
Eisele et al. Cybersecurity (2022) 5:18
https://doi.org/10.1186/s42400-022-00123-y

REVIEW

Embedded fuzzing: a review of challenges,
tools, and solutions
Max Eisele1*  , Marcello Maugeri2, Rachna Shriwas3, Christopher Huth1 and Giampaolo Bella2 

Abstract 

Fuzzing has become one of the best-established methods to uncover software bugs. Meanwhile, the market of
embedded systems, which binds the software execution tightly to the very hardware architecture, has grown at a
steady pace, and that pace is anticipated to become yet more sustained in the near future. Embedded systems also
benefit from fuzzing, but the innumerable existing architectures and hardware peripherals complicate the develop-
ment of general and usable approaches, hence a plethora of tools have recently appeared. Here comes a stringent
need for a systematic review in the area of fuzzing approaches for embedded systems, which we term “embedded
fuzzing” for brevity. The inclusion criteria chosen in this article are semi-objective in their coverage of the most rel-
evant publication venues as well as of our personal judgement. The review rests on a formal definition we develop to
represent the realm of embedded fuzzing. It continues by discussing the approaches that satisfy the inclusion criteria,
then defines the relevant elements of comparison and groups the approaches according to how the execution
environment is served to the system under test. The resulting review produces a table with 42 entries, which in turn
supports discussion suggesting vast room for future research due to the limitations noted.

Keywords:  Embedded systems, Dynamic analysis, Vulnerability mining, Embedded security, Software security

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Fuzzing is an increasingly popular technique for software
testing, namely for findings bugs that could either repre-
sent functional problems and vulnerabilities that could
be exploited by a malicious attacker. It uses randomness
to generate test data for a target with the goal of trigger-
ing faults. Faults indicate bugs and may potentially pose
a security vulnerability. Because fuzzing is a dynamic
method, it analyzes the software while it is executed. By
design, dynamic analysis only allows us to find faults that
actually occur during execution. Consequently, it is nec-
essary to exercise as many parts of the code and inter-
leaving of branches as possible.

Since fuzzing with pure random input has a small
chance of reaching large parts of the code, sophisticated
fuzzing tools make use of additional information, such as

input structure or code coverage, to generate inputs. A
simple but effective approach is to gather code coverage
information during input processing of the SUT and col-
lect inputs that trigger previously unreached code parts.
This growing collection of inputs, called corpus, is used
continuously to generate further inputs.

Despite its simple underlying principles, fuzzing has
proved to be an effective method for system and software
testing and is recommended by several industry stand-
ards. For example, in ISO 26262—Road vehicles—Func-
tional Safety (Road Vehicles 2018), fuzzing is advocated
as one of the testing methods to ensure robustness. Fuzz-
ing is also found as a recommendation in ISA/IEC 62443-
4-1 - Secure product development lifecycle requirement
(Secure Product Development Lifecycle Requirements
2018). The recently released ISO/SAE 21434—Road vehi-
cles—Cybersecurity (Road Vehicles 2021) recommends
fuzzing as a testing method, too. Additionally, fuzzing is
used in penetration testing, which is recommend in ISO/
IEC/IEEE 291119—Software and systems engineering

Open Access

Cybersecurity

*Correspondence: MaxCamillo.Eisele@de.bosch.com
1 Safety, Security and Privacy, Robert Bosch GmbH, Renningen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6249-2077
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00123-y&domain=pdf

Page 2 of 18Eisele et al. Cybersecurity (2022) 5:18

– Software testing (Software and Systems Engineering
2013), ISO/IEC 12207—Systems and software engineer-
ing—Software life cycle processes (Systems and Software
Engineering 2017), ISO 27001—Information technology -
Security techniques (Information Technology 2013), ISO
22301—Security and resilience (Security and Resilience
2019).

Fuzzing user (software) applications is perhaps the
best-established use of fuzzing, and there are several con-
solidated techniques for gathering feedback from a target
process. For example, the OSS-Fuzz (Serebryany 2017)
project revealed over 30,000 bugs in 500 open source
projects by using coverage-guided fuzzers such as lib-
Fuzzer (LLVM 2021), AFL++ (Fioraldi et al. 2020), and
honggfuzz (Swiecki 2021).

Another important, growing area for fuzzing pertains
to embedded systems, which are microcontroller-based
devices in conjunction with their dedicated software.
Typically developed for specific purposes, embedded
systems are used pervasively in modern society, and
innumerable examples could be made, including smart
meters, pacemakers, and factory robots, to name just a
few. The market of embedded computing has been grow-
ing constantly and this trend is expected to continue in
the near future (Alsop 2019). Notably, embedded systems
are key components for the Internet of Things (IoT) and
for Cyber Physical Systems (CPSs). Therefore, the moti-
vation for fuzzing embedded systems is remarkable.

A first essential feature of embedded systems is that
that their firmware is tightly coupled with the specific
hardware, including connected peripherals. For example,
the firmware of a smart light bulb or of a central heating
control panel are both extremely unlikely to work seam-
lessly on different hardware. A second essential feature
of embedded systems is their inherent diversity, which
is reflected in the operating systems, CPU architectures,
communication mechanisms, and hardware peripher-
als adopted. For example, while some embedded systems
may run Linux-based operating systems, some run with-
out any operating system at all. Also, while desktop and
server systems mainly rely on a few CPU architectures
and operating systems, these may vary significantly for
embedded systems.

We contend that these two features also form the two
essential reasons why fuzzing embedded systems is still
an open challenge at present (Muench et al. 2018). For
example, compiling distinct modules, such as libraries,
into common user applications and exercising fuzzing on
them is not an effective means of testing code portions
that interact directly with the hardware; incidentally,
because of the diverging compiler and environment, this

would not test the exact code that ends up on the actual
device. It becomes apparent that reliable, holistic fuzz
testing of embedded systems ought to cover both the
firmware code as well as the appropriate environment
for that firmware. Moreover, the aforementioned diver-
sity poses the biggest challenge due to the need for the
fuzzer to scale up to innumerable variants of hardware
and firmware that are often poorly documented.

Therefore, we hypothesize that a golden tool and solu-
tion for fuzzing embedded systems (embedded fuzzing
for short) do not exist yet. To verify this hypothesis, we
formulate the following research question: What are the
main features and limitations of current tools for fuzzing
embedded systems? To address this question, this article
conducts a systematic review of the state of the art of
approaches to embedded fuzzing. Our review rests on a
formal description of fuzzing for embedded systems and
leverages it to advance a clustering of the reviewed works
upon the basis of their underlying mechanisms. The tax-
onomy criteria used to categorize the reviewed works is
presented in “Section Taxonomy criteria”.

The treatment highlights that emulation-based
approaches work well for academic examples but may
fail on real-world use cases. By contrast, hardware-based
approaches with all their incarnations may yield best
results albeit not without limitations. Hybrid approaches
seem to bear disadvantages from both worlds. By pre-
senting the whole picture of fuzzing for embedded
systems, this article demonstrates features as well as limi-
tations of each reviewed work, ultimately demonstrat-
ing what kind of future research is needed and deriving
directions on how to pursue it.

“Section Inclusion criteria” defines the criteria for a
piece of research to be included in our review, and “Sec-
tion Background and notation” introduces our extended
model for fuzzing embedded systems. Thereafter, we
review related work of hardware-based and emulation-
based embedded fuzzing in “Sections Hardware-based
embedded fuzzing” and “Emulation-based embedded
fuzzing”, respectively. Abstraction-based approaches are
reviewed in “Section Abstraction-based execution envi-
ronment”. We review the relevant works for embedded
fuzzing in “Section Reviewing embedded fuzzing works”,
discuss future trends in “Section Discussion and future
directions”, and related work in ’Section Related work”.
We conclude the article in “Section Conclusion”.

Inclusion criteria
The inclusion criteria for published material to be
included in this review are:

Page 3 of 18Eisele et al. Cybersecurity (2022) 5:18 	

C1	Research papers that are published in the top five
venues in the category “Engineering & Computer
Science”, sub-category “Computer Security & Cryp-
tography” according to Google Scholar (Scholar
2021).

C2	Research papers that are published during the five
years between 2017 and 2021.

C3	Research papers that mention “fuzzing” and “firm-
ware” or, alternatively, “fuzzing” and “embedded”.

C4	Research papers or tools that we feel convey relevant
approaches to embedded fuzzing.

The first two criteria are objective, as Scholar offers con-
venient selection and sorting facilities for research ven-
ues. The chosen area of security is the one that we found
most relevant to fuzzing in general, considering fuzzing
as a technique for unveiling software vulnerabilities that
an attacker could exploit. To confirm this, we also tried
subcategories “Software Systems” and “Computing Sys-
tems” but none of the corresponding papers survived the
criterion C4. The five venues arising through the first cri-
terion are:

	V1	 ACM Symposium on Computer and Communica-
tions Security.

	V2	 IEEE Transactions on Information Forensics and
Security.

	V3	 USENIX Security Symposium.
	V4	 IEEE Symposium on Security and Privacy.
	V5	 Network and Distributed System Security Sympo-

sium.

Criterion C3 is also objective. Scholar offers a convenient
search facility for the contents of published papers. We
searched in each of the five identified venues with follow-
ing search string:

However, many papers identified this way were not
relevant to our purposes for a variety of reasons, rang-
ing from fuzzing being treated only marginally or being
mentioned only in the paper references. Here is where
criterion C4 comes into play, indicating that we had to
exercise manual scrutiny to further select the very contri-
butions that would convey relevant approaches and tools
for embedded fuzzing.

Moreover, we decided to appeal to an additional,
purposely subjective, inclusion criterion in order to
freely represent our experience through the review. It is

apparent that criterion C4 does not deliberately refer to a
specific time window or venue, hence applying it in isola-
tion from the previous criteria provides us with the free-
dom of selection we also wanted to have. Therefore, our
resulting inclusion criteria can be represented as a sen-
tence in propositional logic:

Clearly, this sentence is logically equivalent to C4 because
our personal judgement had to be applied to all possible
candidates. However, its construction allows us to repre-
sent the numbers of papers for the meaningful combina-
tions of criteria and venue as well as the papers that we
freely decide to consider. Such numbers, in particular for
the two main disjuncts in the sentence, can be found in
Table 1. The selection process is additionally depicted in
Fig. 1.

It can be understood why our review features a total of
42 papers.

