogene 
abeparvovec is ongoing as an open-label phase 1–2 trial 

https://www.drugs.com/sfx/risdiplam-side-effects.html
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with intrathecal administration in SMA type 2 patients 
(6  months to 60  months) with three SMN2 copies 
(STRONG, NCT03381729). The STRONG study showed 
a sustained gain of motor milestones and treatment 
safety [90]. The intrathecal administration could circum-
vent potential immunological reactions in patients that 
had been pre-exposed to the virus before therapy. When 
an individual is exposed to endogenous AAV infections, 
an immune response can be initiated. [27, 312]. Thus a 
significant number of individuals produce neutralizing 
antibodies and block the gene transfer to cellular targets 
[3, 312]. The two studies  by Day et al. [57, 58] revealed 
that 7.7% of the SMA patients and 14.8% of their biologi-
cal mothers were positive for AAV9 reactive antibodies 
with exclusionary antibody titers > 1:50 on their initial 
screening tests. 5.6% showed elevated titers on their final 
screening and were excluded from receiving Onasemno-
gene abeparvovec in clinical trials. Therefore, the major-
ity of SMA infants should benefit from Onasemnogene 
abeparvovec administration when given intrathecally [57, 
58]. Another phase 3 study with intravenous administra-
tion in pre-symptomatic SMA type 1 or 2 patients with 
two or three copies of SMN2 (SPR1NT, NCT03505099) 
has been initiated. Preliminary data suggest that Onasem-
nogene abeparvovec is well tolerated when applied at 
high concentrations (6.0 ×  1013 vg/kg). Two long-term 
follow up studies (LTFU) are currently monitored until 
December 2033 and 2035. LT-001/NCT03421977 is the 
follow up safety study of 13 SMA patients type 1 in the 
AVXS-101-CL-101 trial (2017–2033), whereas LT-002/

NCT04042025 (2020–2035) still enrolls patients from 
STRONG, STR1VE and SPR1NT. All clinical trials of 
Onasemnogene abeparvovec/Zolgensma™ along their 
timelines are summarized in Fig. 3.

Temporal considerations for SMA therapies
Increasing the amount of SMN protein in neurons and 
other cell types does not only have advantages but also 
bears risks. The expression levels of SMN are highly 
controlled during normal development and cannot be 
fine-tuned by the gene therapy approach. Observations 
in mouse models argue that the viral overexpression 
could have long-term adverse side effects by interference 
with complex RNA processing mechanisms. In a recent 
study, it has been reported that long-term overexpres-
sion of AAV9-SMN1 induces dose-dependent loss of 
proprioceptive synapses and neurodegeneration in SMA 
mouse models associated with loss of already achieved 
motor mile stones [301]. AAV9-SMN1 leads to cytoplas-
mic SMN aggregation in neurons that corresponds to 
impaired snRNP biogenesis and widespread transcription 
abnormalities in DRG neurons [301]. These observations 
indicate that additional therapeutic targets other than 
SMN1 and SMN2 genes should be evaluated and con-
sidered (see below non-SMN treatments). For success-
ful long-term treatment of SMA, it appears important to 
understand the time frames in which the SMN protein 
is needed to prevent disease development, and which 
cell types and organs need SMN at which time periods 
for proper homeostasis. SMN deficiency is embryonic 

Fig. 3 Timeline of the current Onasemnogene abeparvovec/Zolgensma™ trials. Illustration of the different clinical trials (clinical trials 1 and 3, LFTU) 
with Onasemnogene abeparvovec/Zolgensma™ according to their scheduled duration
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lethal and SMA develops in early childhood or even pre-
natally within the critical time window when neuromus-
cular synapses are strengthened and become mature. The 
reconstitution of the SMN2 protein via an ASO approach 
during the early postnatal period in a severe SMA mouse 
model (P 1–4) was effective at preventing the onset of the 
disease. The survival rate of the treated SMA mice was 
prolonged up to 250 days of age [127] that corresponds 
to a 16-fold increase. Starting SMN elevation at 10 days 
after birth failed to deliver any benefit. Strikingly, the 
disease phenotype is reversible in milder SMA forms. In 
an intermediate SMA mouse model, post-symptomatic 
non-SMN treatment had beneficial effects [86]. However, 
delaying treatment for only one or a few days in severe 
SMA type 1 mice after symptom onset markedly lowered 
the benefit [93, 249] on motoneuron loss, and morpho-
logical alterations of neuromuscular endplates remained 
[183]. SMN protein deficits first impact the distal end 
of the motor unit [156, 208, 255]. Therefore, the optimal 
time window for reinstatement of SMN protein in severe 
cases depends on the maturation level of the neuromus-
cular endplates [147]. Studies with mouse models of SMA 
indicate that the optimal clinical effect in severe cases 
depends on early postnatal applications. This was also 
shown for SMN-independent therapeutic approaches in 
mouse models [291]. In two clinical trials with patients, 
similar observations were made. Starting the treatment 
pre-symptomatically in babies with two or three SMN2 
copies had significantly stronger effects than starting the 
therapy when first symptoms already occurred. When 
treatment with Nusinersen/Spinraza™ is initiated at less 
than 2 months of life, and after a median of 2.9 years of 
treatment, 100% of children could reach the milestone 
of sitting independently. Moreover, 88% patients could 
also walk independently [59]. In contrast, effects of ther-
apy appeared markedly reduced in the phase 3 trial with 
Nusinersen/Spinraza™ where therapy was initiated after 
symptom onset in children with 2 copies of SMN2. Post-
symptomatic treatment resulted in reduced mortality, 
but only 51% patients showed improved motor function 
and only 8% were able to sit independently at 13 months 
after therapy onset [89]. In conclusion, a delay of SMN 
elevation by several weeks up to 5 months can substan-
tially reduce achievement of motor milestones. There-
fore, it appears important that therapy in children with 
SMA starts immediately after diagnosis. These obser-
vations also provide a strong argument for systematic 
newborn screening, in order to detect pre-symptomatic 
and early symptomatic cases. Before symptoms appear 
and irreversible motoneuron degeneration starts, babies 
identified via newborn screening should be referred 
immediately to therapy. When SMN levels are very low, 
motoneurons lose their function within a short time 

frame and progress towards a stage when restoration 
might be limited, and the time window for successful res-
toration of motoneuron function and/or cellular regen-
eration could be missed.

