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Abstract 

Ventricular arrhythmias (VAs) and sudden cardiac death (SCD) are significant adverse events that affect the morbid-
ity and mortality of both the general population and patients with predisposing cardiovascular risk factors. Currently, 
conventional disease-specific scores are used for risk stratification purposes. However, these risk scores have several 
limitations, including variations among validation cohorts, the inclusion of a limited number of predictors while 
omitting important variables, as well as hidden relationships between predictors. Machine learning (ML) techniques 
are based on algorithms that describe intervariable relationships. Recent studies have implemented ML techniques 
to construct models for the prediction of fatal VAs. However, the application of ML study findings is limited by the 
absence of established frameworks for its implementation, in addition to clinicians’ unfamiliarity with ML techniques. 
This review, therefore, aims to provide an accessible and easy-to-understand summary of the existing evidence about 
the use of ML techniques in the prediction of VAs. Our findings suggest that ML algorithms improve arrhythmic pre-
diction performance in different clinical settings. However, it should be emphasized that prospective studies com-
paring ML algorithms to conventional risk models are needed while a regulatory framework is required prior to their 
implementation in clinical practice.
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Introduction
Fatal ventricular arrhythmias (VAs) and sudden cardiac 
death (SCD) are some of the most important study out-
comes in the field of cardiology. Current efforts have 
focused on the prediction of VAs in different diseases, 
including hypertrophic cardiomyopathy, arrhythmogenic 
cardiomyopathy, heart failure (HF), congenital heart dis-
eases, cardiac ion channelopathies, in addition to the risk 

of VAs among the general public [1–6]. Conventional 
risk scores are the most widely used tools for risk strati-
fication purposes in clinical practice [7]. However, these 
risk scores have several limitations, including variations 
among validation cohorts, the inclusion of a limited 
number of predictors while omitting some variables that 
might be important. As a result, clinical scores that can 
accurately predict major outcomes and therefore can aid 
in personalized clinical management are needed.

Machine learning (ML) can integrate and interpret 
data from different domains in settings where conven-
tional statistical methods may not be able to perform [8]. 
Recently, the role of ML techniques has been studied in 
different aspects of medicine, including electronic health 
records, diagnosis, risk stratification, timely identification 
of abnormal heart rhythms in the intensive care unit [9, 
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10], on prognosis and guidance of personalized manage-
ment [11, 12]. However, application of ML study findings 
has been limited due to the lack of a regulatory frame-
work for its implementation and the clinicians’ unfamili-
arity in using as well as trusting ML techniques [13]. This 
review aims to present existing data regarding the role of 
ML techniques in the risk stratification of VAs in differ-
ent clinical settings.

Machine learning algorithms
ML algorithms can aid the interpretation of complex 
data, stratification of patient diagnosis and delivery of 
personalized care and therefore are particularly useful 
in the management of cardiovascular diseases [8]. Ran-
dom forest, convolutional neural network (CNN) and 
long short-term memory network  (LTSM) models are 
three commonly used ML approaches in cardiovascular 
medicine.

Random forest model
One common model ensemble method is known as the 
random forest model. The underlying idea of random 
forest algorithms originates from the assumption that 
predictions derived from a large ensemble of models are 
more accurate and robust compared to using a single 
model. Within a random forest model, numerous deci-
sion trees form the basic building blocks by performing 
either classification or regression tasks. To classify the 
data, it is processed through a series of true or false ques-
tions, allowing information to be categorized into the 
purest possible subgroups. Each decision tree will then 
classify a new object based on specific attributes through 
voting, and the classification is based on the largest sum 
of votes. In the case of regression, the average outputs 
from different trees are calculated [14]. With this algo-
rithm, large data sets with higher dimensionality can be 
processed. When a group of uncorrelated decision trees 
in collaboration can reduce the effect of individual vari-
ability and errors, thus outperforming constituent trees 
[14]. There are two main ML ensemble meta-algorithms 

to ensure the trees are uncorrelated: bagging and featur-
ing randomness. The former method separates the data 
into small subsets via random sampling with replace-
ment, improving the stability of ML; at the same time, the 
latter shuffles specific features of the data set, increasing 
the diversity in trees. Due to the simplicity of individual 
trees, this lowers the training time and can be applied to 
academia, e-commerce and banking sectors. An illustra-
tion of one decision tree in a random forest model used 
to predict atrial fibrillation can be shown in Fig.  1 [15]. 
The model was trained with a sample of 682,237 Chinese 
subjects. In each decision tree, there was a maximum 
depth of four nodes. Any greater than four nodes in each 
tree were found to cause overfitting.

