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What is the color when black is burned? 
Quantifying (re)burn severity using field 
and satellite remote sensing indices
Saba J. Saberi1*   and Brian J. Harvey1 

Abstract 

Background Trends of increasing area burned in many regions worldwide are leading to more locations experienc-
ing short-interval reburns (i.e., fires occurring two or more times in the same place within 1–3 decades). Field and 
satellite indices of burn severity are well tested in forests experiencing a single recent fire, but the reliability of these 
indices in short-interval reburns is poorly understood. We tested how a commonly used field index (the Composite 
Burn Index, CBI) and satellite index (the Relative differenced Normalized Burn Ratio, RdNBR) compared to eight indi-
vidual field measures of burn severity in short-interval reburns vs. areas burned in one recent fire, and whether results 
depended on whether the first fire was stand replacing (fire that is lethal to most dominant trees).

Results Correspondence between both CBI and RdNBR with individual burn severity measures differed in short-
interval reburns compared to single fires for some metrics of burn severity. Divergence in the relationship between 
both CBI and RdNBR vs. field measures was greatest when short-interval reburns followed a prior stand-replacing fire, 
and measures were more comparable to single fires when the first fire was non-stand replacing (i.e., lower severity). 
When short-interval reburns followed prior stand-replacing fires, CBI and RdNBR underestimated burn severity in the 
second fire for tree-canopy metrics (e.g., canopy cover loss, tree mortality), as young forests in early developmental 
stages are more sensitive to a second fire. Conversely, when short-interval reburns followed prior less-than-stand-
replacing fires, both CBI and RdNBR overestimated burn severity for forest-floor metrics, as past low severity fires leave 
behind live fire-resistant trees and can stimulate resprouting understory vegetation. Finally, neither CBI nor RdNBR 
accurately detected deep wood charring—an important phenomenon that occurs in short-interval reburns.

Conclusion Our findings inform interpretability of commonly used indices of burn severity in short-interval reburns 
by identifying how individual burn severity metrics can be under- or over-estimated, depending on the severity of the 
fire preceding a reburn. Adjustments to burn severity measurements made in short-interval reburns are particularly 
critical as reburned areas increase.
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Resumen 

Antecedentes La tendencia en la aceleración de áreas quemadas en forma en varias regiones del planeta está 
llevando a incrementos en la cantidad de áreas que experimentan intervalos de quema cortos (por ej. fuegos ocur-
ridos dos o más veces en el mismo lugar en 1 a 3 décadas). Índices de severidad de las quemas de campo y de satélite 
han sido muy bien probados en bosques que experimentaron un solo fuego reciente, pero la confiabilidad de estos 
índices en intervalos cortos de luego de una segunda quema no está muy bien entendida. Probamos un índice de 
campo (el Composite Burn Index, CBI) e índices satelitales (la diferencia relativa de la tasa de quema normalizada, 
RdNBR) comparada con ocho medidas de campo individuales en áreas quemadas varias veces vs. áreas quemadas 
una sola vez y recientemente. También probamos si las relaciones en las áreas quemadas dos veces dependieron de 
que el primer fuego fuera uno de reemplazo del rodal (fuego letal para la mayoría de los árboles dominantes).

Resultados La correspondencia entre ambas CBI y RdNBR con medidas individuales de severidad de fuego difirieron 
entre las áreas quemadas por segunda vez comparadas con áreas quemadas por fuegos individuales para algunas 
medidas de severidad del fuego. La divergencia en la relación entre ambos CBI y RdNBR vs. las medidas de campo 
fue mayor cuando las quemas repetidas ocurrieron luego de un fuego de reemplazo del rodal, y las medidas fueron 
más comparables a fuegos individuales cuando el primer fuego no fue de reemplazo (de baja intensidad). Cuando 
los sitios quemados dos veces ocurrieron donde el fuego precedente fue de reemplazo, CBI y RdNBR subestima-
ron la severidad de la quema en el segundo fuego para medidas del canopeo de los árboles (por ej. pérdida de la 
cobertura del canopeo y mortalidad de los árboles), ya que bosques post-fuego en estados tempranos de desarrollo 
son vulnerables a segundos fuegos de mayor severidad. En cambio, cuando las segundas quemas sucedieron a un 
fuego precedente que no fue de reemplazo del rodal, ambos CBI y RdNBR sobrestimaron la severidad de la superficie 
quemada, ya que los fuegos pasados de baja severidad dejan árboles vivos que resisten al fuego y pueden estimular 
el rebrote de la vegetación debajo del dosel. Finalmente, ni el CBI ni el RdNBR fueron capaces de detectar en forma 
precisa la cantidad de madera carbonizada en la profundidad del tronco que ha emergido como un producto impor-
tante en las segundas quemas –particularmente en donde ambos fuegos son de reemplazo del rodal.

Conclusiones Nuestros hallazgos informan la interpretabilidad de los índices comúnmente utilizados en la severidad 
de las quemas y sequndas quemas, lo cual se está convirtiendo en una aplicación cada vez más común a medida que 
la actividad del fuego se incrementa.

The sky is blue and so is the sea. What is the color when 
black is burned? (Neil Young, “I am a child”, 1979)

Introduction
Increasing area burned in forested regions around the 
world is leading to many areas burning more than once in 
short-interval reburns (areas that have experienced two 
fires within 1–3 decades, Prichard et  al. 2017). Reburns 
are expected in any fire-prone region, as fires have his-
torically recurred at some interval characteristic of the 
fire regime. However, the ecological consequences of 
contemporary short-interval reburns can differ based 
on context, and areas affected by short-interval reburns 
have received heightened attention in recent decades. For 
example, in forests adapted to historically frequent fire, 
short-interval reburns can represent a return to historical 
fire-return intervals and foster resilience to fire by reduc-
ing fuel loads (Stevens-Rumann and Morgan 2016) and 
favoring thick-barked fire-resistant trees (Larson et  al. 
2013). In contrast, in forests with historically longer fire-
return intervals, short-interval reburns can overwhelm 

resilience mechanisms (e.g., time required for seed 
production sufficient for post-fire forest regeneration, 
Enright et al. 2015), and produce novel extreme levels of 
burn severity that erode biological legacies (Donato et al. 
2009b, 2016; Turner et al. 2019). Building an understand-
ing of how to quantify burn severity in short-interval 
reburns and accurately tracking trends in such metrics 
is therefore important for characterizing changing fire 
regimes and their ecological impacts.