The expenses for a Spinraza™ application in the first 
year amount to approximately $400,000–500,000 (or 
€400,000–500,000). In total $250,000–300,000 (or 
€250,000–300,000) per year are calculated for a patient’s 
lifetime. One single application of Zolgensma™ costs 
$2 million. In the near future an increasing number of 
gene-targeted therapeutic strategies are expected to 
be approved by the FDA and EMA. The costs for such 
therapies could then become problematic for health care 
providers.

Non‑SMN approaches
Enhanced synthesis of functional SMN protein via ASOs, 
small molecules or AAV9 vectors are current treatment 
options for SMA patients. However, with respect to the 
temporal requirements for SMN-based therapies, many 
SMA patients who cannot receive these therapies within 
an ideal time window will not fully recover and symptoms 
will remain or progress despite therapy, especially when 
the treatment starts at a later symptomatic stage. How-
ever, even when therapy starts at pre-symptomatic stages, 
not all SMA patients respond equally well and symptoms 
progress. In such cases, non-SMN approaches might sup-
port the SMN-based treatment strategies. Many of these 
non-SMN approaches target muscles, axons and presyn-
aptic terminals at neuromuscular endplates.

Neuromuscular endplate
Neuromuscular endplates are severely affected in SMA. 
Not only reduced acetylcholine release [157, 260, 292], 
but also altered signaling mechanisms between moto-
neuron and muscle contribute to a degenerative process 
that ultimately results in muscle atrophy. Counteract-
ing such signaling defects depends on (1) proper initial 
development of the neuromuscular endplates, including 
the presynaptic structures for controlled vesicle release, 
and (2) homeostatic mechanisms that maintain axons 
and presynaptic terminals in motoneurons. Primary cul-
tured motoneurons from Smn-deficient mouse models 
have been used for characterization of the defective pre-
synaptic compartment. Besides axon elongation altera-
tions, defective F-actin assembly and reduced cluster 
formations of  Cav2.2, a voltage-gated calcium channel 
predominantly expressed in embryonic motoneurons, 
became apparent, leading to decreased spontaneous cal-
cium transients [139, 211]. Dysregulated calcium influx 
due to disturbed cluster formations of  Cav2.1 which pre-
dominates in the neuromuscular endplate, have also been 
observed in  vivo in mouse models of SMA [291, 292]. 
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To sustain the required levels of presynaptic calcium 
for cellular differentiation and/or neurotransmission in 
Smn-deficient motoneurons, molecules that prolong the 
closing kinetics of  Cav2.2 and  Cav2.1 could be used as 
candidates. R-Roscovitine, a Cdk5 inhibitor with calcium 
channel modulating properties appears as a good can-
didate for this purpose [193, 324]. Acute R-Roscovitine 
application induces spontaneous  Ca2+-transients in vitro 
and increases quantal content ex vivo. It improves moto-
neuron survival and expands life span of a severely 
affected mouse model after systemic treatment [291]. 
Histopathological analysis of R-Roscovitine-treated SMA 
mice revealed that application with this substance sup-
ports synapses in the spinal cord and counteracts degen-
eration of neuromuscular endplates [291]. In cultured 
Smn-deficient motoneurons, application of R-Roscovitine 
also rescued altered axon elongation. This effect was also 
observed by application of GV-58, another calcium chan-
nel opener [291]. GV-58 is more potent on  Cav2.1/2 and 
has less inhibitory activity for Cdk5 at physiological ATP 
levels [289]. It has already been tested in SMA mouse 
models where it showed significant benefits in terms of 
neuromuscular transmission and muscle strength [222]. 
However, both drugs also need to be administered during 
a critical period of NMJ development [308]. Thus, restor-
ing intracellular  Ca2+-homeostasis by external stimuli 
might be a therapeutic option for SMA, together with 
current ASO therapies, small molecules or adenoviral 
SMN1-gene transfer. Such kind of therapy needs also to 
be applied during a critical and early time window. Major 
recovery effects will not be obtained when treatment 
starts with delay and after symptom onset.

Substances with blocking properties of voltage-gated 
potassium channels such as 3,4-diaminopyridine (3,4-
DAP) and 4-aminopyridine (4-AP) have also been dis-
cussed as candidates for increasing presynaptic calcium 
influx. On anatomical level, they increase the number 
of proprioceptive synapses projecting to motoneu-
ron cell bodies in the spinal cord, as well as the num-
ber of NMJs in Smn-deficient mouse models. However, 
4-AP treatment has no effect on motoneuron survival 
[273]. Clinical trials for both substances are ongoing 
(3,4-DAP, NCT03781479, NCT03819660 and 4-AP, 
NCT01645787).

In addition to these two molecules that modulate the 
kinetics of presynaptic voltage-gated  Ca2+-channels, the 
effects of Pyridostigmine, an acetylcholinesterase inhibi-
tor have been tested in SMA. This drug has been reported 
to increase fitness/perseverance in 2 of 4 SMA type 2 
and 3 patients [310] (Clinicaltrials.gov: NCT02941328). 
Results from the last three clinical trials are still pending.