Convolutional neural networks
Convolutional neural networks (CNNs) are used to 
detect patterns and to classify images with a high level 
of precision using filters. Different types of filters detect 
various forms of patterns depending on their level of 
sophistication. Pattern detection can range from sim-
ple geometric shapes to complex objects such as eyes 
and dogs. The main purpose of a CNN is to receive and 
transform an input through a convolutional operation. In 
a convolutional operation, the process requires an input 
image, feature detector and feature map [14]. A feature 
detector consists of a matrix. The matrix can contain 
any digits corresponding to a specific color or feature 
that is being measured. This detector is placed over the 
input image, and the number of cells that match between 
the feature detector and the image is counted pixel by 
pixel. Often, CNN analysis may break down an image 
into smaller parts for higher precision during matching. 
After a series of calculations, this generates a feature map 
that indicates where a specific feature occurs. This pro-
cess of convolving and filtering an image to generate a 
stack of filtered images is known as a convolution layer 
[14]. Realistically, for CNN to generate practical data, 
this would require multiple feature detectors to develop 
multiple feature maps. Following on, the output is passed 

Fig. 1  First decision tree of the random forest model predicting risk of atrial fibrillation [15]
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onto an adjoining layer. This process is repeated until it 
reaches the final layer known as a fully connected layer, 
where a list of featured values converts into a list of votes 
for a category. Through training, CNN can prioritize the 
detection of features in chronological order with higher 
accuracy.  An example of an optimal architecture of a 
CNN model used to predict atrial fibrillation can be dem-
onstrated in Fig. 2 [16]. A one-dimensional convolution 
was used in the convolution layer as electrocardiographic 
(ECG) signals are also a one-dimensional time series. 
Other functions including dropout, batch normalization 
and a rectified linear unit were also included to prevent 
divergence.

Long short‑term memory network
Long short-term memory network (LTSM) is a type of 
gated recurrent neural network that regulates the flow 
of information. Hence, this allows the algorithm to learn 
to differentiate between unnecessary and relevant infor-
mation for making predictions. The process begins with 
transforming a sequence of words into machine-readable 
vectors. These vectors are processed by transferring the 
previous hidden state into the next cell, which includes 
learned information from the previous network. Within 
an LSTM unit cell, there are three gates: The input gate 
controls whether the memory cell is updated, the output 
gate controls the visibility of the current cell state, and 
the forget gate ensures the memory cell is reset to 0. The 
previous and current inputs are combined to form a vec-
tor, which then goes through Tanh activation. Through a 
series of complex calculations and processing, LSTM can 
learn long-term dependencies. An example of an LTSM 
recurrent network architecture with focal loss, used to 
detect arrhythmia, is shows in Fig.  3 [17]. The four-lay-
ered LTSM network was designed to decipher the timing 
features in complex ECG signals, which is coupled with 

the focal loss to fix category imbalance. Epochs were set 
to 350 to achieve stability in classification accuracy.

Specific patient populations
ML algorithms have been used for arrhythmic risk strati-
fication purposes and can provide an incremental value 
for the risk stratification of cardiomyopathies (Table 1).

Hypertrophic cardiomyopathy
A simple clinical score is recommended according to 
the current guidelines for the VA risk stratification of 
patients with hypertrophic cardiomyopathy (HCM) [18]. 
However, the analysis and implementation of more vari-
ables for VA risk stratification purposes seem to improve 
the predictive accuracy in this population. Specifically, 
the application of ML methods to electronic health data 
has identified new predictors of VAs in this population, 
while the ML-derived model performed better compared 
to current prediction algorithms [19]. In another study, 
the ensemble of logistic regression and naïve Bayes clas-
sifiers was most effective in separating patients with and 
without Vas [19]. A recent study proposed a novel ML 
risk stratification tool for the prediction of five-year risk 
in HCM, which showed a better performance compared 
to conventional risk stratification tools regarding SCD, 
cardiac and all-cause mortality, while the best perfor-
mance was achieved using boosted trees [20]; specifically, 
the authors used demographic characteristics, genetic 
data, clinical investigations, medications and disease-
related events for risk stratification purposes.