Reliable and widely used indices exist to measure burn 
severity in the field or remotely with earth-observing 
satellites, and many models have been developed to link 
field- and satellite data for widespread mapping of fire 
effects. The Composite Burn Index (CBI) is a unitless 
semi-quantitative index of burn severity produced via 
ocular estimation of fire effects across five forest strata in 
a 30-m diameter field plot. CBI is widely used as a stand-
ard post-fire assessment, though it was developed pri-
marily to validate satellite remote-sensing indices (Key 
and Benson 2006). CBI values are scaled from zero to 
three, with zero representing an unburned area and three 
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representing a severely burned area with complete veg-
etation mortality. Although CBI values can be resolved to 
whatever precision a user desires (e.g., plot-level averages 
to 1–2 decimal points), they are commonly collapsed into 
categories of low (0.75–1.25), moderate-high (1.25–2.25), 
and high (2.25–3) severity (Fig. 1) for use in describing fire 
effects or calibrating satellite maps (Picotte and Robertson 
2011). CBI is useful in that it is a relatively quick (requir-
ing less than one hour per plot) field protocol which cor-
responds well with field measures based on plant injury, 
fuel consumption, and tree mortality (Miller et al. 2009). 
Individual field measures such as fire-killed tree basal area 
and char height have also been established as additional 
metrics of burn severity (e.g., Harvey et al. 2014), and CBI 
generally corresponds well with many of these indepen-
dently measured metrics (Saberi et al. 2022).

Satellite-derived burn severity indices are commonly 
based on the normalized burn ratio (NBR)—which uses 
the ratio of the difference between near infrared and 
shortwave infrared spectral bands from pre-and post-fire 
Landsat imagery to detect fire-caused vegetation changes 
(Key and Benson 2006). The differenced normalized burn 
ratio (dNBR), relative differenced normalized burn ratio 
(RdNBR, Miller and Thode 2007), and the relative burn 
ratio (RBR, Parks et al. 2014b) are widely used derivatives 
of the NBR and have been calibrated to CBI and other 
field measures (Cansler and McKenzie 2012). RdNBR 
was designed to better account for differences in pre-fire 
vegetation compared with dNBR, by further dividing by 
the square root of pre-fire NBR. This additional step of 
relativizing burn severity should be particularly useful in 
the context of short-interval reburns because it mitigates 
the effect of pre-fire vegetation on the possible range of 
severity values and is designed to help with comparisons 

among burned areas with different pre-fire starting 
points (Miller and Thode 2007). Finally, RdNBR is widely 
used among users of such indices to map fire effects 
(Huang et  al. 2020; Konkathi and Shetty 2021). Despite 
the widespread use of these field and satellite indices to 
measure burn severity in both single burns and short-
interval reburns (e.g., Parks et  al. 2014a, Harvey et  al. 
2016a,b), how well they perform in short-interval reburns 
has not been widely tested.

A short-interval reburn could affect how these indices 
record burn severity in several ways. First, the sever-
ity (the magnitude of fire impacts on vegetation, Keeley 
2009) of the first fire can affect forest structure in ways 
that lead to different vegetation present when a second 
fire occurs. For example, a first fire that is non-stand 
replacing (i.e., burns at low severity) is unlikely to dras-
tically alter forest structure, leaving behind biological 
legacies such as live thick-barked, fire-resistant trees if 
they were present pre-fire. This is particularly common 
in low-severity and frequent-fire regimes dominated 
by trees with adaptations to survive low-intensity fires, 
and understory vegetation that can either re-sprout or 
regenerate quickly from seed (Agee 1996). Conversely, a 
first fire that is stand-replacing (high severity) produces 
greater effects on stand structure by killing trees, leav-
ing fewer post-fire live biological legacies, and initiating 
secondary succession. This outcome is common in high-
severity fire regimes dominated by trees with fewer adap-
tations to survive fire, but instead possessing adaptations 
such as aerial seedbanks or wind-dispersed seed (Agee 
1996). When forests are in an early-seral stage due to a 
previous fire, short-interval reburns result in a second 
fire encountering young fire-sensitive tree seedlings and 
saplings with tree crowns close to the forest floor. In such 

Fig. 1 Photos of burn severity in plots across differing severities of a previous burn
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cases, burn severity in the second fire can be so extreme 
that most above-ground live, and downed woody mate-
rial is consumed (e.g., Donato et al. 2009b, 2016, Turner 
et  al. 2019, Fig.  1, bottom right panel). One important 
aspect of extreme burn severity in short-interval reburns 
can be the production of deep char, often the result of 
incomplete combustion of dead wood from extended 
periods of smoldering combustion (Donato et al. 2009b, 
Bird et al. 2015, Talucci and Krawchuk 2019). Deep char 
can be visually distinguished by its shiny, scaly appear-
ance as opposed to the dusty and matte black appearance 
of scorch on a tree that was live prior to fire (Talucci and 
Krawchuk 2019), and has important ecological properties 
with regard to carbon storage, nutrient and water reten-
tion, and substrate quality (Pyne et  al. 1996, Czimczick 
et al. 2002, Bradbury 2006, Maranon-Jimenez et al. 2013, 
Singh et  al. 2012).Thus, it is possible that burn severity 
indices well-calibrated to single-fires may relate differ-
ently to burn severity in short-interval reburns depend-
ing on the severity of—and structural legacies left behind 
by—the first fire.