The genetic modifiers Plastin 3 and NCALD also act 
in a  Ca2+-dependent manner in motoneurons. NCALD 

is a neuronal calcium sensor and functions as a negative 
regulator of endocytosis. NCALD knockdown improves 
endocytosis in SMA patients ‘ fibroblasts as well as axon 
elongation and neuromuscular morphology and function 
in SMA mice [246, 293]. However, the therapeutic poten-
tial of a NCALD knowdown needs to be further inves-
tigated, in particular with respect to toxicity and side 
effects. This appears important since MAP3K10 interacts 
with NCALD as an activator of c-Jun N-terminal kinases 
(JNKs). The activity of JNK is markedly upregulated in 
NCALD−/− mice, probably affecting cellular differentia-
tion, since morphology of NCALD-deficient hippocam-
pal neurons is significantly altered [298]. Plastin 3 (PLS3), 
[224, 282] and other members of the Plastin family are 
evolutionarily conserved and act as modulators of the 
actin cytoskeleton. They play an important role in cell 
migration, adhesion and exo- and endocytosis [321]. In 
an Smn-deficient zebrafish model Pls3 protein levels are 
reduced. However, Pls3 mRNA-splicing is unaffected. A 
partial restoration of Pls3 in these animals compensates 
presynaptic defects, independent of SMN expression 
[113]. Pls3 orthologs are thus also considered as Smn 
modifier genes in Caenorhabditis elegans, Drosophila 
and mouse models [5, 65]. PLS3 appears as an interesting 
candidate for further therapeutic development, because 
of its regulation by  Ca2+-ions in the presynaptic termi-
nals of motoneurons, and its effect on actin bundling. 
These data and the observation of  Ca2+-dysregulations in 
growth cones of Smn-deficient motoneurons in cell cul-
ture [139] and in vivo in neuromuscular endplates [260, 
291, 292] support the hypothesis that  Ca2+-dependent 
F-actin bundling could be a specific target for therapy 
development in SMA, in particular during early/prenatal 
development stages of the neuromuscular endplate.

Neuroprotection
Cellular differentiation of motoneurons depends on the 
presence and proper responsiveness to neurotrophic 
factors. It has been widely recognized that neurotrophic 
factor signalling contributes to motoneuron survival [11, 
116, 129, 234, 235, 265, 268]. The application of brain-
derived neurotrophic factor (BDNF), ciliary neurotrophic 
factor (CNTF) and/or glial derived neurotrophic factor 
(GDNF) to isolated primary motoneurons from chick, 
human, rat and Xenopus promotes their survival [116, 
172, 266, 267], upregulates cholinergic differentiation and 
transmitter production [148, 322], and leads to increased 
acetylcholine release in quantal packets [175]. BDNF, as 
a member of the neurotrophin family, acts through the 
tropomyosin-related kinase (TrkB) family of receptor 
tyrosine kinases [152–154, 200, 281]. BDNF/TrkB sign-
aling drives local calcium transients in mouse motoneu-
rons cultured on synapse-specific laminin-221 [67]. The 
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activation of TrkB downstream signaling cascades in turn 
promotes the stabilization of β-actin via the LIM kinase 
pathway and phosphorylation of Profilin at Tyr129 [67]. 
The specific effect of BDNF/TrkB signaling on on the 
cluster formation of presynaptic  Ca2+-channels indi-
cates that molecules which positively modify this sign-
aling could beneficially act on this pathological aspect 
and improve neurotransmission in SMA. Neurotrophic 
factors and small molecules that activate specific path-
ways could also perform on other aspects of motoneuron 
pathology in SMA. Smn-deficiency leads to a down-
regulation of the Akt signaling pathway [295]. Loganin, 
a neuroprotective iridoid glycoside, has been described 
to upregulate BDNF and Akt signaling, resulting in 
improved motor function and mildly improved lifespan 
in SMNΔ7 mice [295]. IGF-1, a trophic factor that acts 
both on muscle, motoneuron development and survival, 
is reduced in severe SMA mouse models [215]. Systemic 
administration of IPLEX, a recombinant hIGF-1 complex 
with rhIGFBP-3, counteracts motoneuron degeneration 
and loss of motor function in SMNΔ7 mice, with minor 
effects on survival [215]. The overexpression of IGF-1 via 
systemic AAV1-mediated overexpression causes a slight 
upregulation of lifespan and improved motor coordina-
tion of SMNΔ7 mice [294]. Muscle-specific overexpres-
sion of IGF-1 through the myosin light chain promoter 
in SMNΔ7 mice had a positive effect on myofiber size. It 
also increases animal survival, but revealed no significant 
beneficial effect on motor function [26]. Nevertheless 
IGF-1 is still considered as an SMN-independent sup-
plementary therapeutic approach. Likewise, Olesoxime 
(OLEOS, NCT02628743), a small orally active choles-
terol-like molecule that targets components of the mito-
chondrial permeability complex, thereby preventing the 
apoptotic death pathways, has been tested. However, this 
drug candidate did not show convincing effects in clinical 
trials. At the preclinical level, Olesoxime preserves mito-
chondrial homeostasis and thus motoneuron integrity 
and reduces muscle denervation, astrogliosis, and micro-
glial activation [25, 285]. However, the OLEOS clinical 
trials with type 2–3 SMA patients did not demonstrate 
any significant beneficial outcome.

Muscle‑directed strategies
Muscle-autonomous disease mechanisms in SMA could 
contribute to the course of disease, in particular at later 
stages in SMA type 2 and 3 patients [50]. SMN levels in 
muscle and other tissues are very low in adult SMA mice 
and patients [50, 138]. In order to prevent loss of mus-
cle mass, myostatin inhibition has been proposed as an 
option since this secreted growth/differentiation fac-
tor acts as a negative regulator of skeletal muscle fiber 
growth and size [169, 191, 332]. Myostatin activity is 

normally inhibited by follistatin and myostatin pro-
peptide [118]. First studies with myostatin inhibition in  
models of severe SMA did not show significant effects 
[248, 284]. Interestingly, the effects of myostatin inhibi-
tion were stronger in mouse models of milder forms of 
SMA. In particular at later stages of disease, myostatin 
inhibition seems to have a positive effect on motor func-
tion and survival as well as muscle and bone atrophy [86, 
179, 331]. SRK-015/Apitegromap is a selective monoclo-
nal antibody that blocks myostatin [86, 236]. It is cur-
rently under investigation in the phase 2 TOPAZ study 
for 57 type 2 and type 3 SMA patients which already 
received Nusinersen (ambulatory cohort; 2–20  mg/
kg). In the non-ambulatory cohort (20  mg/kg), it is 
tested both as a monotherapy and in combination with 
Nusinersen.