Cardiac magnetic resonance (CMR) has been found 
to provide important data for risk stratification pur-
poses in HCM patients [21]. Of the studied CMR indi-
ces, late gadolinium enhancement (LGE) has a major 
role in the risk stratification of this population [22]. The 
extent of LGE has been found to outperform current 

Fig. 2  Seven-layered optimal architecture of the CNN model predicting risk of atrial fibrillation [16]
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guideline-recommended criteria in the identification 
of HCM patients at risk of Vas [23]. In this context, ML 
techniques can improve the accuracy in the identification 
of high-risk patients. Specifically, ML-based texture anal-
ysis of LGE-positive areas has been proposed as a prom-
ising tool for the classification of HCM patients with and 
without ventricular tachycardia (VT) [24]. In this study, 
of eight ML models investigated, k-nearest-neighbors 
with synthetic minority oversampling technique depicted 
the best diagnostic accuracy for the presence or absence 
of VT [24].

12-lead Holter ECGs have also been analyzed using 
mathematical modeling and computational cluster-
ing to identify phenotypic subgroups of HCM patients 
[25]. Specifically, using these methods, it has been found 
that HCM can be classified into patients with T-wave 
inversion with and without secondary to QRS abnor-
malities. HCM patients with T-wave inversion not sec-
ondary to QRS abnormalities have been associated with 
an increased risk of SCD [25].

Other cardiomyopathies
The risk stratification of fatal arrhythmias is also sig-
nificant in myocardial infarction patients. CMR has also 
been found to provide incremental data for risk strati-
fication purposes in this population [26]. Quantitative 
discriminative features extracted from LGE in post-
myocardial infarction patients have been studied for 
the discrimination of high- versus low-risk patients. In 

a study, the leave-one-out cross-validation scheme was 
implemented to classify high- and low-risk groups with 
a high classification accuracy for a feature combination 
that captures the size, location and heterogeneity of the 
scar [27]. Furthermore, nested cross-validation was per-
formed with k-neural network, support vector machine, 
adjusting decision tree and random forest classifiers 
to differentiate high-risk and low-risk patients. In this 
context, the support vector machine classifier provided 
average accuracy of 92.6% and area under the receiver 
operating curve (AUC) of 0.921 for a feature combination 
capturing location and heterogeneity of the scar [27].

Recently, a novel ML approach was studied for quan-
tifying the three-dimensional spatial complexity of gray-
scale patterns on LGE-CMR images to predict VAs in 
patients with ischemic cardiomyopathy [28]. Specifically, 
in this study, a substrate spatial complexity profile was 
created for each patient. The ML algorithm was classi-
fied with 81% overall accuracy, while the overall negative 
predictive value was estimated at 91% [28]. The clinical 
importance of these findings is mainly attributed to the 
high negative predictive value of the method that can 
identify ischemic cardiomyopathy patients who will not 
be benefited from an implantable cardioverter-defibrilla-
tor (ICD).

Except for clinical and imaging variables, cellular elec-
trophysiological characteristics have also been studied 
using ML algorithms to identify ischemic cardiomyopa-
thy patients at risk of SCD [29]. ML of monophasic action 

Fig. 3  LSTM recurrent network architecture detecting arrhythmia on imbalanced ECG datasets [17]
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potential recordings in ischemic cardiomyopathy patients 
revealed novel phenotypes for predicting sustained VT/
fventricular fibrillation (VF) [29].