Background and notation
In this section, a formal description of embedded fuzzing
is proposed to mathematically describe fuzzing as a sto-
chastic process. Therefore, the distinct tasks an embed-
ded fuzzer must fulfil are described in an algorithmic

(C1 ∧ C2 ∧ C3 ∧ C4) ∨ (C4 ∧ ¬(C1 ∧ C2 ∧ C3)).

Papers from the top
5 “Computer Security
& Cryptography”
conferences (C1)

published within the
last 5 years (C2)

4299

Automated filtering
according to relevant
search string (C3)

219

Manual selection (C4)
24

Union
42

Apply C4 to papers out-
side of C1, C2, and C3

18

Fig. 1  The selection process for finding relevant works, including the
numbers of papers each step has mined

Table 1  Numbers of papers per criterion and venue

C1∧C2 C1∧C2∧C3 C1∧C2∧C3∧
C4

C4 ∧¬
(C1∧C2∧
C3)

V1 1400 61 2 –

V2 1350 12 1 –

V3 716 79 15 –

V4 518 38 2 –

V5 315 29 4 –

� 4299 219 24 18

Page 4 of 18Eisele et al. Cybersecurity (2022) 5:18

manner. We use the notation introduced by Böhme
(2018) and apply it to fuzzing systems.

Let a system S be our target that we fuzz. The sample
space for system S is the input space D . Fuzzing is then a
stochastic process (D,F ,P) of selecting inputs ti from the
input space D . The event space F  , or fuzzing campaign,
is then the collection of all drawn input, i.e.

The probability function P dictates the selection of an
input ti with probability pi to be part of the fuzzing cam-
paign F  . Note that we leave out the often used but poorly
specified terms black-box, gray-box, or white-box fuzz-
ing. The degree of smartness is modeled by adjusting
probability function P, i.e. probability pi for each drawn
test input. A tool that implements the sampling function
of (D,F ,P) is called a fuzzer.

The probability function P can depend on observations
of the system S . If no observations influence the proba-
bility pi for selecting a new input ti (all pi ’s are equal), the
fuzzing campaign is a uniform random tester1.

Sampled inputs ti are processed by system S with its
configuration C , as in equation 2. The configuration C
describes the static environment of the system, including
hardware properties.

In contrast to existing formal definitions, we introduce
an observing mechanism that can observe system S in
desired dimensions that are not further specified. The
observation of the system’s behavior when processing
input ti is then described by Oti ∈ O and is obtained by

where observe
←−−−− describes the observations of the system

during the execution. This construction allows, for exam-
ple, to gather code coverage of a system or to observe
whether exceptional states of the system have been
reached. It also allows us to monitor emitted physical
side-channel data or perform liveness checks of the sys-
tem after a processed input. Further observations can
be execution time or the output of a system. The spe-
cific observation space depends on the actual device and
observer.

For fuzzing, algorithm 1 is built around equation 2,
which is called in line 4, where Oti is the concrete obser-
vation of system SC on processing input ti.

(1)F = {ti|ti ∈ D}
N
i=1

(2)Oti

observe
←−−−− SC(ti), 1 ≤ i ≤ N ,

The algorithm continuously samples inputs ti ∈ D on
behalf of the probability function P, which are then pro-
cessed by system S. The observation Oti is inspected for
unspecified behavior in function specified. For example,
the specification can contain maximum execution dura-
tions or illegal states of the system. If unspecified behav-
ior is discovered, the (hopefully) responsible input ti is
preserved in T×.

Finally, the probability function P may be adjusted
by function adjust, based on the new observation Oti .
For example, mutation-based coverage-guided fuzz-
ers implicitly alter their probability function, when a
new execution path has been discovered by adding the
responsible input to an input corpus. On each iteration,
a seed is picked from the input corpus and mutated ran-
domly to generate a new input—so the seeds directly
influence the probability space of newly sampled inputs.

Differential Fuzzing (Nilizadeh et al. 2019; Noller et al.
2020; He 2020) refers to fuzzing of different programs
with respect to differences between the observations Oti ,
such as coverage or execution time. With an adaption
of algorithm 1, systems can be fuzzed differentially, e.g.
to test two implementations of the same algorithm for a
deviating behavior.

We model stateful fuzzing by allowing ti to contain
multiple inputs, ti = �t

1
i
, t2
i
, . . . , tm

i
� . Executing such a

sequence on system S brings it to a state s, which we col-
lect as part of S ’s observation Oti.

Ensemble Fuzzing, as introduced by Chen et al. (2019),
is when multiple fuzzers execute algorithm 1. The main
idea is that the different tools synchronize their observa-
tions. The same system S can be run with different con-
figurations C and C′ . For example, configuration C′ can
have the input validation, such as a checksum, turned off
to allow a fuzzer to get deeper into the SUT more quickly.
The original configuration C is then used to validate
inputs from configuration C′ to reduce false positives.

1  Even a non-deterministic black-box fuzzer could have some non-empty
observations or some non-uniform probabilities.

Page 5 of 18Eisele et al. Cybersecurity (2022) 5:18 	

Fuzzing Harness, or Fuzz Wrapper, is an adapter
between a fuzzer and a specific target. Applications that
process data directly from a file or console input chan-
nel can most likely be fuzzed without any adapter in
between. For all other cases—a typically lightweight—
fuzzing harness is necessary to route input data from the
fuzzer to the target’s interface.

Hardware‑based embedded fuzzing
The high coherency of software and hardware in embed-
ded systems suggests that fuzz testing is to be performed
on the actual device. However, observing of the device,
i.e. implementing observe

←−−−− , already poses a challenge. In
this section, we present approaches that aim to run the
target application in its designed hardware environment.

Fan (2020) ported the popular fuzzer AFL to ARM-
based IoT devices. Within their ARM-AFL project they
developed a code instrumentation strategy for ARM
assembly and implemented a lightweight heap memory
corruption detector. The whole fuzzing process runs on
the target device itself, leading to a high throughput. In
principle, the fuzzing process works exactly like fuzzing
on a desktop PC. The target process is observed on crash
signals and code coverage in each Oti . ARM-AFL requires
Linux as the operating system and the source code of the
target program.

Frida (FRIDA 2020) is a dynamic code instrumenta-
tion toolkit that can hook into arbitrary user processes
enabling transparent access to the execution. It can also
be controlled remotely, allowing for hooking into Linux,
QNX, Android, and iOS applications. In addition, Frida
enables the collection of code coverage data from the
hooked process to facilitate fuzzing. However, the Frida
server application must be executed on the target device,
which can be challenging on closed/commercial devices.

Bogad and Huber (2019) developed Harzer Roller—
a linker-based instrumentation tool for embedded secu-
rity testing. They address the problem that embedded
firmware often needs closed-source libraries in order
to communicate with the hardware, which cannot be
instrumented by the compiler. These libraries are usually
shipped as an object file and are integrated into the firm-
ware by the linker. To be able to generate call traces, all
functions within the object file are renamed and appro-
priate proxy functions are generated. For detecting stack
overflows, a stack canary can be generated by the frame-
work before calling the original function. The authors
state that this technique is meant for simple embedded
devices with limited debug capabilities. The instrumenta-
tion of an object file increases its size up to 150%, which
usually makes it impossible to instrument all libraries on
memory-limited targets. The framework has been used

for fuzzing an ESP8266 using Boofuzz (Pereyda 2017)
as black-box fuzzer.

Oh et al. (2015) present a simple Dynamic Binary
Instrumentation (DBI) method for embedded systems
without any dependency on the operating system. They
connect the target device with a debugger and insert soft-
ware breakpoints at manually chosen locations. When a
breakpoint is reached, the instrumentation framework
is notified, and the breakpoint is removed for further
execution. This method enables observation of manually
selected, executed code parts in Oti and could be used for
coverage-guided fuzzing of any embedded system that
provides a suitable debugger. According to the measure-
ments of the authors, the overhead of this method is only
around 1%. However, the measurements have only been
performed on one device.

Börsig et al. (2020) present a method to instrument
code for ESP32 microcontrollers, whereby the coverage
data is returned to the fuzzer’s host via a JTAG connec-
tion. For this, the source code must be available and the
GCC​ coverage instrumentation mechanism is used. The
input data is sent to the target via the original channel,
e.g. WiFi. However, the transfer of the coverage data
via the JTAG interface slows down the fuzzing process
roughly by a factor of ten.

Tychalas et al. (2021) investigate security evaluation of
Programmable Logic Controllers (PLCs). Although, PLC
binaries are not regular programs, the authors show that
they can introduce vulnerabilities into systems. To reveal
such vulnerabilities, they propose a method to instru-
ment PLC binaries, and enable coverage-guided fuzzing
on them.

Song et al. (2019) presented PERISCOPE to examine
communication between devices and drivers over Mem-
ory-Mapped IO (MMIO) and Direct Memory Access
(DMA). The extension PERIFUZZ allows fuzzing on this
hardware-OS boundary. PERISCOPE needs to be com-
piled directly into the target’s kernel. Analysis and fuzz-
ing can then be performed directly on present MMIO
and DMA regions. For demonstration, AFL is used, but
the actual fuzzer is interchangeable.

Delshadtehrani et al. (2020) designed the programma-
ble hardware monitor PHMon for debugging, assisting
vulnerability detection, and enforcing security policies.
A prototype of the hardware monitor has been deployed
on a Field Programmable Gate Array (FPGA) in conjunc-
tion with a RISC-V processor. It can be used to generate
coverage feedback directly from the execution on the
hardware. The authors state that coverage-guided fuzzing
with PHMon and AFL is 16 times faster than fuzzing in
a full-system emulator. However, the hardware monitor
module needs to be included directly on the hardware
chip, to enable this performance advantage.

Page 6 of 18Eisele et al. Cybersecurity (2022) 5:18

Sperl and Böttinger (2019) present a side-channel
approach of gathering code coverage from embedded
systems by precisely monitoring the power consump-
tion of the target device during execution. Therefore, an
oscilloscope is used to record power traces, which are
processed further on a host PC to recognize the differ-
ent executed basic blocks. The recognition is realized
by machine learning classification algorithms. With this
technique, they are able to approximate the Control Flow
Graph (CFG) with correlation coefficients of up to 0.9.
For correct results the setup needs to be calibrated and
trained on the actual Device under Test (DUT).

García et al. (2020) use timing and electromagnetic
emanation side channels from embedded devices for
analyzing implementations of cryptographic algorithms.
They use these side channels in a specialized feedback-
driven fuzzing algorithm to recover cryptographic pri-
vate keys.