Along the same line, the troponin activator Relde-
semtiv (CK-2127107) is considered as another modula-
tor of muscle atrophy and loss of muscle strength. This 
molecule acts by slowing down calcium release from 
the troponin complex and thus sensitizes the sarcomere 
response to calcium [130], resulting in enhanced con-
tractility. Most importantly, it amplifies the skeletal 
muscle force–frequency response upon nerve stimu-
lation [9]. Reldesemtiv has been studied in a double 
blind, randomized, placebo-controlled, phase 2 study 
(NCT02644668) in two cohorts. Oral application of a sin-
gle dose of Reldesemtiv has been well tolerated. Whether 
this treatment also improves motor function is currently 
investigated with larger cohorts of SMA patients [258].

Human Insulin-like growth factor 1 (IGF1), which has 
already shown neuroprotective potential in mouse mod-
els for SMA, was also tested in SMARD1/DSMA1 mouse 
models (Nmd2J mouse). Nmd2J mice are IGF-1-deficient 
and show an upregulation of IGF-1 receptor in gastrocne-
mius muscle and diaphragm, that is not observed in spi-
nal cord [159]. The IGF-1 deficiency can be compensated 
by pharmacological application of human pegylated-
IGF-1. This external application normalizes muscle fiber 
differentiation in the diaphragm and leads to a partial 
rescue in the gastrocnemius muscle [159]. Unfortunately, 
the compensatory effect of PEG-IGF-1 could not coun-
teract atrophy. Cell body and axon loss of motoneurons is 
not diminished by IGF-1 treatment in Nmd2J mice [159].

Oligonucleotide and gene therapies beyond SMA 
for other neurodegenerative and muscular 
disorders
Most oligonucleotide therapies focus on gene silencing, 
transcriptional and splice modulation. Since oligonucleo-
tides usually interact with their target molecules via com-
plementary base pairing, gene-specific lead compounds 
can be derived from the primary sequence of the target 



Page 15 of 32Jablonka et al. Neurological Research and Practice             (2022) 4:2  

gene. Also modifications for increasing bioavailability, 
such as for properly passing the plasma membrane and 
increased resistance to nucleases are feasible and have 
been successfully introduced [182]. In addition, bio-
informatics tools allow avoiding predictable off-target 
effects. In terms of the ASO applications for individual-
ized therapies, it is also possible to target patient-specific 
sequences in specific alleles such as single nucleotide 
polymorphisms (SNPs) or expanded repeat-containing 
mutant transcripts that are causative for rare diseases. 
This appears as an advantage over conventional screening 
for small molecules on the basis of effects on defined cel-
lular target mechanisms. Although small molecules also 
bear the advantage of systemic application, they usually 
need extensive toxicological analyses and chemical opti-
mization in order to lower off-target effects.

ASOs are classified into RNase H-competent ASOs 
and steric block ASOs without RNase H activity. Steric 
block oligonucleotides can interfere with transcript 
RNA–RNA and/or RNA–protein interactions and mask 
specific sequences within a target transcript [250]. They 
are mostly used for modulation of alternative splicing to 
exclude (exon skipping) or retain specific exon(s) (exon 
inclusion). In these cases, the oligonucleotide ‘masks’ a 
splicing signal converting it invisible to the spliceosome. 
This ultimately leads to alterations in splicing events e.g. 
for SMN2 exon 7 retention [277]. In the following, we 
will give an overview of current ASO applications in neu-
rodegenerative and muscular disorders beyond SMA.

ASO therapies in amyotrophic lateral sclerosis (ALS)
Amyotrophic lateral sclerosis is a fatal motoneuron dis-
order, predominantly with adult onset. 10% of ALS cases 
are familial (fALS), whereas the remaining cases are con-
sidered ‘‘sporadic’’ (sALS) without a clear familial history 
[150]. Extended genetic analyses discovered all major 
genes for monogenetic forms of ALS [42]. However, 
the question concerning of how the relevant mutations 
affect the function of the corresponding gene products is 
in almost all cases not appropriately answered. This has 
consequences on the development of genetically based 
therapeutic strategies. In case such mutations cause 
loss of function (LOF), relevant approaches need to be 
designed for re-establishing this function. Gain of func-
tion (GOF) mutations would require the blockade/inhi-
bition of the mutated gene and its product. However, 
downregulation of the expression of the mutated gene 
usually also affects expression of the unaffected allele. 
Most of the mutations described for the familial forms of 
ALS show dominant inheritance pattern and imply GOF 
mechanisms such as protein aggregates or altered pro-
tein properties affecting essential cellular processes [290]. 
However, there is evidence that GOF and LOF come 

together in some ALS-causing gene mutations such as 
the intronic expansion of C9ORF72 [278, 290]. This situ-
ation then requires strategies that only affect the mutant 
gene and transcript. Herein we will exemplify ASO appli-
cation in cases of SOD1, C9ORF72, and FUS and genetic 
ALS modifiers.