In this study, we address the above knowledge gaps 
by asking the following questions. First, how does the 
relationship between eight independent field measures 
of burn severity and CBI (Q1) and RdNBR (Q2) vary 
between single fires and areas that have experienced 

short-interval reburns? Further, in each question, we 
tested whether the relationship depended on if the first 
fire in a short-interval reburn was stand-replacing. We 
expect the relationships between individual field meas-
ures of burn severity and both CBI and RdNBR to differ 
depending on the severity of the previous fire and the 
magnitude of fire-caused changes to forest structure in 
the previous fire (i.e., biological legacies remaining after 
one fire). Additionally, for RdNBR, we expected differ-
ences to depend on the ability of the top-down perspec-
tive of the satellite sensor to capture spectral signatures 
from different forest strata or different stand densities. 
Finally, we asked how CBI or RdNBR capture indices of 
extreme burn severity (Q3) (e.g., deep charring and com-
bustion of woody material) that has been observed in 
recent short-interval reburns (Turner et al. 2019).

Methods
Study area
The study area spans forested areas of the northwestern 
USA from the west side of the Cascade Mountains to the 
US Northern Rockies, across five states in the western 
United States (ID, MT, OR, WA, WY). Sampled forests 
were conifer dominated, containing thick-barked, fire-
resistant trees at lower elevations including Douglas-fir 

Table 1 Location, elevation range, dominant tree species, and fire characteristics of the 14 sampled fires, seven of which were 
short-interval reburns. Three of the sample locations contained plots in areas that had been previously burned by two different fires. 
Dominant tree species reflect rank order of species containing the highest percent basal area across each fire, with the minimum 
threshold set at 20%

Abbreviations: NP National Park, NF National Forest

Fire that was 
sampled for this 
study (year)

Location Short-
interval 
reburn

Previous fire (year) Reburn interval Total plots Reburn plots

Berry (2016) Grand Teton NP, WY Yes Glade, Huck (2000, 1988) 16,28 27 27

Maple (2016) Yellowstone NP, WY Yes Fork (1988) 28 10 10

Pioneer (2016) Boise NF, ID Yes Smokey Creek (1989) 27 15 1

Rail (2016) Malheur NF, OR Yes Monument Rock (1989) 27 23 7

Rock Creek (2016) Okanogan-Wenatchee NF, WA N/A 11 N/A

Jolly Mountain (2017) Okanogan-Wenatchee NF, WA N/A 12 N/A

Jones (2017) Willamette NF, OR Yes Clark (2003) 14 28 11

Liberty (2017) Flathead NF, MT Yes Jocko Lakes, Mineral-Primm 
(2007,2003)

10, 14 9 6

Lolo Peak (2017) Lolo NF, MT N/A 21 N/A

Meyers (2017) Beaverhead-Deerlodge NF, MT N/A 24 N/A

Milli (2017) Deschutes NF, OR YES Pole Creek, Cascade Crest (2012, 
2006)

5, 11 65 21

Norse Peak (2017) Baker-Snoqualmie NF, WA N/A 35 N/A

Rebel (2017) Willamette NF, OR N/A 8 N/A

Rice Ridge (2017) Flathead NF, MT N/A 27 N/A

TOTAL 315 83
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(Psuedotsuga menziesii) Mirbel (Franco) and ponderosa 
pine (Pinus ponderosa) Douglas ex P. Lawson & C. Law-
son, as well as thin-barked trees that recruit post-fire 
such as lodgepole pine (Pinus contorta) Douglas ex Lou-
don at higher elevations (Agee 1996). Other dominant 
species in our sample included: Abies grandes (Douglas 
ex D. Don) Lindl., Abies lasiocarpa Hook. (Nutt.), Abies 
amabilis, and Tsuga heterophylla (Raf.) Sarg. The study 
area spans wide gradients in elevation, moisture, and 
forest type, and included burned areas with both short-
interval reburns and locations with longer (unknown) 
intervals since the prior fire (Table  1, see Saberi et  al. 
2022 for details).

Data collection
One-year post-fire burn severity field data were col-
lected from within 14 fires across nine Nationals Forests 
and two National Parks in the Interior Pacific Northwest 
(Table 1) during the summers of 2017 and 2018. Seven of 
these fire perimeters were characterized as short-interval 
reburns, meaning that they had experienced more than 
one fire within the past 30 years as recorded in the Land-
sat satellite fire record (Table 1). Measures of burn sever-
ity recorded in the field included CBI and eight individual 
metrics.

Field sampling
Field site selection and methods are explained in detail 
in Saberi et al. (2022), and briefly described here. In each 
plot, we measured CBI and eight individual and inde-
pendently quantified metrics of burn severity: change in 
live canopy cover, an index of needle retention, tree mor-
tality (by basal area and number of trees), tree charring 

(height and circumference of tree bole), deep charring 
on the tree bole, and surface char on the forest floor 
(Table  2). Prior to field sampling, fire perimeters were 
identified as containing short-interval reburns by ana-
lyzing where past MTBS fires (dating back to 1984, the 
start date for MTBS-mapped fires) overlapped with the 
selected fire perimeters in ArcGIS 10.6.1, and sampling 
occurred within the reburn perimeters. In the field, trees 
were assessed to determine if they were live pre-fire (i.e., 
survived the previous fire if the plot was a reburn) or 
dead pre-fire (i.e., had been killed in the fire preceding 
the reburn), and each reburned plot was recorded as hav-
ing an initial fire that was either stand-replacing or non-
stand replacing. Field plot assignment by this category 
was cross-referenced for reburn plots with RdNBR maps 
of the first fire used to confirm the severity of the first fire 
as stand-replacing or non-stand-replacing.