Chen et al. (2018) present IoTFuzzer, which aims for
fuzzing IoT devices that are controlled by mobile phone
applications—in this case Android apps only. It makes
use of the fact that accompanying mobile apps of IoT
devices are aware of the exact protocol and encryption
for controlling the device. The idea is to reuse the mobile
app to send correct messages to the target device, thereby
enabling protocol-aware fuzzing. For this, the mobile app
is initially scanned for functions that consume user input
and send it to the IoT device. These functions are then re-
used to send fuzzing messages to the target device. This
way, the generation of syntactically and semantically cor-
rect fuzzing messages is ensured. Crashes are detected
by observing the communication or performing liveness
checks.

Redini et al. (2021) have refined this method in their
tool DIANE. In contrast to IoTFuzzer, DIANE tries not
to hook into the function that consumes user input first,
but the last possible one, before the message is encoded
and send to the SUT. Thereby, eventual sanitization of
the user input within the mobile application is bypassed
and the possible input space is enlarged.

Snipuzz (Feng et al. 2021), also aims to fuzz test
IoT devices with accompanying mobile applications.
Unlike IoTFuzzer and DIANE, it additionally ana-
lyzes responses from the target device to enable feed-
back-driven fuzzing. Appropriate message sequences
are gathered by reading the public API, when it is avail-
able, or from analyzing the communication between the
accompanying mobile application and the target device.
As an alternative, the accompanying mobile applica-
tion can also be disassembled, but this usually requires
more effort. Although Snipuzz aims to be lightweight,
it requires some manual analysis to gather valid initial
seeds and select the right message sequences for fuzzing.

Aafer et al. (2021) present a technique to perform
feedback-driven fuzzing of Android TV boxes based on
logging outputs. First, static analysis is applied to extract
logging statements within the target’s firmware. With
taint analysis, the collected logging statements are classi-
fied according to whether they are related to input valida-
tion. This labelled collection of logging statements is then
used to train a Convolutional Neural Network (CNN)
model, which serves as a classifier for logging outputs.
During fuzzing, output logs are analyzed by using the
model to detect diverging behavior of the target and to
provide feedback to the fuzzer. In addition, they intro-
duce an external component that detects visual and audi-
tory anomalies by capturing and comparing video and
audio signals before and after each fuzzing step. This
method generates a coarse-grained feedback, compared
to branch code coverage, and is designated for rather
talkative devices, that give feedback via logs.

Emulation‑based embedded fuzzing
Emulators offer transparency and control of the emulated
subject and enable a precise observation Oti of internal
operations in manifold dimensions. Furthermore, multi-
ple instances of an emulator can be created easily, ena-
bling horizontal scaling of the fuzzing process.

However, running firmware of embedded devices in an
emulator presents several challenges, which are carved
out well by Wright et al. (2021). Most notable for fuzzing
is the fidelity and the effort needed to adapt an emulator
to a specific target.

Figure 2 shows an architecture model for embedded sys-
tems. While the application logic is contained in the appli-
cation layer, potential operating systems are located within
the system software layer. However, there are embed-
ded systems without a dedicated operating system, often
referred to as bare-metal systems. The system software
layer then may contain bootloader, drivers, and Hardware
Abstraction Layer (HAL) modules. Executing the applica-
tion within an emulator can be realized by either replacing
the hardware layer with a system emulator or by moving
only the application into a user-mode emulator.

Application

System
Software

HW

Fig. 2  Embedded systems architecture model according to
Noergaard (2012)

Page 7 of 18Eisele et al. Cybersecurity (2022) 5:18 	

In this section, the most notable approaches are pre-
sented that enable embedded fuzzing in an emulator.

User mode emulation fuzzing
User applications that are built for running in an operat-
ing system can potentially be executed very easily in an
emulator, because of the well-defined operating system
interfaces at the application layer. User mode emulation
enables fuzzing of binary-only applications with coverage
guidance.

It is also possible to transfer user applications from (in
particular Linux-based) embedded systems into a user
mode emulator like QEMU to perform coverag-guided
fuzzing, independently from the instruction set architec-
ture. However, accesses to the hardware that embedded
applications normally rely on need to be treated ade-
quately by the emulator.

All investigated fuzzing frameworks in this category
use a custom kernel for this purpose, also depicted in
Fig. 3. The thick boxes depict the parts that originate
from the actual target.

Chen et al. (2016) developed the Firmadyne frame-
work, which allows for automated dynamic analysis of
Linux-based embedded firmware images. It extracts the
root filesystem from a binary firmware image and utilizes
a custom kernel to run the image within the QEMU full-
system emulator. With this setup, dynamic analysis of
the user applications in the firmware can be performed,
which is demonstrated by providing a set of known
exploits that can be tried on the emulated device. Even
though the full-system mode of QEMU is used, Firma-
dyne should be considered to enter at the application
layer, because it deploys its own customized kernel and
only the user space applications from the firmware are
executed. The custom kernel partially compensates for
missing hardware emulation, for example, by providing
an emulated NVRAM that embedded devices often use.

The Firmadyne framework is enhanced by Kim et al.
in FirmAE (Kim et al. 2020). They claim that the Firma-
dyne framework could only get 16.28% of their tested set
of firmware images up and running for dynamic analy-
sis. To solve this problem, they introduced heuristics to
configure boot parameters, kernel parameters, network

interfaces, and file systems correctly. With these modifi-
cations, they were able to automatically run 79.36% of the
aforementioned set of firmware images within QEMU.

FirmFuzz (Srivastava et al. 2019) is an automated
introspection and analysis framework for IoT firmware.
It is designed for embedded devices that offer user inter-
faces through a webpage and are based on Linux. The
QEMU system emulator is set up with a customized ker-
nel in conjunction with fake peripheral drivers to com-
pensate for potential missing hardware emulation. A
headless browser is used to communicate with the device
automatically through a virtual network interface to find
user interfaces. After the static analysis of the firmware, a
generation-based fuzzer is set up. Seed input data is gen-
erated, using the contextual information that is gathered
from the firmware image. The target is monitored for
faults by the modified Linux kernel within the emulator.

FIRM-AFL (Zheng et al. 2019) is based on AFL and
Firmadyne. The idea is to speed up fuzzing within
QEMU by letting the target user process run in the
user-mode as long as possible. When necessary, the user
process is translated to the full-system emulator of the
appropriate device hardware. As a result, the overhead
of a full-system emulation is largely omitted. The authors
state that with this mechanism, the fuzzing process can
be sped up by a factor of ten. However, it is required that
the target device runs a POSIX-compatible operating sys-
tem and the hardware can be emulated by QEMU.

Transferring embedded applications from Linux-based
devices into an emulator by providing a customized ker-
nel can be successful in some cases, in particular when
the target application does not rely on special hardware
peripherals. Nevertheless, there remain many embedded
systems to which this does not apply, and which demand
a different approach for emulation-based fuzzing.

Full‑system emulation fuzzing
Once an embedded system can be emulated adequately,
code coverage, fault states, and other meta information
of the execution can be obtained easily. The next section
is about methods that enable full-system emulation of
embedded devices. For a correct emulation of embed-
ded firmware, all hardware peripheral accesses must be
treated in the emulator.

Peripheral emulation
A hardware access manifests itself in read and write
operations on the hardware address space. Addition-
ally, hardware interrupts are a mechanism to let hard-
ware peripherals trigger code areas from the firmware.
Implementing software equivalents of hardware periph-
erals and providing them on their expected locations in

Application

Custom
Kernel

EMUFuzzer Harness

Fig. 3  Scheme of fuzzing applications in a user-mode emulator

Page 8 of 18Eisele et al. Cybersecurity (2022) 5:18

the hardware address space is a way to enable emulation.
When all peripherals from a target device can be emu-
lated, an unmodified firmware image can be executed
and fuzzing can be enabled with little effort, as depicted
in Fig. 4.

The QEMU system mode is a popular full-system
emulator, which already provides configurations for sev-
eral microcontrollers and peripherals and supports a
large variety of architectures. TriforceAFL (Hertz and
Newsham 2021) combines AFL with QEMU and enables
emulation-based coverage-guided fuzzing for targets that
can be emulated with QEMU. If the desired target device
is not supported, the implementation and configuration
can be very laborious and requires deep knowledge of the
hardware.

Herdt et al. (2020) present a different solution for emu-
lating the whole hardware of an embedded system. They
apply libFuzzer to a SystemC virtual prototype. Sys-
temC is defined as IEEE-1666 standard (Group S-SCSW
2011) and provides a set of C++ libraries to define vir-
tual prototypes. Virtual prototypes are models of the
entire hardware system and allow an accurate simulation.
They are an established way of testing systems during
their development in the industry. Fuzzing is performed
on the virtual hardware by using a fully booted state of
the system, which is preserved by a fork-server mecha-
nism. However, the complete system must be described
in SystemC, which requires deep insights into the SUT
and can again require a lot of manual work.

Clements et al. (2020) present HALucinator to
address the problem of emulating peripherals by using
the HAL as an entry point. First, it locates HAL functions
in the firmware through binary analysis. Second, it inter-
cepts the execution of the HAL functions and instead
mimics its expected behavior. Handlers for each HAL
function must be implemented manually once. Beside
correct emulation, HALucinator can intercept func-
tions that provide random values and is able replace them
by deterministic functions, which can render fuzzing
more efficient.

Kim et al. (2019) proposed RVFuzzer for detecting
input validation bugs in robotic vehicles. Robotic vehicles

are cyber-physical systems managed in real-time by a
microcontroller. It needs to control actuators, process
sensor data, and react to control commands. A careful
validation of incoming control commands is therefore
required, especially if they are received from an unen-
crypted broadcast medium. RVFuzzer tries to detect
(sequences of) control commands that bring the robotic
vehicle into an unstable state. Therefore, the control pro-
gram is connected to a physical simulation of the robotic
vehicle, and input commands as well as environment
parameters are mutated. Instabilities are detected by
observing whether the presumed state in the control pro-
gram deviates too much from that in the simulation.

Peripheral proxying
When deep knowledge about the SUT is missing, hard-
ware accesses of the firmware must be treated differ-
ently. An alternative solution is to forward each hardware
access to the real device. Therefore, a proxy application
is introduced to route appropriate values and triggered
interrupts between the actual hardware and the emula-
tion, as shown in Fig. 5.