SOD1
The gene encoding Cu/Zn superoxide dismutase (SOD1) 
was the first identified mutation that causes fALS [62, 
254]. The majority of the SOD1 mutations (18.9%) cor-
respond to fALS, while 1.2% coincide with sALS cases 
[334], both exhibiting a dominant inheritance pattern 
[6–8]. Most of the ALS-causing SOD1 mutations do not 
reveal any correlation between SOD1 enzymatic activity 
and ALS disease severity [48, 221, 269]. Loss of function 
for Sod1 in Sod1 gene knockout mice does not cause per 
se defects in  motor axon elongation [142] or motoneuron 
degeneration [244]. In addition, the presence or absence 
of endogenous mouse Sod1 does not affect survival of 
mice expressing the human SOD1G85R transgene [36]. 
This argues for a toxic GOF although SOD1-LOF might 
not be completely excluded. In a recently completed 
placebo-controlled phase 1/2/3 clinical study, SOD1 was 
targeted by the ASO Tofersen/BIIB067 (NCT02623699 
December 8th 2015 until March 24th 2021) for silenc-
ing the mutant as well as the wild type allele [201, 202]. 
This was a 3-part (A, B, C) study to examine efficacy, 
safety and tolerability of BIIB067. BIIB067 administration 
resulted in an approximately 36% suppression of SOD1 
in the CSF which appeared safe for SOD1-ALS patients 
[201]. It remained open, whether this is sufficient for 
long-term suppression of toxic effects of mutant SOD1, 
although administration appeared safe. Only some lum-
bar puncture-related side effects have been reported 
[201]. The first two parts (phase 1/2) were primarily not 
designed for assessment of motor function. However, 
they revealed that this treatment possibly slows disease 
progression and leads to better performances in vital 
capacity and hand-held dynamometry tests [201]. These 
effects have been pursued in phase 3 started in May 2019 
to evaluate clinical efficacy. All types of SOD1 muta-
tions and severity levels of symptomatic ALS patients 
were included. In order to explore therapeutic effects of 
BIIB067 in pre-symptomatic ALS patients, again a pla-
cebo-controlled phase 3 study (which is currently in the 
recruitment status) has been started on May 17th 2021 
(NCT04856982). The primary objective is to evaluate effi-
cacy of BII067 in pre-symptomatic ALS-SOD1 patients 
with elevated neurofilament levels. The secondary objec-
tives include evaluation of safety, pharmacodynamics, 
and treatment-response biomarkers. The estimated study 
completion date is the second half of 2027.
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C9ORF72
At least in Europe and the US, the most common genetic 
cause of both ALS and Frontotemporal Dementia (FTD) 
is a GGG GCC  (G4C2) hexanucleotide repeat expansion 
in the open reading frame 72 (C9ORF72) gene localized 
on chromosome 9. The mutation constitutes approxi-
mately 34% of fALS and nearly 25% of familial FTD cases 
(C9ALS/FTD) in European populations [302, 334]. Up to 
25 G4C2 repeats are found in healthy individuals, while 
C9ALS/FTD patients harbor hundreds to thousands of 
repeats [60, 245, 253]. The expansion is located in intron 
1 which also contains the promoter region of the second 
transcript for C9ORF72 [161, 204, 205]. Thus, reduced 
expression levels of the corresponding second transcript 
led to decreased C9ORF72 protein levels in such patients. 
However, this intronic expansion region is also translated 
via a non-canonical form of protein biosynthesis (repeat-
associated non-AUG [RAN] translation) [15, 212, 335]. 
Based on the observations of RNA-foci or aberrant RNAs 
as well as the production of toxic homopolymeric dipep-
tide repeat proteins (DPRs) through RAN translation [94, 
163, 205, 212, 286, 290, 315], a GOF mechanism appears 
to take place. Antisense RNA-foci are known to seques-
ter RNA-binding proteins (RBPs), leading to LOF of RBPs 
in corresponding neurons [163, 168, 189]. Depletion of 
C9orf72 in isolated mouse motoneurons leads to altera-
tions in axon growth and presynaptic differentiation 
[278]. This phenotype is also observed in C9ORF72 ALS 
patients’ inducible pluripotent stem cell (iPSC)-derived 
motoneurons and resembles some of the alterations that 
are observed in cell culture models of SMA. Based on 
these findings, a combined therapeutic approach with 
silencing the G4C2-repeat-containing RNAs and simulta-
neous increase of C9ORF72 expression by gene therapy 
has been proposed for C9ORF72 patients [101]. The ASO 
BIIB078 that targets the sense-strand of C9ORF72 tran-
scripts containing the hexanucleotide G4C2 repeat has 
been tested for safety and tolerability in a phase 1 clinical 
trial with adult C9ORF72 ALS patients (NCT03626012). 
The study is still active with an estimated completion 
date end of 2021. The trial already starts to be followed by 
a phase 1 extension study (NCT04288856) to assess long-
term safety, tolerability, pharmacokinetics and effects on 
disease progression of BIIB078 application to previously 
treated C9ORF72 patients. The study is still enrolling 
with an estimated completion in the middle of 2023.

FUS
Mutations in FUS/TLS (Fused in Sarcoma/Translocated 
in Liposarcoma) are a genetic cause for rare forms of 
fALS and FTD [35, 162, 303, 304]. FUS mutations are 
present in 4% of fALS patients and in less than 1% of 
sALS patients [61, 334] with an autosomal dominant 

inheritance pattern. The ubiquitously expressed DNA-/
RNA-binding protein FUS localizes predominantly to 
the nucleus under physiological conditions [333]. FUS is 
involved in DNA repair [313] but also acts as an RNA-
binding protein in several aspects of RNA metabolism 
including transcriptional regulation [188, 288], alterna-
tive splicing [121, 135, 164, 252], mRNA transport [96], 
mRNA stability [145, 297, 327], and microRNA biogen-
esis [105, 213]. Toxic GOF and LOF due to FUS aggre-
gation and cytoplasmic mislocalization play a role in 
FUS-ALS/FTD pathogenesis [150]. An ASO-based thera-
peutic approach has been initiated for ALS caused by a 
specific FUS mutation (P525L) that is associated with an 
aggressive form of ALS with juvenile onset. Three of such 
FUS-ALS patients have received Jacifusen, a personalized 
ASO [13]. A FUS-ALS patient who already had devel-
oped respiratory problems received this personalized 
ASO treatment and died one year later [14]. The prelimi-
nary results from this case implicate, that adverse effects 
might also emerge by knocking down the wild type FUS 
transcript. FUS interacts as an RNA-binding protein with 
transcripts from about 5500 genes [164]. Thus, knock-
ing down FUS via an ASO approach could interfere with 
the turnover of RNAs with long introns, many of which 
especially encode for synaptic proteins [164]. Downregu-
lation of such transcripts and corresponding proteins in 
rodent primary neurons causes morphological altera-
tions such as enlarged growth cones [225], shorter neu-
rites [134, 225], abnormal dendritic spines [95, 327] and 
altered neurotransmission [297]. In  vivo knockdown of 
FUS in murine hippocampal neurons causes increased 
phospho-tau accumulations as well as decreased neuro-
genesis, and thus a FTD-like phenotype [134, 297]. These 
data ultimately require enhanced efforts in the explora-
tion of therapeutics which specifically target  FUS expres-
sion. Jacifusen is scheduled to be given to eight additional 
patients with FUS mutations (Figueiredo, M. (2020)—
Collaboration Funds Experimental Therapy for Rare 
FUS-ALS, accessed 3.28.20. https:// alsne wstod ay. com/ 
2020/ 03/ 16/ jacif usen- colla borat ion- funds- exper iment al- 
thera py- for- patie nts- with- raref us- als/). Additional trials 
are planned with ION3763-CS1 which also targets this 
FUS mutation. Recruitment for this trial will start in June 
2021, and there are so far no clinical data available. The 
relevant gene therapies for SOD1-, C9ORF72-, and FUS-
ALS are depicted in Fig. 4.