Remote sensing indices
Fire perimeters were obtained from the USFS Geospatial 
Technology Applications Center (GTAC). We calculated 
each of three satellite indices (dNBR, RdNBR, and RBR) 
in Google Earth Engine using two methods as follows: 
(1) the mean composite method detailed in Parks et  al. 
(2018) and (2) using single pre- and post- fire imagery 
as established by MTBS. For the single image method, 
pre-fire, and post-fire imagery for each of the 14 fires was 
obtained from the Landsat 8 Surface Reflectance Tier 1 
Datasets from the Google Earth Engine satellite imagery 
catalog, at 30-m pixel resolution (Table A5). Dates for 
pre-fire and post-fire LANDSAT imagery were selected 
by finding the date of the highest NDVI value in the year 
prior to each fire. This was to account for the time of peak 

Table 2 Description of Composite Burn Index (CBI) and all independent field measures of burn severity across all 315 plots. Note that 
all variables are ultimately in proportions ranging from 0–1

Variable Name Variable description

CBI Average CBI value per plot, converted to proportion from the 0 to 3 scale (e.g., CBI of 1.8 was converted to a proportion 
of 0.6 to scale accordingly with other metrics).

Change in live canopy cover Average proportion change in live canopy cover per plot. Proportion of pre-fire canopy in burned plots was modeled 
using the relationship between plot basal area and proportion of live canopy in from unburned plots

Dead needle Average needle index value per plot, averaged from 20 randomly selected trees alive at time of fire, converted to pro-
portion from 0 to 7 scale (e.g., needle index of 3 = 0.43)

Killed BA Proportion of average tree basal area alive at time of fire and killed by fire per plot

Killed trees Proportion of average number of trees alive at time of fire killed by fire per plot

Char height Average proportion of total tree height charred from 20 randomly selected dominant canopy trees alive at time
of fire

Bole char Average proportion of visible char on 20 randomly selected dominant canopy trees alive at time of fire

Deep char Average deep char index value on 20 randomly selected dominant canopy trees alive at time of fire, converted to 
proportion from 0 to 2 scale

Surface char Average proportion of plot containing charred material on surface, taken from 480 points every 10 cm apart along main 
plot axis (N–S, E–W)
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‘greenness’ in each fire area. Date of maximum NDVI was 
calculated in GEE using the MODIS 250 m NDVI prod-
uct. Pre- and post-fire Landsat imagery was selected 
from the GEE catalog by only considering images within 
three weeks of the anniversary date and with no cloud 
cover. We accounted for potential phenological differ-
ences between pre- and post-fire imagery by produc-
ing the dNBR offset value for each fire (Key and Benson 
2006). The dNBR offset is useful when comparing burn 
severity among multiple fires, as the baseline spectral sig-
nature for green vegetation is set per fire. We determined 
the dNBR offset by calculating the mean dNBR value 
across all pixels located in a 180-m buffer around each 
fire perimeter (Parks et al. 2018), which quantifies dNBR 
differences among unburned pixels. The dNBR offset 
was subtracted from the original dNBR rasters, and the 
dNBR with the offset was used in calculation of RdNBR 
and RBR. Once dNBR, RdNBR, and RBR were calculated, 
raster values corresponding to each individual plot point 
were extracted using the extract function in the ‘raster’ 
package in R (version 3.4.3) via bilinear interpolation.

Comparison among the single-image and composite 
methods revealed no qualitative differences (summa-
rized in “Results” section), and therefore proceeded with 
all further analyses using the mean composite method 
(Parks et  al. 2018) as this method has become com-
monly adopted. We also compared the bivariate relation-
ships between CBI, and the three satellite indices (dNBR, 
RdNBR, and RBR) to assess any differences before choos-
ing one to proceed with further analyses. Performance 
was virtually indistinguishable, and therefore we used 
RdNBR as the satellite burn severity index for all subse-
quent analyses (summarized in “Results” section).

Data analysis
To test the correspondence of each field measure with 
CBI (Q1) or RdNBR (Q2) in short-interval reburns (as 
well as to test capacity to model deep char (Q3), we cre-
ated zero-one inflated beta (ZOIB) (Ospina and Ferarri 
2012) regression models with the quantitative field meas-
ure as the response variable and CBI or RdNBR as the 
predictor variable. ZOIB models are appropriate for pro-
portional data that include 0, 1, and continuous propor-
tions between 0 and 1, and combine aspects of logistic 
regression (which can model 0 and 1 but not proportions 

between) and beta regression (which can model propor-
tions between 0 and 1, but not values = 0 or values = 1) 
(Ospina and Ferrari 2012). The ZOIB approach over-
comes the challenges associated with using linear regres-
sion models that require transformation of the predictor 
or response variables and has been applied to similar 
analyses with burn severity data (Harvey et  al. 2019; 
Saberi et al. 2022).

We applied ZOIB regression using general additive 
models, specifying zero/one beta inflated distributions 
to allow for 0 and 1 as values for the response variable 
using the “gamlss” package in R version 3.4.3 (see Saberi 
et  al. 2022 for model details). For both model types, 
reburn levels were incorporated into the model struc-
ture. There were three reburn levels, indicating the pres-
ence and severity of the previous burn and were codified 
as follows: no reburn, non-stand replacing, and stand 
replacing. We used a strength of evidence approach by 
evaluating p-values at different levels (strong at p < 0.01 
level, moderate at < .05, suggestive at < .10, Muff et  al. 
2022) for each factor level and interaction term would 
indicate if the intercept and/or slope for the model differs 
depending on the severity of the first burn. We adopted 
this approach to mitigate the exclusion of potentially 
meaningful ecological relationships in inherently noisy 
observational field data (Ramsey and Schafer 2012). 
We also developed models without the reburn interac-
tion term and present those models for use in regionally 
calibrated general models of burn severity when short-
interval reburns are unknown or not of concern. Origi-
nally, 315 field plots were sampled (233 no short-interval 
reburn, 33 reburn with non-stand-replacing first fire, 
and 49 reburn with stand-replacing first fire). Following 
established methods to trim the extreme tails of distri-
butions in similar analyses (Lutz et al. 2011; Povak et al. 
2020), we included 95% of the range of satellite index val-
ues (trimming the upper and lower 2.5% tails of the dis-
tribution for each index) prior to analyses. The resulting 
dataset retained 299 plots (221 no short-interval reburn, 
32 reburn with non-stand-replacing first fire, and 46 
reburn with stand-replacing first fire). The performance 
of each index using the full dataset and the dataset with 
trimmed tails of the distribution was compared in prior 
analyses (Saberi 2019), with no evidence for qualitative 
differences in either approach.