PROSPECT (Kammerstetter et al. 2014) uses TCP/
IP connection to forward hardware accesses, Avatar
(Zaddach et al. 2014) a debugging connection, and SUR-
ROGATES (Koscher et al. 2015) routes hardware accesses
through a dedicated FPGA to the actual hardware.

Regarding mobile system drivers, Talebi et al. (2018)
developed Charm that enables fuzzing of device driv-
ers by forwarding hardware peripheral accesses through
a USB-based connection. Since the drivers need to be
modified for this method, Charm works only with open
source drivers.

Avatar has a successor, Avatar2 (Muench et al. 2018),
which is not only intended for hardware access rerouting,
but more for orchestrating different frameworks to ena-
ble dynamic analysis. Its flexibility is proven by Muench
et al. (2018).

They enable coverage-guided fuzzing on a wide variety
of devices by using PANDA (Dolan-Gavitt et al. 2015) as
the emulator, Avatar2 (Muench et al. 2018) for forward-
ing non-emulatable hardware accesses, and Boofuzz

Application

System
Software

EMUFuzzer Harness

Fig. 4  Scheme of fuzzing embedded applications in a full-system
emulator

Application

System
Software

EMUFuzzer Harness Proxy

HW

Fig. 5  Scheme of embedded fuzzing with peripheral proxying

Page 9 of 18Eisele et al. Cybersecurity (2022) 5:18 	

(Pereyda 2017) as the fuzzer. Furthermore, they uncover
the issue of silent memory corruptions that can occur
in embedded devices without Memory Management
Units (MMUs) or operating systems that take care of
memory accesses. These are memory corruptions that
do not result in a crash of the device upon occurrence
and are therefore are not easily observable. To detect
silent memory corruptions, they present heuristics that
can be applied to an emulator, regardless of the manner
of hardware access treatment. When using these heuris-
tics all, occurring memory corruptions of a device can be
discovered.

Peripheral proxying offers a solution for emulating an
embedded device without excessive implementation
effort. However, the forwarding of peripheral accesses to
the real hardware can present a bottleneck, depending
on the number of requests to the hardware. Additionally,
manual configuration and setup of the proxying mecha-
nism is required.

Peripheral modeling
Where implementing virtual hardware requires too much
effort and peripheral proxying is too slow for fuzzing,
automated hardware modeling can be a solution. The
idea is to learn how to respond to hardware accesses such
that the firmware continues its execution. The periph-
eral model is thereby directly connected to the MMIO
address space and can be supported by the fuzzer, as
depicted in Fig. 6.

Gustafson et al. (2019) present a semi-automated re-
hosting framework, called PRETENDER. They solve the
modeling of hardware peripherals by means of prelimi-
nary observation and recording of the behavior of the real
device with Avatar2 . As a result, not only accesses to the
hardware are recorded, but also the timings and orders
of interrupts. Next, a rather complex step of categoriz-
ing MMIO registers and initializing State Approximation
model occurs. This should allow for smart responses to
hardware accesses of the firmware. Finally, human inter-
action is needed to define the entry point of the fuzzing

data. The authors state that PRETENDER allows for a
survivable execution, which can just be sufficient for a
dynamic analysis of the device.

Spensky et al. (2021) refined this approach with Con-
ware, which can also learn hardware peripheral behavior
by first recording interactions between the firmware and
the real hardware peripheral and subsequently extract-
ing models for each of them. The extracted models can
then be used for a full-system emulation. In contrast to
PRETENDER, Conware claims to be more generic and
can even model peripheral behavior that has not been
recorded directly.

Another hardware-agnostic approach for embedded
fuzzing is presented by Feng et al. (2020). Their frame-
work P2 IM responds to each peripheral access (a read
from the MMIO address space) with input data from the
fuzzer. Therefore, the MMIO registers are categorized
into Control Registers, Status Registers, Data Registers,
and Control-Status Registers by observing how the firm-
ware accesses the registers. Depending on the category,
interaction with the registers is treated differently. Most
important is the treatment of Data Registers, where P2
IM directly injects input data from the fuzzer. Thereby,
the fuzzer itself models all of the peripheral input generi-
cally, omitting the need for finding and choosing the cor-
rect input vector for the target. The interrupt emulation
is implemented quite pragmatically by sequentially firing
one interrupt per 1000 executed basic blocks. When the
initially supplied fuzz input buffer is exhausted, the exe-
cution is terminated and the code coverage is fed back to
the fuzzer. The explorative nature of the fuzzer is used to
improve the hardware peripheral modeling successively.
The framework allows existing fuzzers to be added as a
drop-in component, offering AFL as default. However,
peripherals that use DMA are not modeled by P2 IM, as
this would require insights on the internal design of the
target device.

For automatic emulation of DMA input channels in P2
IM, Mera et al. (2020) present the drop-in solution DICE.
It observes the behavior of running firmware in the emu-
lator and recognizes candidates for DMA input channels
heuristically. In principle, it searches for pointers to the
internal RAM that are written to memory-mapped IO-
registers. The authors claim that, during their tests, DICE
did not create any false positive categorization and suc-
cessfully detected 21 out of 22 actively used DMA input
channels. With negligible overhead, it enables fuzzing of
DMA input processing firmwares without further hard-
ware knowledge.

Johnson et al. (2021) present a more targeted periph-
eral modeling approach with Jetset. In this case, an
analyst manually defines a goal address in the firmware
that should be reached, and Jetset tries to derive the

Application

System
Software

EMU

MMIO

Fuzzer Peripheral
Model

Fig. 6  Scheme of embedded fuzzing with peripheral modeling

Page 10 of 18Eisele et al. Cybersecurity (2022) 5:18

necessary hardware peripheral responses to reach this
address with symbolic execution. For instance, the transi-
tion from kernel space to user space can be used as such
a goal address. The explicit goal address allows Jetset to
mitigate path explosion during symbolic execution.

Zhou et al. (2021) enable peripheral modeling in their
tool µEmu by mixing symbolic and concrete execu-
tion to calculate appropriate responses to hardware
accesses. First, all hardware peripheral dependent inputs
are treated symbolically. To avoid path explosion, sym-
bolically calculated values are cached and reused dur-
ing concrete execution. When invalid execution states
are reached, the responsible cached values and the state
itself are marked as invalid and different paths are taken
by future symbolic executions. This way, the hardware
peripherals are enhanced iteratively.

Scharnowski et al. (2020) refine the mechanism of P2
IM. Instead of putting a memory-mapped register into a
category, their framework Fuzzware handles each indi-
vidual access to a memory-mapped register by addition-
ally considering the program counter on each access. On
the first occurrence of an access, the emulator is reset
to the instruction right before accessing the memory-
mapped register and Dynamic Symbolic Execution (DSE)
is used to determine whether and how the value affects
the further execution. Accordingly, the individual mem-
ory-mapped register access is assigned just enough ran-
dom input bits to ensure that all dependent branches can
be reached. This leads to a minimal consumption of input
bits from the fuzzer while fuzzing the whole peripheral
interaction. The authors claim that DMA could also be
modeled with further effort, but this is considered out of
scope of their work.

Sandbox emulation fuzzing
In cases where a full-system emulation is not feasi-
ble, lightweight sandbox emulation can be a solution.
Thereby, the binary code is executed from a manually
chosen point with a manually created context. The idea is
to fuzz functions that do not communicate with periph-
erals at all, meaning that the hardware peripherals do
not need to be emulated. This technique is almost hard-
ware-independent since only a simulator for the respec-
tive instruction set is required. Fuzzing a function from
a binary firmware file within a sandbox can be realized as
shown in Fig. 7.

Miasm is a reverse engineering tool to analyze, mod-
ify, and partially emulate binary programs. It offers fea-
tures such as assembling and disassembling for various
architectures, emulation with Just-In-Time (JIT) and
symbolic execution. In combination with Python-AFL,
Miasm can be used to perform fuzzing (Guedou 2017).
Therefore, a sandbox is created by Miasm, input data

needs to be mapped to appropriate memory addresses,
and registers need to be initialized correctly. This tech-
nique is mainly interesting for penetration testers, who
reverse engineer binaries and want to perform fuzzing
of interesting functions in this way. If the source code
is available, it is easier to perform fuzzing of hardware-
independent functions by compiling them into a user
application and using a general purpose fuzzer.

The Unicorn CPU Simulator (Nguyen and Dang 2015)
was used by Nathan in Voss (2021) in a similar way.

Maier et al. (2020) present BaseSAFE, where they
also used the Unicorn CPU Simulator to fuzz differ-
ent layers of a smartphone baseband chip on manually
selected target functions and manually created memory
contexts. The downside of these sandbox emulation fuzz-
ing approaches is the constrained, manual selection of
the target function and manual creation of the execution
context.

A semi-automated approach of supplying an execution
context to the target code is presented by Harrison et al.
(2020) with their tool PartEMU. They present required
steps that allow experts to set up and configure an emu-
lator to enable dynamic analysis of TrustZones from
embedded systems. Therefore, it is explained when hard-
ware and software components should be emulated or
reused, and how specific emulation stubs can be imple-
mented. Nevertheless, developing such an emulation-
based execution context can involve huge manual effort
and requires expert knowledge.

Ruge et al. (2020) present Frankenstein, a highly spe-
cialized framework for fuzzing wireless modem firmware
in an emulated environment. They run the firmware of
a Broadcom Bluetooth chip within QEMU user mode.
Through sophisticated reverse engineering, about 100
locations in the code have been determined, where the
execution needs to be redirected and substituted manu-
ally. This hooking is required to ensure correct emulation

Firmware

Sandbox

ContextHarness

Fu
nc

ti
on

Fuzzer

Fig. 7  Scheme of embedded fuzzing through sandbox emulation

Page 11 of 18Eisele et al. Cybersecurity (2022) 5:18 	

of the firmware. With this setup, they were able to fuzz
the Bluetooth modems of popular mobile phones from
Apple and Samsung and unveiled several security prob-
lems. However, the setup is highly customized and
requires a lot of manual effort to adapt it to other embed-
ded firmware.