Another clinical entity that needs a better risk stratifi-
cation tool is HF with reduced ejection fraction (HFrEF) 
due to non-ischemic dilated cardiomyopathy. While 
previous studies had proved the benefit of ICDs in the 
primary prevention of SCD in this setting [30], the Dan-
ish Study to Assess the Efficacy of ICDs in Patients with 
Non-ischemic Systolic Heart Failure on Mortality (DAN-
ISH) trial showed that prophylactic ICD implantation in 
patients with symptomatic systolic HF that not caused by 
coronary artery disease was not associated with a signifi-
cantly lower rate of all-cause mortality [31]. It is of great 
clinical importance to identify those patients with HFrEF 
due to non-ischemic etiology, who will benefit from 
an ICD. ML techniques can play a crucial role in better 
stratifying this group of patients [32].

In a recent study, ML techniques were used to iden-
tify cardiac imaging and time-varying risk predictors of 
appropriate ICD therapy in HFrEF patients [33]. It was 
found that baseline CMR imaging metrics (specifically, 
left ventricle heterogeneous gray and total scar, left ven-
tricle and left atrial volumes, and left atrial total empty-
ing fraction) and interleukin-6 levels were the strongest 
predictors of subsequent appropriate ICD therapies 
[33]. It is well known that ICD shocks have been associ-
ated with adverse events in patients with ICDs [34]. ML 
techniques and specifically random forest have been 
used for the prediction of short-term risk of electrical 
storm in patients with an ICD using daily summaries 
of ICD measurements [35]. The clinical importance of 
these methods can be mainly attributed to the preven-
tive measures that can be adopted to avoid an imminent 
arrhythmic event. ML algorithms can further improve 
the existing risk stratification tools, and the ML-derived 
models can help clinicians to optimize the management 
of HFrEF patients.

Non-compaction cardiomyopathy is another clini-
cal setting that needs further research for better char-
acterization and risk stratification. In a recent study, 
the presence of significant compacted myocardial thin-
ning, an elevated B‐type natriuretic peptide or increased 
left  ventricular dimensions were significantly associated 
with adverse events in non-compaction cardiomyopathy 
patients [36]. ML techniques have been implemented 
for improving risk stratification in these patients. Spe-
cifically, echocardiographic and CMR data were analyzed 
using ML algorithms to identify predictors of adverse 
events in non-compaction cardiomyopathy patients [37]. 
The combination of CMR-derived left ventricular ejec-
tion fraction, CMR-derived right ventricular end sys-
tolic volume, echocardiogram-derived right ventricular 

systolic dysfunction and CMR-derived right ventricu-
lar lower diameter was found to achieve the better per-
formance in predicting major adverse events in these 
patients [37].

Sarcoidosis
Cardiac sarcoidosis is another clinical condition that 
mandates a better arrhythmic risk stratification model 
given the increased risk of complete heart block, VA and 
SCD. Currently, an ICD should be considered in patients 
with atrioventricular block requiring pacemaker implan-
tation independently of the left ventricular ejection frac-
tion [38].

ML techniques have been used for diagnosing and opti-
mizing the arrhythmic risk stratification of these patients. 
While the 18F-fluorodeoxyglucose (18F-FDG) positron 
emission tomography (PET) plays a critical role in the 
diagnosis of cardiac sarcoidosis, there are significant 
interobserver differences that warrant more objective 
quantitative evaluation methods, which can be achieved 
by ML approaches [39].

It has been reported that deep CNN analysis can 
achieve superior diagnostic performance of sarcoidosis 
in comparison with the conventional quantitative analy-
sis [40]. Moreover, it is known that myocardial scarring 
on CMR has a prognostic value in cardiac sarcoidosis 
patients [41]. A ML approach using regional CMR anal-
ysis predicted the combined endpoint of death, heart 
transplantation or arrhythmic events with reasonable 
accuracy in cardiac sarcoidosis patients [42].

Ion channelopathies
Specific clinical and electrocardiographic markers have 
been associated with VT/VF occurrence in patients with 
Brugada syndrome. ML techniques can further improve 
the risk stratification performance of existing prediction 
models. Specifically, the combination of nonnegative 
matrix factorization and random forest models showed 
the best predictive performance compared with the ran-
dom forest model alone and Cox regression models in 
this clinical setting [43]. Similarly, the random forest can 
better predict the occurrence of VT/VF post-diagnosis 
in congenital long QT syndrome in comparison with the 
conventional multivariate Cox regression model [44].