(See figure on next page.)
Fig. 2 Zero/one inflated beta regression models for each of the eight individual burn severity metrics with CBI as the predictor variable. In the first 
column, the no reburn shows model prediction values for non-reburns, while the reburn (1st fire not stand replacing) represents  reburns where the 
first fire was non-stand replacing and the reburn (1st fire stand replacing) represents  reburns where the first fire was stand replacing (A, C, E, G, I, K, 
M, O). The polygon around each line shows 95% confidence around mean predicted values from bootstrapping. Gray dots are the raw data points 
from the 299 sampled plots. The second column contains AUC values for each of the eight regression models across five thresholds of burn severity 
(which were created as dichotomization thresholds to produce ROC curves). Overall AUC values represent overall average across five thresholds (B, 
D, F, H, J, L, N, P)
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We evaluated model fit for all models using the area 
under receiver operating characteristic curves (AUC) 
for a sequence of proportion thresholds for the continu-
ous field measure of burn severity (0.05.0.275, 0.5, 0.725, 
and 0.95). This approach allowed us to assess model fit 
across the burn severity gradient. AUC values were cal-
culated by dichotomizing the field response propor-
tions into zeroes and ones if they were above or below 
the given threshold values. As an AUC value below 0.5 
indicates poor model fit/capacity to distinguish presence 
or absence, (Pearce and Ferrier 2000), we did not display 
values below this level.

Results
CBI and independent field measures in short‑interval 
reburns (Q1)
The modeled relationship between CBI and independent 
field measures of burn severity in short-interval reburns 
was variable when compared to relationships in single 
fires, and divergence among models was generally great-
est when the first fire was stand-replacing. When the first 
fire was stand-replacing, CBI in the second fire underes-
timated canopy cover change, needle loss, basal area (BA) 
killed by fire, and char height when compared to single 
burns (Fig. 2A, C, E, K). For example, a CBI score of 1.5 
corresponded to canopy-cover change of approximately 
25–35% in single fires or when short-interval fires fol-
lowed non-stand-replacing fires but corresponded to 
canopy-cover change of approximately 60–80% when 
short-interval fires followed prior stand-replacing fires 
(Fig.  2A, difference between red line and black line). 
When the first fire was not stand-replacing, the pri-
mary difference between short-interval reburns and sin-
gle burns was for surface char, where CBI overestimated 
surface char compared to single burns (Q1, Fig.  2O). 
For example, a CBI score of 2.5 corresponded to surface 
char of approximately 40–60% in single burns, but sur-
face char of approximately 20% when short-interval fires 
followed non-stand-replacing fires (Fig.  2O, difference 
between blue line and black line). CBI did not correspond 
to deep charring on woody material (deep char) in short-
interval reburns, regardless of the severity of the first fire 
(Q3, Fig. 2M, Tables A1 and A2). Model fit ranged from 
AUC 0.82 for deep char to AUC of 0.99 for tree mortality 
by basal area, tree mortality by number of trees, and bole 
scorch (Fig. 2F, H, L, Tables A1 and A2).

Satellite indices and field measures of burn severity 
in short‑interval reburns (Q2)
No qualitative differences were detected in how satel-
lite indices related to CBI between the mean compos-
ite method (mean AUC = 0.937) and the single pre-and 
post-fire image method (mean AUC = 0.942) (Fig.  3, 
Additional file 1: Tables S3-S7); therefore, all subsequent 
results are presented for the mean composite method 
given the standard adoption of this approach. Further-
more, we detected no qualitative differences among 
dNBR (AUC = 0.972), RdNBR (AUC = 0.986), and RBR 
(AUC = 0.973) in their correspondence to CBI (Fig.  3, 
Additional file  1: Tables  A3, A4, A6, A7); therefore, all 
subsequent results are presented using RdNBR. RdNBR 
had strong correspondence to each of the eight individual 
field measures of burn severity overall (not accounting 
for reburns); we present these relationships for users who 
may be interested in using RdNBR outside of the con-
text of reburns (Fig. 4, Additional file 1: Figure S1, Tables 
S8-S11).

The modeled relationship between RdNBR and field 
measures of burn severity was mostly similar between 
single fires and short-interval reburns when the first fire 
was non-stand-replacing; conversely, the relationship 
diverged more when short-interval reburns followed pre-
ceding stand-replacing fires (Q2, Fig.  5). When the first 
fire was stand-replacing, RdNBR in the second fire under-
estimated canopy cover loss, needle loss, BA killed by fire, 
and trees killed by fire, compared to single burns (Fig. 5C, 
E, G). For example, an RdNBR value of 400 corresponded 
to approximately 50% live canopy loss in single burns, but 
live canopy loss of approximately 90% when short-inter-
val fires followed stand-replacing fires (Fig. 5C, difference 
between red line and black/blue lines). When the first fire 
was not stand-replacing, the only difference was for sur-
face char, where RdNBR overestimated surface char com-
pared to single burns (Fig. 5Q, Tables S12 and S13). For 
example, an RdNBR value of 800 corresponded to sur-
face char of approximately 50% in single burns, but sur-
face char of approximately 20% when short-interval fires 
followed non-stand-replacing fires (Fig.  3Q, difference 
between blue line and red/black lines). The RdNBR-based 
models had a high predictive ability for canopy measures, 
with the model for canopy cover, needle loss, killed basal 
area and killed trees producing an average AUC of 0.93, 
0.95, 0.97 and 0.97, respectively across all burn severity 