An automated sandbox-based fuzzing tool for IoT
Firmware is presented by Gui et al. (2020) with FIRM-
CORN. First, the firmware image is disassembled and
detected functions are rated based on the memory opera-
tions they contain and the use of predetermined sensitive
functions, such as read, strcpy, and execve. For high
rated functions, a context dump (memory and register
values) at the starting point of the function is gathered
from the actual device. This allows specific fuzzing of
potential vulnerable functions within the CPU emulator
Unicorn. An automated mechanism detects crashes of
the emulator, which result from missing emulated hard-
ware, and skips these crashing functions during further
virtual execution. They state that the tool is developed
for Linux-based devices only, but it should be possible to
extend it to further platforms.

Abstraction‑based execution environment
Symbolic execution is known for several decades (King
1976) and seems not to be located within the domain
of fuzzing at first glance. It analyzes the target program
independently from its execution environment. The core
idea is to treat all input vectors of a program symbolically
(similarly to a variable in a mathematical formula) and
derive input constraints for all possible program paths.
From these constraints, concrete inputs can be extracted
that are known to trigger all possible program paths—
which is exactly the goal of fuzzing.

However, for each conditional branch in a program,
each possible path must be considered in different states.
This can lead to the state explosion problem and usually
prevents the use of pure symbolic execution in real-life
applications.

Symbolic execution of embedded firmware
Symbolic execution does not execute the program code
directly, but rather interprets it. It is therefore a good
candidate for tackling the challenge of lacking hardware
peripheral emulation. All values from hardware periph-
erals can therefore be symbolized and possible program
paths can be calculated. However, the more hardware
values are symbolized, the more constraints and paths
are present (usually growing exponentially).

Davidson et al. (2013) implemented FIE, which allows
symbolic execution of firmware for MSP430 microcon-
trollers by using a modified version of KLEE (Cadar et al.
2008). They assume that software of embedded systems

is simple enough to allow symbolic execution. Therefore,
the target firmware is compiled into a representation that
can be symbolically executed with KLEE. FIE includes
two notable optimizations: state pruning and memory
smudging. State pruning detects whether the current state
has already been reached before and prunes it, instead of
adding it to the set of active states. The memory smudg-
ing function allows to avoid an intractable state, e.g. an
infinite loop with an increment inside. In this case, the
state pruning cannot work because the state is not equiv-
alent due to the presence of the increased variable. The
memory smudging sets a threshold for consecutive states
that differ only in one memory location.

Corteggiani et al. (2018) present Inception, a sym-
bolic execution engine for embedded firmwares, also
based on the KLEE engine. They added a mechanism to
symbolically execute assembly code, which is commonly
found in embedded firmware code. Additionally, they
enable hardware access forwarding for retrieving con-
crete values from the actual hardware to reduce the sym-
bolical input space.

Concolic execution of embedded firmware
Concolic execution refers to the combination of CON-
Crete and symbOLIC execution. In this case, traces are
used to analyze reached conditions during a concrete
execution, and related constraints are derived. These
constraints can be used to generate new input data that
exercises a different path of the code. This idea is also
termed as hybrid or concolic fuzzing.

Several general-purpose hybrid fuzzers, such as QSYM
(Yun et al. 2018), SymCC (Poeplau and Francillon 2020)
are available, as well as frameworks that focus on con-
colic execution for embedded firmwares. Herdt et al.
(2019) present an approach to integrate a concolic test-
ing engine with SystemC-based virtual prototypes for the
RISK-V architecture. This is once again subject to all the
requirements of virtual prototypes.

Ai et al. (2020) propose a concolic execution approach
for embedded devices that supports various architec-
tures. They perform the concrete execution on the physi-
cal device and move the symbolic execution to the host
via a debugging connection.

Although concolic execution is a promising method to
test code, it faces similar challenges as other embedded
fuzzers, because it relies on concrete program traces.

Reviewing embedded fuzzing works
A summary of the relevant embedded fuzzing works is
given in Table 2.

Page 12 of 18Eisele et al. Cybersecurity (2022) 5:18

Table 2  Reviewed embedded fuzzing works

Environment Framework Source
Code
Agnostic

Available Key contributions Limitations

Hardware-based Instrumentation ARM-AFL (Fan 2020) ✗ ✗ Static instrumentation
for ARM code

On-target fuzzing only

Frida (FRIDA 2020) ✓ ✓ Dynamic instrumenta-
tion for various OSes

Application on the target
required

Harzer Roller (Bogad
and Huber 2019)

✓ ✗ Static instrumentation
for object files

Function traces only

Os-less DBI (Oh et al.
2015)

✗ ✗ Dynamic instrumenta-
tion with breakpoints

Manual selection of
breakpoint locations

ESP32 Fuzzing (Börsig
et al. 2020)

✗ ✓ Static instrumentation
for ESP32 applications

Slow coverage data
transmission

ICSFuzz (Tychalas et al.
2021)

✓ ✓ Static instrumentation
for PLC binaries

Dedicated to PLCs

PERIFUZZ (Song et al.
2019)

✗ ✓ Fuzzing at hw-os
boundary, driver moni-
toring

Must be compiled into
the kernel

PHMon (Delshadtehrani
et al. 2020)

✓ ✓ Hardware module for
gathering coverage
data

Specific hardware
required

Side-Channel Side-Channel Aware
Fuzzing (Sperl and Böt-
tinger 2019)

✓ ✗ Code-coverage derived
from power analysis

Calibration needed

Certified Side Channels
(García et al. 2020)

✓ ✗ EM and timing side-
channels

For crypto libraries only

Message Interface
Reusing

IoTFuzzer (Chen et al.
2018)

✓ ✓ Reuse of accompanying
mobile applications

Not feedback driven,
Android only

DIANE (Redini et al.
2021)

✓ ✓ Enhanced IoTFuzzer
mechanism

Not feedback driven,
Android only

Snipuzz (Feng et al.
2021)

✓ ✓ Communication analy-
sis for feedback

For unencrypted chan-
nels only

Android TV Fuzzing
(Aafer et al. 2021)

✓ ✗ Using log output for
feedback

Detailed logs needed,
Android only

Emulation-based User Mode Emulation Firmadyne (Chen et al.
2016)

✓ ✓ Custom kernel for
emulation

Linux-based applications
only

FirmAE (Kim et al. 2020) ✓ ✓ Enhanced Firmadyne
mechanism

Linux-based applications
only

FirmFuzz (Srivastava
et al. 2019)

✓ ✓ Fuzzing of IoT configu-
ration webpages

Linux-based applications
only

Firm-AFL (Zheng et al.
2019)

✓ ✓ Speedup by hybrid user
and system emulation

Linux-based applications
only

Full-System Emulation TriforceAFL (Hertz and
Newsham 2021)

✓ ✓ Coverage-guided fuzz-
ing with QEMU

Target must be emulat-
able by QEMU

SystemC VP Fuzzing
(Herdt et al. 2020)

✓ ✗ Coverage-guided fuzz-
ing on VP

Virtual prototype required

HALucinator (Clements
et al. 2020)

✓ ✓ Re-hosting at HAL Stubs for HALs required

RVFuzzer (Kim et al.
2019)

✓ ✗ Fuzzing controller for
robotic vehicles

Rich physical simulation
required

Page 13 of 18Eisele et al. Cybersecurity (2022) 5:18 	

Table 2  (continued)

Environment Framework Source
Code
Agnostic

Available Key contributions Limitations

Peripheral Proxying PROSPECT (Kammer-
stetter et al. 2014)

✓ ✗ Peripherals proxying
through TCP/IP

Requires pthreads and
TCP/IP support on target

SURROGATES (Koscher
et al. 2015)

✓ ✗ Proxying through a
custom FPGA

JTAG connection required

Charm (Talebi et al.
2018)

✗ ✓ Proxying through USB Recompilation needed

Avatar2 (Muench et al.
2018)

✓ ✓ Flexible, multi-purpose
orchestrating frame-
work

Any access to device
required

Peripheral Modeling PRETENDER (Gustafson
et al. 2019)

✓ ✓ Peripheral modeling by
recording and learning
of peripheral behavior

Unseen peripheral behav-
ior is not modeled

Conware (Spensky et al.
2021)

✓ ✓ Additional modeling
of unseen peripheral
behavior

Program for recording
must be executed on the
target

P2 IM (Feng et al. 2020) ✓ ✓ Peripheral modeling by
automated classification
of requests

Missing DMA support

DICE (Mera et al. 2020) ✓ ✓ Modeling of DMA-
based peripherals

DMA buffer size not iden-
tifiable in advance

Jetset (Johnson et al.
2021)

✓ ✓ Peripheral modeling by
symbolic execution and
manual guidance

Manual guidance
required

µEmu (Zhou et al. 2021) ✓ ✓ Peripheral modeling by
concolic execution

Caching can cause false
hardware modeling

Fuzzware (Scharnowski
et al. 2020)

✓ ✓ Peripheral modeling by
detailed classification

Not for complex systems

Sandboxing MIASM (Guedou 2017) ✓ ✓ Multi-purpose reverse
engineering tool

Reverse engineering
required

BaseSAFE (Maier et al.
2020)

✓ ✓ Coverage-guided fuzz-
ing of baseband chips

Manually assembled
environment

PartEMU (Harrison et al.
2020)

✓ ✗ Coverage-guided fuzz-
ing of TrustZones

Manually assembled
environment

Frankenstein (Ruge et al.
2020)

✓ ✓ Coverage-guided
fuzzing of wireless
firmwares

Customized for one
specific device

FIRMCORN (Gui et al.
2020)

✓ ✓ Automated sandboxing
of functions

Linux-based applications
only

Abstraction-based Symbolic Execution FIE (Davidson et al.
2013)

✗ ✓ Symbolic execution
for MSP430 microcon-
trollers

Complex programs lead
to state explosion

Inception (Corteggiani
et al. 2018)

✗ ✓ Symbolic execution,
even for handwritten
assembly and binary
libraries

Complex programs lead
to state explosion

Page 14 of 18Eisele et al. Cybersecurity (2022) 5:18

Taxonomy criteria
This section summarizes the criteria used to cluster the
relevant embedded fuzzing works.

The columns in Table 2 show what we feel are the rel-
evant elements of comparison for each work.

•	 Source Code Agnostic—This criterion indicates
whether the fuzzer needs the source code of the
SUT to run, which is a major factor for many appli-
cation scenarios.

•	 Available—This criterion indicates whether any
implemented tool of the proposed approach is
readily available and functioning, irrespective of
whether it is open or closed source.

•	 Key Contributions & Limitations—This column pre-
sents the key features as well as the limitations of
each approach.

The rows in Table 2 categorize the works based on the
execution environment. The categories are as follows.