Genetic modifiers in ALS
Ataxin-2 is a protein encoded by the ATXN2 gene. Expan-
sion of the polyglutamine tract in the human ATXN2 
gene leads to spinocerebellar ataxia type 2 (SCA2) [131, 
238, 262]. SCA2 is characterized by neuronal degen-
eration in the cerebellum and inferior olive that causes 

https://alsnewstoday.com/2020/03/16/jacifusen-collaboration-funds-experimental-therapy-for-patients-with-rarefus-als/
https://alsnewstoday.com/2020/03/16/jacifusen-collaboration-funds-experimental-therapy-for-patients-with-rarefus-als/
https://alsnewstoday.com/2020/03/16/jacifusen-collaboration-funds-experimental-therapy-for-patients-with-rarefus-als/
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ataxia, parkinsonism, and dementia. More than ten years 
ago, it has been discovered that this CAG repeat expan-
sion is associated with a higher risk for ALS [76]. Since 
2017, it is known that reduced levels of Ataxin-2 via ASO 
approaches extend life span and diminish functional 
and behavioral deficits in a TDP-43-ALS mouse model 
[21]. In September 2020, recruitment for a study of ALS 
patients with or without CAG expansion in the ATXN2 
gene has been started to assess safety, tolerability, and 
pharmacokinetics of the Ataxin-2 ASO termed BIIB105. 
The estimated study completion date is February 2023. 
The study is listed in https:// clini caltr ials. gov.

ASO treatments for muscular dystrophies
Duchenne’s muscular dystrophy (DMD) and Becker’s 
muscular dystrophy (BMD), the two forms of X-linked 
muscular dystrophy are caused by mutations in the Dys-
trophin gene. DMD occurs with an incidence of about 
1:5000, whereas BMD affects children with an incidence 
of 1:30,000 [155]. The severe form, DMD, usually starts 
before 4  years. Affected boys lose ambulation around 
12 years of age and get ventilation by the age of 18 [119]. 
The average life span today is 20–30 years due to advances 
in cardiac and respiratory care. In contrast to SMA, the 
spectrum of mutations in DMD is broad and ranges from 
point mutations to deletions as well as  small insertions to 
large duplications [24].The dystrophin gene is one of the 

largest human genes containing 79 exons and approxi-
mately 2.4 million base pairs [2, 24, 41]. The primary role 
of the dystrophin protein is to link the actin-cytoskeleton 
with the extracellular matrix in cardiac and skeletal mus-
cles by forming interactions with the subsarcolemmal 
actin and the large oligomeric dystrophin–glycoprotein 
complex (DPG). This regulates the proper functioning of 
muscle fibers. Defects of the DPG result in muscle weak-
ness due to contraction-induced damage, necrosis, and 
inflammation, and a replacement of functional myofib-
ers by fibrous and fatty connective tissue [29]. Disease 
severity depends very much on residual functions of the 
truncated dystrophin protein, which is derived from the 
mutant gene. Interestingly, mild forms of the disease have 
not only been detected in patients with point mutations 
which have only minor consequences for protein struc-
ture and function, but also in BMD patients in which mul-
tiple exon-encoded domains are not transcribed, resulting 
in a highly truncated dystrophin mRNA of only 8.8  kb 
[79]. This observation has paved the way to define essen-
tial subdomains within the dystrophin protein and exons 
within transcripts which are functionally important and 
needed to be present for mitigating disease severity. Simi-
larly, these findings are the basis for the design of artificial 
mini-dystrophin genes which could be used for gene ther-
apy through viral vectors which can only carry cDNAs of 
limited length [52].

Fig. 4 Different therapeutic strategies in familial forms of amyotrophic lateral sclerosis. Illustration of the different ASO and AAV approaches for the 
SOD1-, C9ORF72-, and FUS-ALS forms

https://clinicaltrials.gov
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Exon skipping
Retention or preservation of the open-reading frame 
(ORF) is an option to restrict the physiological conse-
quences of dystrophin loss in DMD patients with non-
sense mutations. Retention of the ORF can be mediated 
via ASO delivery. Binding of the ASOs to the dystro-
phin pre-mRNA transcript induces deletion/skipping of 
certain exon(s) and can thus restore the ORF [72]. The 
resulting shorter ORF produces a phenotype similar to 
that described for the milder form of DMD—the BMD. 
Three ASOs with phosphorodiamidate morpholino 
oligomer (PMO) backbone which are used for exon-
skipping—eleplisen (exon 51), golodirsen (exon 53) and 
viltolarsen (exon 53)—have been approved by the FDA. 
However, the ASOs also show some limitations [75, 
306] [1]. Since DMD patients have variants in many dif-
ferent exons that cause multiple reading frame disrup-
tions, such single exon treatments are only applicable to 
a subset of DMD patients. Multi-exon skipping has been 
proposed to overcome the limited scope of single exon 
skipping by targeting DMD patients with variant exons 
[16]. A cocktail of ASOs targeting the variant hotspots 
of exons 45–55 can efficiently skip these exons in both 
immortalized DMD patient muscle cells and mouse mod-
els [73, 167]. However, a mixture of several ASOs also has 
a higher risk for off-target effects. This needs to be tested 
in clinical trials. If this finding is successfully translated 
to the clinic, it could potentially be useful for more than 
65% of the DMD patients [74].