Fig. 3 Two panels comparing three zero/one inflated beta regression models with CBI as the response variable and dNBR, RdNBR, and RBR 
(calculated using the Parks et al. composite method on the left and with the single image paid method on the right) as the respective predictive 
variables. In the first column, the black line shows predicted response values. (A, B, C, G, H, I). The blue polygon around the line shows 95% 
confidence around mean predicted values. The gray dots are the raw data points from the 299 sampled plots. The second column contains AUC 
values for each of the eight regression models across five thresholds of burn severity (D, E, F, J, K, L). Thresholds were created as dichotomization 
thresholds to produce ROC curves. Overall AUC values represent overall average across five thresholds

(See figure on next page.)
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thresholds (Fig. 5D, F, H, J, and Tables S12, S13). Similar 
to CBI, the relationship between RdNBR and deep char 
in short-interval reburns was not significant (Q3, Fig. 3O, 
Table S13).

Discussion
By testing the relationship between widely used field and 
satellite indices of burn severity in short-interval reburns, 
our study highlights several key insights for understand-
ing fire effects in reburned landscapes. First, the mean-
ing of CBI and RdNBR in short-interval reburns differs 
relative to their calibrated values in single fires, but differ-
ences depend on the severity of the preceding fire. When 
short-interval reburns occur where preceding fires were 
stand-replacing, both indices underestimate metrics of 
tree canopy burn severity, likely because reburned for-
ests are in an early-seral stage that is more sensitive to 
fire (Donato et al. 2009a, Donato et al. 2016, Turner et al. 
2019). In contrast, when short-interval reburns occur fol-
lowing preceding fires that were not stand-replacing (i.e., 
low severity), both indices performed consistently well, 
with one exception being an overestimation of surface 
burn severity. This outcome is likely because preceding 
low-severity fires do not strongly alter forest structure 
but do stimulate understory vegetation response. Second, 
neither CBI nor RdNBR corresponded to deep charring 
of woody material in short-interval reburns, which has 
become commonly observed in reburns and other situ-
ations where fire follows soon after other disturbances. 
This suggests that both indices may be missing an emer-
gent ecological dimension of changing fire regimes that 
can be explored in future work. Collectively, these find-
ings suggest that burn severity metrics calibrated for sin-
gle fires provide valuable information in short-interval 
reburns but their relationship with on-the-ground fire 
effects can depend on the severity of preceding fires.

Estimation of burn severity in short‑interval reburns 
depends on severity of preceding fire
The underestimation of burn severity in short-interval 
reburns by CBI and RdNBR when the preceding fire was 
stand-replacing is likely due to several factors related 
to the stage of forest recovery at the time of the sec-
ond fire. Burn severity metrics that were most under-
estimated in these cases were all related to tree canopy 
effects: canopy cover, tree mortality, needle and branch 

retention, and char height. This underestimation is likely 
due to the magnitude of initial fire-caused change to for-
est structure by stand-replacing fires, as well as the cor-
responding fire adaptations common in stand-replacing 
fire regimes. First, stand replacing fires are a hard reset 
of successional and stand development dynamics, where 
any potential fire-resisting traits (e.g., thick bark and 
high tree crowns) are lost temporarily as young post-
fire forests recover over time (Donato et  al. 2009a). For 
species that can develop such fire adaptive traits, it may 
require many decades after a stand-replacing fire before 
trees are again able to resist fire, and recovery times vary 
based on abundance of fire-related traits in the ecosys-
tem (Hood et  al. 2018; Stevens et  al. 2020). Severe fires 
regularly occur in forests where trees have adaptations to 
reproduce following fire (rather than survive fire), such 
as via canopy seedbanks with species like lodgepole pine 
(Tinker et al. 1994). However, in early seral stages charac-
terized by young, small, and high-density lodgepole pine 
trees (e.g., Turner et al. 2016), the tree canopy strata are 
more vulnerable to fire than an older stand with larger 
and sparser trees (Kashian et al. 2005) that have a better 
chance of surviving fire (Stevens et al. 2020). Collectively, 
the structural condition and lack of fire-resisting traits in 
forests in an early state of recovery from a recent stand-
replacing fire can lead to greater fire severity when the 
young tree canopy strata is highly fire-sensitive (Donato 
et  al. 2009a, Turner et  al. 2019), and our findings dem-
onstrate that field and remote-sensing indices of burn 
severity correspondingly underestimate these effects.

In contrast to the above context, when short-interval 
reburns follow preceding low-severity fires, our findings 
demonstrate that interpretations of CBI and RdNBR are 
more comparable to their widely used interpretation for 
single fires. This outcome is likely from the effects of pre-
ceding low-severity fires on stand structure (which are 
modest compared to preceding stand-replacing fires) and 
the ecological contexts and fire regimes where low-sever-
ity fires are more common. Low-severity fires that are not 
stand-replacing, by definition, leave behind live legacy 
trees. Therefore, the live forest structure that the second 
fire encounters is relatively similar to the forest struc-
ture of the first fire, suggesting that burn severity indi-
ces should perform similarly for tree canopy measures 
in both fires. Low severity fires are more likely to occur 
in frequent-fire regimes where trees have fire-resisting 
traits to survive fire (e.g., thick bark), and understory 

(See figure on next page.)
Fig. 4 Zero/one inflated beta regression models eight field measures as the response variable and RdNBR (calculated using GEE method) as the 
respective predictive variables. In the first column, the black line shows predicted response values (A, C, E, F, I, K, M, O). The blue polygon around 
the line shows 95% confidence around mean predicted values. The gray dots are the raw data points from the 299 sampled plots. The second 
column contains AUC values for each of the eight regression models across five thresholds of burn severity (which were created as dichotomization 
thresholds to produce ROC curves). Overall AUC values represent overall average across five thresholds (B, D, F, H, J, L, N)
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vegetation can recover quickly via re-sprouting (Stevens 
et  al. 2020)—furthering the likelihood of similar con-
ditions encountered by successive fires occurring as a 
short-interval reburn.