•	 Hardware-based

•	Instrumentation
•	Side-Channel
•	Message Interface Reusing

•	 Emulation-based

•	User Mode Emulation
•	Full-System Emulation
•	Peripheral Proxying
•	Peripheral Modeling
•	Sandboxing

•	 Abstraction-based

•	Symbolic Execution
•	Concolic Execution

Overall, the wide variety of approaches in Table dem-
onstrates the diversity in the steadily growing research
field of embedded fuzzing. Therefore, devising mean-
ingful categories for the existing approaches in order to
effectively group the lines in Table requires care and con-
sideration of existing attempts.

Notably, general principles for evaluating and bench-
marking traditional fuzzers exist, as proposed by Klees
et al. (2018). Fuzzers should be tested against a large set
of benchmark programs, such as GCG​ (Cyber grand
challenge 2014) or LAVA-M (Dolan-Gavitt et al. 2016)
multiple times for at least 24 hours, with the perfor-
mance plotted over time. The performance should ide-
ally be measured in the number of detected bugs. The
reached code coverage can be used as a secondary per-
formance measure. Additionally, different sets of seeds
should be considered and documented. Arguably, a
transfer of these principles to embedded fuzzers would
be useful. However, current research on embedded fuzz-
ing still faces more fundamental issues of portability and
scalability, namely about enabling a fuzzing approach
over the widest possible variety of embedded systems of
any complexity.

Wright et al. (2021) propose to compare different
re-hosting frameworks particularly with regard to the
amount of user interaction needed for the setup, termed
as application effort. The application effort refers to the
ease of adapting a framework to new targets. Preferably,
a framework can be adapted with little knowledge of the
target and low configuration effort. It could be measured
in the estimation of time needed for the setup, but this
would heavily depend on the developer, thus making the
results highly subjective.

In light of the existing classification attempts, we feel
that the relatively young field of embedded fuzzing may
currently be partitioned most beneficially on the basis
of how the execution environment is served to the SUT.
Therefore, we build three essential categories: hardware-
based approaches for those that use the very hardware
of the SUT to operate, emulation-based approaches for

Table 2  (continued)

Environment Framework Source
Code
Agnostic

Available Key contributions Limitations

Concolic Execution Concolic Testing on VP
(Herdt et al. 2019)

✓ ✓ Concolic testing of
RISC-V virtual proto-
types

Target must be proto-
typed

Concolic Execution on
Proxy (Ai et al. 2020)

✓ ✗ Symbolic execution on
host combined with
concrete execution on
target

For unix-like systems only

Page 15 of 18Eisele et al. Cybersecurity (2022) 5:18 	

those that re-host the firmware of the SUT into an emula-
tor, abstraction-based approaches for those that abstract
away the details of the hardware. We further classify each
category according to finer observations.

Hardware-based approaches let the target software
run in its designated environment. Therefore, we decide
to further divide these approaches upon the basis of how
they gather feedback from the hardware about the execu-
tion of the software. Thus the hardware category features
the three sub-categories Instrumentation, Side-Channel,
and Message Interface Reusing.

A defining feature for emulation-based approaches is
the way they treat hardware peripheral accesses. There-
fore, we coherently decide the five sub-categories User
Mode Emulation, Full-System Emulation, Peripheral
Proxying, Peripheral Modeling, and Sandboxing.

The last category features abstraction-based
approaches, hence the two sub-categories for enabling
the abstraction process are Symbolic Execution and
Concolic Execution. It should be noted that concolic
approaches usually need traces from the execution envi-
ronment and therefore a concrete execution environment
but (manually) selected input vectors can be made sym-
bolic. Therefore, we decide to keep these with abstrac-
tion-based approaches.

Discussion and future directions
Desktop user programs communicate via well defined
syscalls and do run in their particular virtual address
space. Therefore, fuzzing such programs can benefit from
different flavours of feedback and sanitizing options.
Similarly, well defined target constraints and bounda-
ries are present for hardware fuzzing. Hardware designs
are usually represented in HDLs, where hardware fuzz-
ing approaches can be based on Trippel et al. (2021),
Laeufer et al. (2018). In between, embedded fuzzing faces
a much less precisely specified environment. Generalized
statements about interfaces, the environment, and other
circumstances can not be made for embedded applica-
tions. In fact, an embedded program is an accumulation
of machine code instructions that only function prop-
erly together with their intended environment and made
assumptions.

This is why despite the growing attention and prolifera-
tion of embedded systems, the research field of embed-
ded fuzzing still lacks generic solutions. Even comparing
different tools remains a big challenge. It would seem that
most tools are evaluated on a small set of targets, chosen
by the authors themselves, whereas it would be useful to
devise public, independent benchmarks.

The effectiveness of embedded fuzzers can only be
evaluated when testing can be performed on a large
collection of test subjects. A benchmarking suite for

embedded fuzzers may consist of open-source embed-
ded firmwares in conjunction with appropriate hardware
peripheral emulation solutions. In this way, different
fuzzing strategies can be evaluated on embedded systems
instead of relying on the ones that are developed for user
applications.

Furthermore, the different characteristics of embedded
systems in contrast to user applications should be consid-
ered. Traditional fuzzing originates from quickly termi-
nating data processing applications. Embedded systems,
on the other hand, are continuously running systems that
usually do not terminate after processing a single input.
If the internal state of a system changes during sequences
of inputs, it is called stateful. Recently, several fuzzers
for stateful software have been proposed (Yu et al. 2019;
Pham et al. 2020; Natella 2021; Schumilo et al. 2021).
In particular, Pham et al. (2020) showed that stateful
programs, like network servers, have to be fuzzed with
awareness of their state to be efficient. Since embedded
systems typically are stateful, stateful embedded fuzzing
approaches are needed as well.

Most reviewed papers are emulation-based and emula-
tors currently seem to be the preferred way of enabling
embedded fuzzing. Beside their mentioned advantages,
there is always the disadvantage of a lower fidelity, which
makes it necessary to validate all found bugs on the
actual hardware or at least an accurate model of it. This
process may be automated by putting the actual device in
the loop and testing input candidates directly.

The other disadvantage of emulators is the setup and
configuration effort required to imitate the whole execu-
tion environment. However, with the actual hardware,
there is an environment already present in which the
embedded software runs as expected. Therefore, we see
more research potential in performing fuzzing on the
actual hardware and extracting feedback from existing
functionalities e.g. debug interfaces. Common embedded
debugging tools from Lauterbach (Lauterbach 2021) or
SEGGER (Segger 2021) provide real-time tracing mecha-
nisms for a wide variety of microcontrollers, which may
be used for fuzzing feedback.

Another albeit rarely handled aspect is that an embed-
ded system has multiple interfaces that can be highly
entangled. Further research is needed to consider the
whole system, and not only individual functions, inter-
faces, or processes while fuzzing. Such a fuzzer could
fuzz on multiple interfaces simultaneously, while observ-
ing the whole system. Multiple fuzzers or harnesses
would need to synchronize their observations, similarly
to ensemble fuzzing.

Recently, plenty of automated peripheral modeling
approaches, such as P2 IM (Feng et al. 2020) and FUZ-
ZWARE (Scharnowski et al. 2020), have been proposed.

Page 16 of 18Eisele et al. Cybersecurity (2022) 5:18

For now, they seem to target rather simple embedded
systems. Since they need to model all hardware periph-
erals that are accessed by the firmware, the approaches
do not scale well for more complex systems. Neverthe-
less, automated peripheral modeling remains one of the
most promising methods to enable generic embedded
fuzzing. Further research in this area could also enable
emulation-based fuzzing with low application effort for
more complex embedded systems. Another option could
be to design generic and reusable HALs to ease re-host-
ing and enable efficient fuzz testing of hardware-related
code. Moreover, as highlighted by Boehme et al. (2020)
for traditional fuzzing, we also advocate a larger scope for
embedded fuzzers, which should identify a range of vul-
nerabilities, such as information and timing leakages, and
not just bugs.

Future research and tools should aim to unite existing
techniques in an embedded ensemble fuzzing framework
in order to eliminate their current, individual disadvan-
tages. In addition, such a framework should be cross-
architecture, state-aware, and compatible with emulated
and real devices. Embedded Fuzzing should consider the
whole system in all its details.

Related work
Detailed summaries of the challenges of fuzzing embed-
ded systems (Muench et al. 2018) and security analysis of
embedded systems (Fasano et al. 2021; Wright et al. 2021)
have been published. However, these reviews do concen-
trate almost solely on emulation-based approaches. We
agree that emulation-based approaches are on the rise,
but to get the whole picture of embedded fuzzing, hard-
ware-based approaches in all their facets need to be con-
sidered, too. We aim to draw such a complete picture and
particularly want to highlight the diversity and creativity
of the reviewed methods in this article.

Conclusion
This article reviewed the current state of the art of
embedded fuzzing. To structure the field, we proposed
a formal definition of embedded fuzzing and suggested a
taxonomy for it. We carved out the additional challenges
of embedded fuzzing compared to the research field of
traditional fuzzing. Furthermore, we showed that no eas-
ily applicable solution for embedded fuzzing exists. As
traditional fuzzing has already found numerous vulner-
abilities in non-embedded software, efficient and easily
applicable embedded fuzzing would increase the security
and integrity of the ubiquitous embedded systems people
interact with every day.

Abbreviations
HAL: Hardware Abstraction Layer; SUT: System under test; DBI: Dynamic Binary
Instrumentation; JIT: Just-In-Time; DSE: Dynamic Symbolic Execution; CFG:
Coverage Guided Fuzzer; VP: Virtual Prototype; POC: Proof-Of-Concept; ISS:
Instruction Set Simulator; CFG: Control Flow Graph; DUT: Device under Test;
IoT: Internet of Things; DMA: Direct Memory Access; MMIO: Memory-Mapped
IO; MMU: Memory Management Unit; CPS: Cyber Physical System; CNN: Con-
volutional Neural Network; GDB: GNU Debugger; PLC: Programmable Logic
Controller; FPGA: Field Programmable Gate Array; RTL: Register Transfer Level;
HDL: Hardware Description Language.