Genome editing
Genome editing with CRISPR-Cas9 appears as an attrac-
tive option for ORF restoration of the dystrophin gene. 
Application of CRISPR-Cas9 does not require re-injec-
tions because DNA instead of pre-mRNA is targeted. This 
approach could also be useful for treating patients with 
duplications in certain exons of the DMD gene, since it 
allows removal of extra exons and other gene insertions. 
The use of a multiplexed guide-RNA (gRNA) targeting the 
variant-prone exons 45–55 or 47–58, has been shown to 
restore dystrophin expression [306] in cultured patient-
derived myoblasts. When these myoblasts were implanted 
into mice, expression was maintained [226]. However, 
because Cas9 induces double strand breaks (DSBs) by 
the gRNA in a targeted manner, off-target DNA-cutting 
remains an issue. Currently there are no clinical trials 
using genome editing approaches for DMD [75].

Perspectives of AAV‑based gene therapies beyond SMA
In the case of mutation-based LOF, relevant therapeu-
tic approaches need to re-establish gene function. In the 
case of SMA, the scAAV9-SMN1 gene therapy provided 
proof that this approach is feasible for treatment of a 

neurodegenerative disease. The dose of 1.1 ×  1014 vg/kg 
body weight appeared sufficient to transduce the gene 
into a clinically relevant number of motoneurons, and to 
keep adverse effects such as severe acute liver injury at 
a low level. An increase of liver transaminase levels has 
been discussed as a consequence of a massive immune 
response against viral particles [195]. Unfortunately, in 
the case of another neuromuscular disorder—X-linked 
myotubular myopathy—the systemic delivery of a high 
dose of AAV8 particles containing the cDNA for myo-
tubularin-1 was fatal. Two of six patients who received a 
dose of 2 ×  1014 vg/kg or more died by progressive liver 
dysfunction followed by sepsis; it is presumed that AAVs 
directly damage liver cells [117]. Thus, AAVs are on one 
side effective gene-transfer-vehicles but on the other side 
bear the disadvantage of severe inflammatory reactions, 
particularly in systemic treatments with high doses. 
Strategies have been proposed to identify patients at 
risk for severe side effects [57, 58], and to overcome this 
problem by modulating the immune reaction towards 
a dampened response. This could be achieved either by 
depleting immunoglobulins via plasmapheresis; or even 
more specifically, by use of the IgG cleaving metallo-
proteases IdeS or IdeZ [63]. Such approaches to reduce 
AAV-autoantibodies could help to reduce side effects of 
AAV-based gene therapies for disorders such as DMD 
where systemic treatment with high numbers of virus 
particles is necessary. Furthermore, it can be beneficial 
for therapies of adult-onset disorders when patients are 
expected to have developed high AAV-antibody titers 
due to multiple previous exposures to such viruses.

Another strategy could be local injection, either by 
intrathecal application of the recombinant viruses or 
injection into the cisterna magna. This approach is cur-
rently followed with an AAV1-based gene therapy trial 
to increase expression of Progranulin in patients with 
frontotemporal dementia with granulin mutations [120] 
(Press release January 28th 2021: Passage Bio—Pas-
sage Bio Receives FDA Clearance of IND Application 
for PBFT02 Gene Therapy Candidate for Treatment of 
Patients with Frontotemporal Dementia with Granulin 
Mutations). It will show how the immune system reacts 
when AAV particles are injected into the CSF, how many 
brain cells can take up the viral particles to produce the 
transgene, and which levels of transgene expression are 
necessary for a clinically relevant effect.

In a study reported by Mueller et al., two ALS patients 
were treated with a single intrathecal infusion of 
AAVrh10 containing microRNAs to target SOD1. Down-
regulation of SOD1 transcripts and protein was identi-
fied in spinal cord autopsy samples via Western blot in 
one of these patients. The same patient showed tran-
sient improvements in the strength of his right leg but 
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no change in vital capacity, whereas the second patient 
maintained a stable vital capacity over the 12-month 
observation period [214]. The authors proposed that 
intrathecal infusion of AAV-delivered microRNAs for 
SOD1 might have the potential for sustained beneficial 
effects, but possibly requiring immunsuppression.

AAV‑based micro‑dystrophin (µDys) gene transfer
Causal therapies for DMD ideally should restore dystro-
phin expression in skeletal muscle. Unfortunately, the 
full-length dystrophin gene is too large for being packed 
into a functional AAV particle. Current strategies try 
to bypass this bottle neck by using truncated forms of 
dystrophin with residual function that is sufficient for 
attenuation of the disease [56]. Three independent clini-
cal trials, using gene therapy with such micro-dystrophin 
constructs are currently ongoing (summarized in [52]. 
Initial results from one of these ongoing clinical trials 
with μDys showed that more than 80% of the muscle 
fibers were micro-dystrophin positive with significant 
expression of μDys in post-treatment biopsies (95.8% 
compared to normal) (Sarepta Therapeutics Announces 
Positive Updated Results from Micro-Dystrophin Trial to 
Treat Patients with DMD. https:// inves torre latio ns. sarep 
ta. com/ news- relea ses/ news- relea se- detai ls/ sarep ta- thera 
peuti cs- annou nces- 23rd- inter natio nalco ngress- world), 
and summarized by [75, 306]. In addition, long-term 
therapy with μDys has beneficial effects in a canine model 
[165]. MicroDys does not contain all of the functional 
elements of the full-length dystrophin that are important 
for interactions with other proteins to convey forces on 
contractile actin. For this purpose novel variants of μDys 
with modified central rod domains, which are expected 
to exhibit higher cellular rescue activity, have been devel-
oped [240, 241] and are currently tested in clinical trials 
[178]. Another option which is currently followed is the 
use of miniaturised utrophin (μUtro), a shortened codon-
optimized version of utrophin that differs in some pro-
tein–protein interactions from dystrophin. It prevents 
muscle pathology and appears in a non-immunogenic 
manner in large dog models. However, a positive effect 
on the disease phenotype has not been confirmed [280]. 
The overexpression of b1,4-N-acetylgalactosaminyltrans-
ferase (GALGT2) is a third possibility. GALGT2 stimu-
lates the upregulation of key cytoskeletal binding proteins 
that can act as surrogates of dystrophin [43, 328]. After 
demonstrating safety in pre-clinical models, this therapy 
is now being tested in a phase I/IIa trial to evaluate its 
safety in humans. (Gene Transfer Clinical Trial to deliver 
rAAVrh74.MCK. GALGT2 for Duchenne Muscular 
Dystrophy-NCT03333590. https:// clini caltr ials. gov/ ct2/ 
show/ NCT03 333590 48).