One exception to indices performing similarly to single 
fires when short-interval reburns follow preceding low-
severity fires is that CBI and RdNBR both overestimated 
surface burn severity in reburns. This may be because 
non-stand replacing fires are more likely to occur in fire 
regimes with sparse canopy cover and more vigorous 
ground cover vegetation, such as in dry forests and wood-
lands (Hood et al. 2021, Reilly et al. 2021). For example, 
in ponderosa pine forests or woodlands, frequent surface 
fires lead to widely spaced and fire-resistant trees inter-
spersed with grasses/herbaceous between large canopy 
gaps (Agee 1996). Plots with high understory vegetation 
cover pre-fire are likely to have greater capacity for high 
understory cover vegetation post-fire, although there is 
high variability in post-fire vegetation response for low 
severity burns (Lentile et al. 2007). Therefore, such areas 
are likely to have resprouting vegetation that obscures 
post-fire surface charring (the measure overestimated by 
CBI and RdNBR in such conditions). As CBI and RdNBR 
indices are measured one-year post fire, this capacity for 
post-fire understory vegetation recovery may obscure 
surface burn severity that remains exposed longer post-
fire in more closed-canopy forests. This is especially rel-
evant for RdNBR, as spectral indices of surface charring 
can be less visible from a satellite if vegetative resprout-
ing obscures the forest floor. Fire can influence phenol-
ogy dates detected via satellites (Peckham et  al. 2008), 
and in systems with vigorous understory vegetation, 
post-fire green up can occur relatively soon after fire and 
add to obscuration of char on the forest floor.

Challenges with detecting extreme burn severity and deep 
charring
Our findings have important implications for the limita-
tions for CBI and RdNBR in detecting deep charring of 
woody material—one outcome related to extreme levels 
of burn severity commonly associated with overlapping 
disturbances. Stand-replacing fires, by killing most or all 
of trees that are live at the time of fire, produce large num-
bers of snags and downed logs. In a subsequent fire, much 
of this woody material can be consumed and integrated 

into black carbon on the forest floor (e.g., Turner et  al. 
2019) and/or remain as fragmented logs or snags (Donato 
et al. 2009b) coated with deep char (Fig. 1, bottom right 
panel). Conversion of snag biomass to deeply charred 
material alters the fundamental structure and function of 
post-fire landscapes (Talucci and Krawchuk 2019; Donato 
et al. 2016; Campbell et al. 2007), post-fire structural lega-
cies (Harvey et  al. 2014; Talucci and Krawchuk 2019), 
and biogeochemical cycling (Talucci and Krawchuk 2019; 
Harmon 2001). Other dimensions of severe fire effects, 
such as soil burn severity (e.g., surface char), are better 
captured by CBI and RdNBR, and are important for iden-
tifying erosion risk and soil hydrophobicity (Robichaud 
et al. 2007). However, deep char production on standing 
snags can be decoupled from soil burn severity due to 
being aerial in nature until snags eventually fall.

The lack of relationship between CBI and deep char in 
short-interval reburns could be addressed by better inte-
gration of deep char into different strata of the protocol. 
CBI includes deep char as a component in one out of five 
forest strata (substrate, or forest floor), and therefore 
does not capture deep char that may occur along boles 
of live trees or snags that remain standing (Saberi et  al. 
2022). Augmenting CBI to be able to detect deep char on 
standing snags separately from charred material on the 
forest floor can better characterize changes to ecosystem 
function occurring in short-interval reburns, and is an 
important area of future research.

The lack of relationship between deep char and RdNBR 
in short-interval reburns was likely due to limitations 
from the nature and angle of spectral satellite sensors. 
The ability of spectral remote sensing to distinguish 
between deeply charred material and woody material 
that was only killed by fire is currently not well known. 
Spectroscopy of pine bark and wood shows differences 
in the unique spectral signatures for woody material that 
was burned and/or heated for different lengths of time, 
which relates to different levels of charred wood (Reeves 
et  al. 2008). However, the spectral similarities between 
charred and deeply charred woody materials limit the 
development and/or calibration of bands that can dis-
tinguish between the two (Reeves et al. 2008). Thus, the 
spectral bands used in NBR may not distinguish deeply 
charred material on pre-fire snags from lighter charred 
trees that were killed by fire.

Fig. 5 Zero/one inflated beta regression models for each of the eight individual burn severity metrics with RdNBR (mean composite method) 
as the predictor variable. In the first column, the no reburn shows model prediction values for non-reburns, while the reburn (1st fire not stand 
replacing) represents  reburns where the first fire was non-stand replacing and the reburn (1st fire stand replacing) represents  reburns where 
the first fire was stand replacing (A, C, E, G, I, K, M, O, Q). The polygon around each line shows 95% confidence around mean predicted values 
from bootstrapping. Gray dots are the raw data points from the 299 sampled plots. The second column contains AUC values for each of the eight 
regression models across five thresholds of burn severity (which were created as dichotomization thresholds to produce ROC curves). Overall AUC 
values represent overall average across five thresholds (B, D, F, H, J, L, N, P, R)

(See figure on next page.)
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The 2-dimensional top-down perspective of satellite 
imagery also likely contributes to the poor relationship, 
as deep charring along the bole of standing snags is a very 
small proportion of the field of view for the sensor. Most 
reflectance values change with changes in the view angle 
for land surfaces (such as forests) that have three-dimen-
sional characteristics (Liang et  al. 2000), but Landsat 8 
hardcodes the view zenith angle to “0,” or directly over-
head (Vermote et  al. 2016). Multi-angular observations 
may improve reflectance information retrieval (Schlerf 
and Atzberger 2012), and incorporation of different or 
multiple viewing angles could produce different reflec-
tance values that detect deep char on tree surface. Using 
different or multiple viewing angles from the Landsat 
Collection 1 Angle Coefficient file (http:// www. usgs. gov) 
to develop stronger relationships with deep char or com-
bining spectral indices like RdNBR with remotely sensed 
structural indices (e.g., LiDAR) could be explored in 
future research.