Furthermore, ML approaches can be used to explore 
the associations between genetic mutations and the 
occurrences of VAs triggered by ion channelopathies. As 
mutations of the SCN5A gene are known to be associated 
with Brugada syndrome and long QT syndrome, a study 
has applied ML methods to a list of missense SCN5A 
mutations and found mutations causing changes to the 
sodium current increase the risk of Vas [45]. However, 
the location, rather than the physicochemical properties 
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of the mutation, is predictive, which highlights that func-
tional studies remain important in this area of research 
[45]. As with Brugada and long QT syndromes, random 
forest analysis has been applied to identify important fac-
tors of ventricular arrhythmogenesis in catecholaminer-
gic polymorphic VT [46].

Drug‑induced arrhythmias
Another interesting area pertinent to the implemen-
tation of ML techniques involves the prediction of 
drug-induced VAs. Specifically, using a support vector 
machine classifier, clustering by gene expression profile 
similarities showed that certain drugs prolong the QT 
interval in a limited number of patient groups [47]. As 
a result, ML methods may provide additional benefit in 
the current process of testing ion channel activities in the 
preclinical setting of cardiac safety assessment of drugs. 
Support vector machine has also been used for the pre-
diction of Torsade des pointes of the different pharma-
cological agents [48]. It should be mentioned that ML 
methods have not only been implemented to identify a 
potential association between drugs and arrhythmic risk 
but also to identify moderators of the arrhythmic poten-
tial of specific medications [49]. Specifically, a study pre-
viously constructed a surrogate model for QT interval 
using multi-fidelity Gaussian regression and found that 
compounds blocking the rapid delayed rectifier potas-
sium channels have the greatest QT-prolonging effect 
[50].

Congenital structural heart disease
An integrated approach should be implemented in 
patients with complex congenital structural heart disease 
for the early prediction of adverse outcomes. For exam-
ple, patients with Tetralogy of Fallot require risk strati-
fication for the early identification of high-risk patients 
who require advanced healthcare management. ML 
techniques and specifically deep learning imaging analy-
sis have been proposed to improve the risk stratification 
of Tetralogy of Fallot patients [51]. Using CMR data, 
a composite score of the enlarged right atrial area and 
depressed right ventricular longitudinal function iden-
tified a tetralogy of Fallot subgroup at increased risk of 
adverse outcome [51].

Furthermore, ML techniques have also studied in the 
prediction of postoperative arrhythmias following atrial 
septal defect closure. In this setting, a prediction model 
based on synthetic minority oversampling technique 
algorithm and the random forest was found to predict 
arrhythmias with excellent accuracy in a pediatric popu-
lation [52]. This is further supported by Guo et al., which 
used a combination of ML techniques including support 
vector machine (SVM), random forest, naïve Bayes and 

adaptive boost to predict postoperative blood coagula-
tion function for children with congenital heart disease 
[53]. The results offer promising evidence that ML mod-
els are more robust and accurate relative to traditional 
statistical methods.

Arterial hypertension
Hypertension is a common condition that has been asso-
ciated with adverse outcomes in the long-term setting. 
However, a prediction model is difficult to be constructed 
in young hypertensive patients mainly due to the lack 
of sufficient data in this population. Wu et  al. used two 
ML methods, recursive feature elimination and extreme 
gradient boosting, to predict outcomes in young patients 
with hypertension [54]. The outcome was the composite 
of all-cause mortality, acute myocardial infarction, coro-
nary artery revascularization, new-onset HF, new-onset 
atrial fibrillation/atrial flutter, sustained VT/VF, periph-
eral artery revascularization, new-onset stroke and end-
stage renal disease [54]. While the proposed ML model 
was comparable with Cox regression for the measured 
outcome in the young patients with hypertension, it per-
formed better than that of the recalibrated Framingham 
Risk Score model [54].

Discussion
The role of ML algorithms for the risk stratification of 
VAs has been studied in different clinical settings. ML 
algorithms can provide an incremental value for the 
risk stratification of cardiomyopathies (HCM, ischemic 
and non-ischemic cardiomyopathy), cardiac sarcoido-
sis, channelopathies, congenital heart disease, arterial 
hypertension, as well as in predicting pharmacologically 
induced life-threatening arrhythmias.