AAV gene transfer in Parkinson disease (PD)
Parkinson’s disease is a long-term degenerative disorder 
that affects multiple neuronal systems, in particular the 
motor system. The most common symptoms include 
tremor, rigidity, slowness of movement combined with 
walking difficulties. As the disease progresses, non-
motor symptoms such as cognitive and behavioral altera-
tions also become apparent. Motor symptoms are caused 
by degeneration of dopaminergic neurons in the substan-
tia nigra. Loss of these dopaminergic neurons results in 
over-excitation of the subthalamic nucleus (STN) leading 
to increased inhibition of the thalamus [203]. Thus, Par-
kinson patients suffer from defects in movement initia-
tion. Deep brain stimulation of the subthalamic nucleus 
appears as an attractive therapeutic option, because Lev-
odopa [80] and other pharmacological treatments can-
not halt the degenerative process in this disease. Hence, 
gene strategies using AAV vectors appear as an option 
for treatment of PD, also in combination with deep brain 
stimulation. Currently, there are several trials involving 
PD and gene therapy listed on clinicaltrials.gov. The all-
encompassing approach of gene therapy for PD is to pre-
serve the dopamine production in neuronal cells which 
are not affected, in order to functionally maintain the cir-
cuitry of the basal ganglia. For this purpose, direct intra-
parenchymal delivery via MRI-guided administration of 
AAV2 encoding the cDNA for aromatic L-amino acid 
decarboxylase (VY-AADC01) has been established [46]. 
Fifteen subjects with moderately advanced PD and drug 
refractory motor fluctuations received VY-AADC01. 
MRI-guided administration achieved putaminal coverage 
of 20–40% in accordance to increased enzyme activity 
assessed by PET and dose-related clinical improvements. 
Simultaneous reduction of antiparkinsonian medication 
led to reduced symptoms of dyskinesia [46]. A similar 
strategy is the MRI-guided AAV2-GAD (Glutamatdecar-
boxylase) delivery into the STN in an effort to increase 
local GABA inhibition and to correct pathological hyper-
activity in this brain structure. Phase 1 and 2 trials have 
been performed with AAV2-GAD delivery via Convec-
tion-enhanced delivery (CED) to the STN of PD patients 
[146, 171]. These patients displayed improvements in 
their motor symptoms, but not to such an extent as could 
be achieved by deep brain stimulation of the STN [171].

Gene therapy approaches in Alzheimer´s disease (AD)
Generation of the pathological amyloid-β (Aβ) pep-
tide is believed to be the initial event in the AD process. 
Since several previous clinical trials including immune 
therapies to reduce the load with amyloid plaques 
failed or showed only minor effects [228], the FDA has 
now approved Aducanumab marketed under the name 

https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-23rd-internationalcongress-world
https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-23rd-internationalcongress-world
https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-23rd-internationalcongress-world
https://clinicaltrials.gov/ct2/show/NCT03333590
https://clinicaltrials.gov/ct2/show/NCT03333590
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Aduhelm™ as an Aβ-directed antibody. The effects of this 
therapy appear to be less than expected, and this draws 
attention back to potential gene therapies which interfere 
with synaptic dysfunction and degeneration. Technical 
challenges for this approach are similar as in PD. Inter-
ventional MRI-guided convection-enhanced delivery 
is not exclusively relevant for treatment of PD patients. 
Likewise, AD patients could benefit from viral gene 
transfer and this technical approach. Some therapeutic 
developments focus on the tau protein [49, 329]. Patho-
logical tau in AD brain is prevalent in a hyperphospho-
rylated state (i.e. phosphorylated at multiple sites within 
the tau protein). This posttranslational modification cor-
responds to tau aggregation and neurofibrillary tangle 
formation [133].

AAV-mediated gene transfer of the constitutively active 
tau kinase-p38γ has been shown to reduce tau-related 
dementia in pre-clinical dementia mouse models even 
when advanced cognitive deficits are present [136]. This 
strategy has not yet entered the stage of clinical trials for 
AD patients. However, it might become feasible since 
viral gene transfer of BDNF has entered the clinic. This 
trial is based on preclinical studies showing that BDNF 
delivery (via transgenic expression or infusions) in rodent 
models reverses synaptic loss after disease onset cor-
responding to improved learning and cognitive perfor-
mance. BDNF also prevented lesion-induced entorhinal 
neuronal death in the primate model. In aged monkeys, 
BDNF improved performances in visuospatial discrimi-
nation tasks that correspond to increased mean entorhi-
nal neuronal sizes [216]. Based on this data, a phase 
1 clinical trial has started in February 2021. This trial 
assesses the effects of direct injection of AAV2-BDNF 
into the brain of AD patients or patients with Mild Cog-
nitive Impairment (MCI) (Scott LaFee, First-in-Human 
clinical trial to assess gene therapy for Alzheimer’s Dis-
ease, UC San Diego News Center February 18th, 2021).

Conclusions
Childhood proximal SMA is a genetically homogenous 
disease caused by lost or mutated SMN1 and modu-
lated by variable SMN2 copies. This is an ideal condi-
tion to identify the underlying cellular defects and to 
develop therapeutic strategies compensating the lack 
of SMN protein, which is the key of SMA pathophysi-
ology. Extensive research on this condition allowed the 
introduction of therapies with oligonucleotides and mol-
ecules that modulate pre-mRNA splicing. Additionally, 
AAV-based gene therapy entered the clinical stage for 
treatment of a neurodegenerative disease. Since most 
cases of SMA are diagnosed early in life and therapy usu-
ally starts immediately after diagnosis, immunological 
reactions against AAVs are less problematic compared to 

patients of advanced age being exposed to such viruses 
during their life. The clinical experience with these appli-
cations could help to develop and optimize analogous 
approaches beyond SMA. Currently, the development 
of therapeutic strategies is ongoing and hopefully will 
make a difference to the treatment of other neurodegen-
erative disorders  such as amyotrophic lateral sclerosis, 
Parkinson’s and Alzheimer’s disease as well as muscular 
dystrophies.
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