Implications for ecological study of short‑interval reburns
Our findings have several important implications for the 
ecological study of short-interval reburns, which have 
become an area of heightened research focus in recent 
decades (Prichard et  al. 2017). First, when applying 
standard satellite remote sensing indices of burn severity 
to reburns, interpretations of index meanings are differ-
ent in short-interval reburns than in fires that are occur-
ring after much longer fire-free periods. Studies using 
satellite indices to test the effects of prior fires on burn 
severity in subsequent reburns have generally found that 
very short intervals between fires are characterized by 
negative feedbacks indicated from lower severity in the 
second fire (e.g., Parks et al. 2014a,b, Harvey et al. 2016a, 
Cansler et  al. 2022). However, our findings suggest that 
when the first fire is stand-replacing, severity in a subse-
quent reburn can be greater than satellite indices suggest, 
as the same level of RdNBR represents more severe fire 
effects for several measures. As such, negative feedbacks 
between fires over short intervals may be weaker than 
suggested by analyses that assume RdNBR means the 
same thing in both fires. Conversely, when the first fire 
is low severity/non-stand-replacing, our findings suggest 
that this outcome is flipped for forest floor measures, in 
that negative feedbacks between fires over short intervals 
may be stronger than suggested by assuming that RdNBR 
means the same thing in both fires.

A second implication for ecological study of reburns 
is that standard field measures and satellite indices of 
burn severity are likely under-detecting key dimensions 
of extreme burn severity that has been documented in 
recent short-interval reburns when both fires are severe. 

CBI and RdNBR were designed primarily outside the 
context of successive stand-replacing fires (where they 
both perform very reliably), though such conditions are 
increasingly characterized by high-levels of coarse wood 
consumption (Donato et al. 2009a,b, Turner et al. 2019), 
charred snag production (Harvey et al. 2014, Talluci and 
Krawchuk 2019), and compound disturbance effects from 
removal of key biological legacies (Johnstone et al. 2016). 
As such, the magnitude and spatial extent of extreme 
burn severity and corresponding ecological impacts may 
be underestimated now and in the future until there 
are better ways to incorporate them into these or other 
indices.

Conclusion
As fire activity increases and more areas burn multi-
ple times in short succession, accurate monitoring and 
assessment of (re)burn severity becomes more impor-
tant. Overall, our models show that both CBI and RdNBR 
relate to burn severity similarly for some measures, and 
diverge for others, between areas that have burned once 
vs. twice in recent decades. In general, our results sug-
gest that these widely used indices of burn severity may 
be under-predicting canopy burn severity in short-inter-
val reburns where the preceding fire was stand-replacing, 
and over-predicting surface burn severity in short-inter-
val reburns where the preceding fire was non-stand-
replacing. Furthermore, neither index corresponded to 
deep charring of woody material, suggesting that this 
important aspect of extreme burn severity that can occur 
in short-interval reburns may not be well captured by 
burn severity mapping efforts. These findings can help 
qualitatively inform where burn severity in short-inter-
val reburns is being under- or over-estimated and can 
guide development of better quantitative adjustments to 
improve burn severity assessments in the future.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s42408- 023- 00178-3.

Additional file 1: Table S1. AUC values for CBI-based reburn models at 
five classification thresholds. Table S2. Model outputs showing estimate, 
standard error, and p-value for mu, nu, and tau parameters for eight 
models with each individual field metric as a function of CBI. Non-SR 
= non-stand replacing, SR= stand replacing. Table S3. Individual AUC 
values for each satellite index-based model (composite method) across 
five burn severity classification thresholds. Table S4. Outputs showing 
estimate, standard error, and p-value for three models for mu, nu, and tau 
parameters with CBI as a function of each spectral index. Note NBRs are 
calculated with the composite method. Table S5. Fires and associated 
satellite imagery data for the single-image method. Table S6. Individual 
AUC values for each satellite index-based model across five burn severity 
classification thresholds. Shows dNBR, RdNBR, and RBR to all have around 
a 96% accuracy in classifying burn severity at five distinct classification 
thresholds, suggesting the indices are nearly identical in their relationship 
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to CBI. Table S7. Outputs showing estimate, standard error, and p-value 
for three models for mu, nu, and tau parameters with CBI as a function of 
each spectral index. Figure S1. Zero/one inflated beta regression models 
eight field measures as the response variable and RdNBR (calculated using 
the single image method) as the respective predictive variables. In the first 
column, the black line shows predicted response values (A,C,E,G,I,K,M,O). 
The blue polygon around the line shows 95% confidence around mean 
predicted values. The grey dots are the raw data points from the 315 
sampled plots. The second column contains AUC values for each of the 
eight regression models across five thresholds of burn severity (which 
were created as dichotomization thresholds to produce ROC curves). 
Overall AUC values represent overall average across five thresh-
olds (B,D,F,H,J,L,N,P). Table S8. AUC values for RdNBR-based, non-reburn 
models at five classification thresholds. Table S9. Outputs showing esti-
mate, standard error, and p-value for each of the individual field measure 
models for mu, nu, and tau parameters as a function of RdNBR (calculated 
with single image method). Table S10. AUC values for RdNBR-models at 
five classification thresholds (GEE). Table S11. Outputs showing estimate, 
standard error, and p-value for each of the individual field measure models 
for mu, nu, and tau parameters as a function of RdNBR (calculated with 
GEE method). Table S12. AUC values for RdNBR-based reburn models at 
five classification thresholds (GEE). Table S13. Model outputs showing 
estimate, standard error, and p-value for mu, nu, and tau parameters for 
nine models with each individual field metric as a function of RdNBR. Non 
SR = non-stand replacing, SR= stand replacing.
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