The management and especially the prediction of life-
threatening arrhythmias are paramount in clinical car-
diology. A prediction model for VT one hour before its 
occurrence, using an artificial neural network, has been 
generated using 14 parameters obtained from heart rate 
variability and respiratory rate variability analysis [55]. 
ML techniques have been used to predict the occur-
rence of VΑs using heartbeat interval time series. In this 
setting, the random forest model showed better perfor-
mance using a length of heartbeat interval time series of 
800 heartbeats, 108  s before the occurrence of arrhyth-
mias [56]. These results can be implemented mainly in 
the prevention of cardiac arrest identifying high-risk 
patients prior to the occurrence of life-threatening VAs. 
Another study proposed a CNN algorithm to predict the 
onset of a VT using heart rate variability data [57]. The 
authors found that compared to other ML algorithms, 
the proposed one showed the highest prediction accu-
racy. Furthermore, ML algorithms have also been used 
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for the prediction of VF. In this setting, QRS complex 
shape features were analyzed using artificial neural net-
work classifiers [58]. This proposed model was found to 
achieve a better performance compared to the prediction 
accuracy using heart rate variability features [58].

Another area of ML implementation is in in-hospi-
tal monitoring. Timely and accurate discrimination of 
shockable versus non-shockable rhythms from exter-
nal detectors and ICDs is of great clinical importance. 
Recently, the fixed frequency range empirical wavelet 
transform filter bank and deep CNN were used to ana-
lyze electrocardiographic signals [59]. The results showed 
excellent accuracy rates in classifying shockable versus 
non-shockable rhythms, VF versus non-VF and VT ver-
sus VF [59]. A deep learning architecture based on one-
dimensional CNN layers and an LSTM network was 
found to be timely and accurate for the detection of VF in 
automated external defibrillators [60]. Furthermore, ML-
based intensive care unit alarm systems have been found 
to achieve higher positive predictive values for the iden-
tification of asystole, extreme bradycardia, VT and VF 
compared to the bedside monitors used in the PhysioNet 
2015 competition [9, 10, 61].

Except for life-threatening arrhythmias, ML algorithms 
have been used for the management of atrial fibrillation. 
Artificial intelligence-enabled electrocardiography was 
used to predict the incident atrial fibrillation [62]. In the 
same setting, ML algorithms have been implemented 
and outperformed conventional tools for the prediction 
of atrial fibrillation in critically ill patients who were hos-
pitalized with sepsis [63]. In the field of invasive man-
agement of atrial fibrillation, ML-based classification 
of 12-lead ECG has been proposed as a useful tool for 
guiding atrial fibrillation ablation procedures and spe-
cifically in identifying patients suitable for pulmonary 
vein isolation alone vs. those needing additional ablation 
to pulmonary vein isolation [64]. Moreover, an ensem-
ble classifier that used clinical and heart rate variability 
features were found to predict atrial fibrillation catheter 
ablation outcomes [65]. As a result, ML algorithms can 
have a role in the prevention and management of patients 
at risk or with documented atrial fibrillation, respectively.

However, ML algorithms present a series of limi-
tations. Not only does ML require large sets of data 
during training, a considerable amount of time and 
resources is also necessary. Moreover, ML algorithms 
are susceptible to errors, such as mislabeled data, over-
fitting information and unavoidable bias [66]. Further-
more, ML techniques can only be trained to analyze a 
specific type of data; for example, although the random 
forest is highly effective in performing classification 
tasks, it is less effective when performing regression 
tasks as the algorithm cannot demonstrate precise, 

continuous nature predictions. Similarly, CNN is only 
effective in analyzing spatial patterns in images. Result-
antly, different ML algorithms should be used for dif-
ferent purposes. Finally, ML algorithms shine a light on 
the debate regarding transparency, authority and other 
ethical ramifications. Therefore, an established frame-
work that regulated the implementation of ML in clini-
cal practice needs to be implemented [13].

Conclusions
ML algorithms have been shown to ameliorate 
arrhythmic prediction performance in different clini-
cal settings. However, it should be emphasized that 
prospective studies comparing ML algorithms to con-
ventional risk models are needed while a framework 
is required prior to their implementation in clinical 
practice.
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