Author contributions
MCE proposed the categories, ordered all works accordingly, developed the
appropriate figures and tables, and wrote many summaries. MM researched
the state of the art of embedded fuzzing and summarized some related
tools and works. RS collected and summarized parts of the related works of
embedded fuzzing. CH extended the model and algorithm in “Section Back-
ground and notation” and gave overall guidance for the article. GB structured
the introduction, defined the inclusion criteria, and reshaped the prose. All
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All research has been conducted on publicly available works.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Safety, Security and Privacy, Robert Bosch GmbH, Renningen, Germany.
2 Dept. of Math and Computer Science, Università degli Studi di Catania, Cata-
nia, Italy. 3 RBEI, Robert Bosch GmbH, Bangalore, India.

Received: 21 April 2021 Accepted: 25 March 2022

References
2014 Cyber grand challenge. http://​archi​ve.​darpa.​mil/​cyber​grand​chall​enge/​

about.​html. Accessed 13 Nov 2020
Aafer Y, You W, Sun Y, Shi Y, Zhang X, Yin H (2021) Android smarttvs vulner-

ability discovery via log-guided fuzzing. In: 30th {USENIX} security
symposium ({USENIX} Security 21)

Ai C, Dong W, Gao Z (2020) A novel concolic execution approach on embed-
ded device. In: Proceedings of the 2020 4th international conference on
cryptography, security and privacy. ICCSP 2020. Association for Comput-
ing Machinery, New York, NY, USA, pp 47–52. https://​doi.​org/​10.​1145/​
33776​44.​33776​54

Alsop T (2019) Global Embedded Computing Market Revenue from 2018 to
2027 (in Billion U.S. Dollars) The Insight Partners. Accessed 9 March 2021

Boehme M, Cadar C, Roychoudhury A (2020) Fuzzing: Challenges and reflec-
tions. IEEE Software

Bogad K, Huber M (2019) Harzer roller: Linker-based instrumentation for
enhanced embedded security testing. In: Proceedings of the 3rd revers-
ing and offensive-oriented trends symposium, pp 1–9

Böhme M (2018) Stads: Software testing as species discovery. ACM Trans Softw
Eng Methodol (TOSEM) 27(2):1–52

Börsig M, Nitzsche S, Eisele M, Gröll R, Becker J, Baumgart I (2020) Fuzzing
framework for esp32 microcontrollers. In: 2020 IEEE international work-
shop on information forensics and security (WIFS). IEEE, pp 1–6

Cadar C, Dunbar D, Engler DR et al (2008) Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In:
OSDI, vol 8, pp 209–224

http://archive.darpa.mil/cybergrandchallenge/about.html
http://archive.darpa.mil/cybergrandchallenge/about.html
https://doi.org/10.1145/3377644.3377654
https://doi.org/10.1145/3377644.3377654

Page 17 of 18Eisele et al. Cybersecurity (2022) 5:18 	

Chen DD, Woo M, Brumley D, Egele M (2016) Towards automated dynamic
analysis for linux-based embedded firmware. In: NDSS, vol 16, pp 1–16

Chen J, Diao W, Zhao Q, Zuo C, Lin Z, Wang X, Lau WC, Sun M, Yang R, Zhang
K (2018) Iotfuzzer: Discovering memory corruptions in iot through app-
based fuzzing. In: NDSS

Chen Y, Jiang Y, Ma F, Liang J, Wang M, Zhou C, Jiao X, Su Z (2019) Enfuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers. In:
28th {USENIX} security symposium ({USENIX} Security 19), pp 1967–1983

Clements AA, Gustafson E, Scharnowski T, Grosen P, Fritz D, Kruegel C, Vigna
G, Bagchi S, Payer M (2020) Halucinator: Firmware re-hosting through
abstraction layer emulation. In: 29th USENIX security symposium (USENIX
Sec), pp 1–18

Corteggiani N, Camurati G, Francillon A (2018) Inception: System-wide security
testing of real-world embedded systems software. In: 27th {USENIX}
security symposium ({USENIX} security 18), pp 309–326

Davidson D, Moench B, Ristenpart T, Jha S (2013) FIE on firmware: Finding
vulnerabilities in embedded systems using symbolic execution. In: 22nd
USENIX Security Symposium (USENIX Security 13), pp. 463–478. USENIX
Association, Washington, D.C. https://​www.​usenix.​org/​confe​rence/​useni​
xsecu​rity13/​techn​ical-​sessi​ons/​paper/​david​son

Delshadtehrani L, Canakci S, Zhou B, Eldridge S, Joshi A, Egele M (2020)
Phmon: a programmable hardware monitor and its security use cases. In:
29th {USENIX} security symposium ({USENIX} Security 20), pp 807–824

Dolan-Gavitt B, Hodosh J, Hulin P, Leek T, Whelan R (2015). Repeatable reverse
engineering with panda. In: Proceedings of the 5th Program Protection
and Reverse Engineering Workshop. PPREW-5. Association for Computing
Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​28438​59.​28438​67

Dolan-Gavitt B, Hulin P, Kirda E, Leek T, Mambretti A, Robertson W, Ulrich F,
Whelan, R (2016) Lava: Large-scale automated vulnerability addition. In:
2016 IEEE symposium on security and privacy (SP), pp 110–121. https://​
doi.​org/​10.​1109/​SP.​2016.​15

Fan R, Pan J, Huang, S (2020) Arm-afl: Coverage-guided fuzzing framework for
arm-based IoT devices. In: International conference on applied cryptogra-
phy and network security. Springer, pp 239–254

Fasano A, Ballo T, Muench M, Leek T, Bulekov A, Dolan-Gavitt B, Egele M, Fran-
cillon A, Lu L, Gregory N et al (2021) Sok: Enabling security analyses of
embedded systems via rehosting. In: Proceedings of the 2021 ACM Asia
conference on computer and communications security, pp 687–701

Feng B, Mera A, Lu L (2020) P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. In: 29th
{USENIX} security symposium ({USENIX} security 20), pp 1237–1254

Feng X, Sun R, Zhu X, Xue M, Wen S, Liu D, Nepal S, Xiang Y (2021) Snipuzz:
Black-box fuzzing of iot firmware via message snippet inference. arXiv
preprint arXiv:​2105.​05445

Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) Afl++: Combining incremen-
tal steps of fuzzing research. In: 14th {USENIX} Workshop on Offensive
Technologies ({WOOT} 20)

FRIDA Dynamic instrumentation toolkit for developers, reverse-engineers, and
security researchers. https://​frida.​re/. Accessed 4 Nov 2020

García CP, ul Hassan S, Tuveri N, Gridin I, Aldaya AC, Brumley BB (2020) Certified
side channels. In: 29th {USENIX} security symposium ({USENIX} security
20), pp 2021–2038

Group S-SCSW (2011) IEEE 1666-2011 - IEEE Standard for Standard SystemC
Language Reference Manual. https://​stand​ards.​ieee.​org/​stand​ard/​1666-​
2011.​html

Guedou (2017) Using Miasm to fuzz binaries with AFL. https://​guedou.​github.​
io/​talks/​2017_​BeeRu​mp/​slides.​pdf

Gui Z, Shu H, Kang F, Xiong X (2020) Firmcorn: Vulnerability-oriented fuzzing of
iot firmware via optimized virtual execution. IEEE Access 8:29826–29841

Gustafson E, Muench M, Spensky C, Redini N, Machiry A, Fratantonio Y,
Balzarotti D, Francillon A, Choe YR, Kruegel C et al. (2019) Toward the
analysis of embedded firmware through automated re-hosting. In: 22nd
international symposium on research in attacks, intrusions and defenses
({RAID} 2019), pp 135–150

Harrison L, Vijayakumar H, Padhye R, Sen K, Grace M (2020) {PARTEMU}: Ena-
bling dynamic analysis of real-world trustzone software using emulation.
In: 29th {USENIX} security symposium ({USENIX} Security 20), pp 789–806

He S, Emmi M, Ciocarlie G (2020) ct-fuzz: Fuzzing for timing leaks. In: 2020 IEEE
13th international conference on software testing, validation and verifica-
tion (ICST). IEEE, pp 466–471

Herdt V, Große D, Le HM, Drechsler R (2019) Early concolic testing of embed-
ded binaries with virtual prototypes: a risc-v case study*. In: 2019 56th
ACM/IEEE design automation conference (DAC), pp 1–6

Herdt V, Große D, Wloka J, Güneysu T, Drechsler R (2020) Verification of embed-
ded binaries using coverage-guided fuzzing with systemc-based virtual
prototypes. In: Proceedings of the 2020 on Great Lakes symposium on
VLSI, pp 101–106

Hertz J, Newsham T (2021) TriforceAFL. https://​github.​com/​nccgr​oup/​Trifo​
rceAFL. Accessed 9 Feb 2021

Information technology—Security techniques—Information security manage-
ment systems. Standard, International Organization for Standardization,
Geneva, CH (2013)

Johnson E, Bland M, Zhu Y, Mason J, Checkoway S, Savage S, Levchenko, K
(2021) Jetset: Targeted firmware rehosting for embedded systems. In:
30th {USENIX} security symposium ({USENIX} security 21)

Kammerstetter M, Platzer C, Kastner W (2014) Prospect: peripheral proxying
supported embedded code testing. In: Proceedings of the 9th ACM
symposium on information, computer and communications security, pp
329–340

Kim T, Kim CH, Rhee J, Fei F, Tu Z, Walkup G, Zhang X, Deng X, Xu D (2019)
Rvfuzzer: finding input validation bugs in robotic vehicles through
control-guided testing. In: 28th {USENIX} security symposium ({USENIX}
security 19), pp 425–442

Kim M, Kim D, Kim E, Kim S, Jang Y, Kim Y (2020) Firmae: Towards large-scale
emulation of iot firmware for dynamic analysis. In: Annual computer
security applications conference 2020. ACM

King JC (1976) Symbolic execution and program testing. Commun ACM
19(7):385–394

Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC conference on computer and com-
munications security, pp 2123–2138

Koscher K, Kohno T, Molnar D (2015) SURROGATES : Enabling near-real-time
dynamic analyses of embedded systems. In: 9th {USENIX} workshop on
offensive technologies ({WOOT} 15)

Laeufer K, Koenig J, Kim D, Bachrach J, Sen K (2018) Rfuzz: coverage-directed
fuzz testing of RTL on FPGAs. In: 2018 IEEE/ACM international conference
on computer-aided design (ICCAD). IEEE, pp 1–8

Lauterbach: Lauterbach Development Tools. https://​www.​laute​rbach.​com.
Accessed 22 Nov 2021

LLVM: libFuzzer–a library for coverage-guided fuzz testing. https://​llvm.​org/​
docs/​LibFu​zzer.​html. Accessed 22 Nov 2021

Maier D, Seidel L, Park S (2020) Basesafe: baseband sanitized fuzzing through
emulation. In: Proceedings of the 13th ACM conference on security and
privacy in wireless and mobile networks, pp 122–132

Mera A, Feng B, Lu L, Kirda E, Robertson W (2020) Dice: Automatic emulation of
DMA input channels for dynamic firmware analysis. arXiv preprint arXiv:​
2007.​01502

Muench M, Nisi D, Francillon A, Balzarotti D (2018) Avatar2: a multi-target
orchestration platform. In: BAR 2018, workshop on binary analysis
research, Colocated with NDSS Symposium, 18 February 2018, San Diego,
USA, San Diego, ÉTATS-UNIS. http://​www.​eurec​om.​fr/​publi​cation/​5437

Muench M, Stijohann J, Kargl F, Francillon A, Balzarotti D (2018) What you
corrupt is not what you crash: Challenges in fuzzing embedded devices.
In: NDSS

Natella R (2021) Stateafl: Greybox fuzzing for stateful network servers. arXiv
preprint arXiv:​2110.​06253

Nguyen AQ, Dang HV (2015) Unicorn: Next generation CPU emulator frame-
work. In: Proceedings of the 2015 Blackhat USA conference

Nilizadeh S, Noller Y, Pasareanu CS (2019). Diffuzz: differential fuzzing for side-
channel analysis. In: 2019 IEEE/ACM 41st international conference on
software engineering (ICSE). IEEE, pp 176–187

Noergaard T (2012) Embedded systems architecture 2nd edition, a compre-
hensive guide for engineers and programmers

Noller Y, Păsăreanu CS, Böhme M, Sun Y, Nguyen HL, Grunske L (2020). Hydiff:
Hybrid differential software analysis. In: 2020 IEEE/ACM 42nd interna-
tional conference on software engineering (ICSE). IEEE, pp 1273–1285

Oh J, Kim S, Jeong E, Moon S-M (2015) Os-less dynamic binary instrumenta-
tion for embedded firmware. In: 2015 IEEE symposium in low-power and
high-speed chips (COOL CHIPS XVIII). IEEE, pp 1–3

Pereyda J (2017) boofuzz: Network protocol fuzzing for humans. Accessed 17
Feb

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
http://arxiv.org/abs/2105.05445
https://frida.re/
https://standards.ieee.org/standard/1666-2011.html
https://standards.ieee.org/standard/1666-2011.html
https://guedou.github.io/talks/2017_BeeRump/slides.pdf
https://guedou.github.io/talks/2017_BeeRump/slides.pdf
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://www.lauterbach.com
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://arxiv.org/abs/2007.01502
http://arxiv.org/abs/2007.01502
http://www.eurecom.fr/publication/5437
http://arxiv.org/abs/2110.06253

Page 18 of 18Eisele et al. Cybersecurity (2022) 5:18

Pham V-T, Böhme M, Roychoudhury A (2020) Aflnet: a greybox fuzzer for net-
work protocols. In: 2020 IEEE 13th international conference on software
testing, validation and verification (ICST). IEEE, pp 460–465

Poeplau S, Francillon A (2020) Symbolic execution with symcc: Don’t interpret,
compile! In: 29th {USENIX} security symposium ({USENIX} Security 20), pp
181–198

Redini N, Continella A, Das D, De Pasquale G, Spahn N, Machiry A, Bianchi A,
Kruegel C, Vigna, G (2021) Diane: Identifying fuzzing triggers in apps to
generate under-constrained inputs for IoT devices. In: 42nd IEEE sympo-
sium on security and privacy 2021

Road vehicles—Cybersecurity engineering. Standard, International Organiza-
tion for Standardization, Geneva, CH (2021)

Road vehicles—Functional safety. Standard, International Organization for
Standardization, Geneva, CH (2018)

Ruge J, Classen J, Gringoli F, Hollick M (2020) Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In: 29th {USENIX}
security symposium ({USENIX} Security 20), pp 19–36

Scharnowski T, Bars N, Schloegel M, Gustafson E, Muench M, Vigna G, Kruegel
C, Holz T, Abbasi A Fuzzware: Using precise mmio modeling for effective
firmware fuzzing

Google Scholar Top 20 Computer Security & Cryptography Conferences.
https://​schol​ar.​google.​com/​citat​ions?​view_​op=​top_​venue​s&​vq=​eng_​
compu​terse​curit​ycryp​togra​phy. Accessed 2 Dec 2021

Schumilo S, Aschermann C, Jemmett A, Abbasi A, Holz T (2021) Nyx-net: Net-
work fuzzing with incremental snapshots. arXiv preprint arXiv:​2111.​03013

Secure product development lifecycle requirements. Standard, International
Electrotechnical Commission, Geneva, CH (2018)

Security and resilience—Business continuity management systems. Standard,
International Organization for Standardization, Geneva, CH (2019)

Segger: Segger Debug & Trace Probes. https://​www.​segger.​com/​produ​cts/​
debug-​trace-​probes/. Accessed 22 Nov 2021

Serebryany K (2017) Oss-fuzz-google’s continuous fuzzing service for open
source software

Software and systems engineering—Software testing. Standard, International
Organization for Standardization, Geneva, CH (2013)

Song D, Hetzelt F, Das D, Spensky C, Na Y, Volckaert S, Vigna G, Kruegel C,
Seifert J-P, Franz M (2019) Periscope: an effective probing and fuzzing
framework for the hardware-OS boundary. In: NDSS

Spensky C, Machiry A, Redini N, Unger C, Foster G, Blasband E, Okhravi H,
Kruegel C, Vigna G (2021) Conware: automated modeling of hardware
peripherals. In: Proceedings of the 2021 ACM Asia conference on com-
puter and communications security, pp 95–109

Sperl P, Böttinger K (2019) Side-channel aware fuzzing. In: European sympo-
sium on research in computer security. Springer, pp 259–278

Srivastava P, Peng H, Li J, Okhravi H, Shrobe H, Payer M (2019) Firmfuzz: auto-
mated iot firmware introspection and analysis. In: Proceedings of the 2nd
international ACM workshop on security and privacy for the Internet-of-
Things, pp 15–21

Swiecki R honggfuzz - Security oriented software fuzzer. https://​hongg​fuzz.​
dev/. Accessed 22 Nov 2021

Systems and software engineering—Software life cycle processes. Standard,
International Organization for Standardization, Geneva, CH (2017)

Talebi SMS, Tavakoli H, Zhang H, Zhang Z, Sani AA, Qian Z (2018) Charm:
Facilitating dynamic analysis of device drivers of mobile systems. In: 27th
{USENIX} security symposium ({USENIX} security 18), pp 291–307

Trippel T, Shin KG, Chernyakhovsky A, Kelly G, Rizzo D, Hicks M (2021) Fuzzing
hardware like software. arXiv preprint arXiv:​2102.​02308

Tychalas D, Benkraouda H, Maniatakos M (2021) Icsfuzz: Manipulating i/os and
repurposing binary code to enable instrumented fuzzing in ICS control
applications. In: 30th {USENIX} Security Symposium ({USENIX} Security 21)

Voss N, Fuzzing the Unfuzzable. https://​hacke​rnoon.​com/​afl-​unico​rn-​part-2-​
fuzzi​ng-​the-​unfuz​zable-​bea8d​e3540​a5. Accessed 25 Feb 2021

Wright C, Moeglein WA, Bagchi S, Kulkarni M, Clements AA (2021) Challenges
in firmware re-hosting, emulation, and analysis. ACM Comput Surv
(CSUR) 54(1):1–36

Yun I, Lee S, Xu M, Jang Y, Kim T (2018) Qsym: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX security symposium
(security 2018). Distinguished Paper Award Winner. https://​www.​micro​
soft.​com/​en-​us/​resea​rch/​publi​cation/​qsym-a-​pract​ical-​conco​lic-​execu​
tion-​engine-​tailo​red-​for-​hybrid-​fuzzi​ng/

Yu B, Wang P, Yue T, Tang Y (2019) Poster: Fuzzing IoT firmware via multi-stage
message generation. In: Proceedings of the 2019 ACM SIGSAC confer-
ence on computer and communications security, pp 2525–2527

Zaddach J, Bruno L, Francillon A, Balzarotti D et al (2014) Avatar: A framework
to support dynamic security analysis of embedded systems’ firmwares. In:
NDSS 23, pp 1–16

Zheng Y, Davanian A, Yin H, Song C, Zhu H, Sun L (2019) Firm-afl: high-
throughput greybox fuzzing of iot firmware via augmented process
emulation. In: 28th {USENIX} security symposium ({USENIX} security 19),
pp 1099–1114

Zhou W, Guan L, Liu P, Zhang Y (2021) Automatic firmware emulation through
invalidity-guided knowledge inference. In: 30th {USENIX} security sympo-
sium ({USENIX} Security 21)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://scholar.google.com/citations?view_op=top_venues&vq=eng_computersecuritycryptography
https://scholar.google.com/citations?view_op=top_venues&vq=eng_computersecuritycryptography
http://arxiv.org/abs/2111.03013
https://www.segger.com/products/debug-trace-probes/
https://www.segger.com/products/debug-trace-probes/
https://honggfuzz.dev/
https://honggfuzz.dev/
http://arxiv.org/abs/2102.02308
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://www.microsoft.com/en-us/research/publication/qsym-a-practical-concolic-execution-engine-tailored-for-hybrid-fuzzing/
https://www.microsoft.com/en-us/research/publication/qsym-a-practical-concolic-execution-engine-tailored-for-hybrid-fuzzing/
https://www.microsoft.com/en-us/research/publication/qsym-a-practical-concolic-execution-engine-tailored-for-hybrid-fuzzing/

	Embedded fuzzing: a review of challenges, tools, and solutions
	Abstract
	Introduction
	Inclusion criteria
	Background and notation
	Hardware-based embedded fuzzing
	Emulation-based embedded fuzzing
	User mode emulation fuzzing
	Full-system emulation fuzzing
	Peripheral emulation
	Peripheral proxying
	Peripheral modeling

	Sandbox emulation fuzzing

	Abstraction-based execution environment
	Symbolic execution of embedded firmware
	Concolic execution of embedded firmware

	Reviewing embedded fuzzing works
	Taxonomy criteria

	Discussion and future directions
	Related work
	Conclusion
	References

