
Eisele et al. Cybersecurity            (2022) 5:18  
https://doi.org/10.1186/s42400-022-00123-y

REVIEW

Embedded fuzzing: a review of challenges, 
tools, and solutions
Max Eisele1*  , Marcello Maugeri2, Rachna Shriwas3, Christopher Huth1 and Giampaolo Bella2 

Abstract 

Fuzzing has become one of the best-established methods to uncover software bugs. Meanwhile, the market of 
embedded systems, which binds the software execution tightly to the very hardware architecture, has grown at a 
steady pace, and that pace is anticipated to become yet more sustained in the near future. Embedded systems also 
benefit from fuzzing, but the innumerable existing architectures and hardware peripherals complicate the develop-
ment of general and usable approaches, hence a plethora of tools have recently appeared. Here comes a stringent 
need for a systematic review in the area of fuzzing approaches for embedded systems, which we term “embedded 
fuzzing” for brevity. The inclusion criteria chosen in this article are semi-objective in their coverage of the most rel-
evant publication venues as well as of our personal judgement. The review rests on a formal definition we develop to 
represent the realm of embedded fuzzing. It continues by discussing the approaches that satisfy the inclusion criteria, 
then defines the relevant elements of comparison and groups the approaches according to how the execution 
environment is served to the system under test. The resulting review produces a table with 42 entries, which in turn 
supports discussion suggesting vast room for future research due to the limitations noted.
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Introduction
Fuzzing is an increasingly popular technique for software 
testing, namely for findings bugs that could either repre-
sent functional problems and vulnerabilities that could 
be exploited by a malicious attacker. It uses randomness 
to generate test data for a target with the goal of trigger-
ing faults. Faults indicate bugs and may potentially pose 
a security vulnerability. Because fuzzing is a dynamic 
method, it analyzes the software while it is executed. By 
design, dynamic analysis only allows us to find faults that 
actually occur during execution. Consequently, it is nec-
essary to exercise as many parts of the code and inter-
leaving of branches as possible.

Since fuzzing with pure random input has a small 
chance of reaching large parts of the code, sophisticated 
fuzzing tools make use of additional information, such as 

input structure or code coverage, to generate inputs. A 
simple but effective approach is to gather code coverage 
information during input processing of the SUT and col-
lect inputs that trigger previously unreached code parts. 
This growing collection of inputs, called corpus, is used 
continuously to generate further inputs.

Despite its simple underlying principles, fuzzing has 
proved to be an effective method for system and software 
testing and is recommended by several industry stand-
ards. For example, in ISO 26262—Road vehicles—Func-
tional Safety (Road Vehicles 2018), fuzzing is advocated 
as one of the testing methods to ensure robustness. Fuzz-
ing is also found as a recommendation in ISA/IEC 62443-
4-1 - Secure product development lifecycle requirement 
(Secure Product Development Lifecycle Requirements 
2018). The recently released ISO/SAE 21434—Road vehi-
cles—Cybersecurity (Road Vehicles 2021) recommends 
fuzzing as a testing method, too. Additionally, fuzzing is 
used in penetration testing, which is recommend in ISO/
IEC/IEEE 291119—Software and systems engineering 

Open Access

Cybersecurity

*Correspondence:  MaxCamillo.Eisele@de.bosch.com
1 Safety, Security and Privacy, Robert Bosch GmbH, Renningen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6249-2077
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00123-y&domain=pdf


Page 2 of 18Eisele et al. Cybersecurity            (2022) 5:18 

– Software testing (Software and Systems Engineering 
2013), ISO/IEC 12207—Systems and software engineer-
ing—Software life cycle processes (Systems and Software 
Engineering 2017), ISO 27001—Information technology - 
Security techniques (Information Technology 2013), ISO 
22301—Security and resilience (Security and Resilience 
2019).

Fuzzing user (software) applications is perhaps the 
best-established use of fuzzing, and there are several con-
solidated techniques for gathering feedback from a target 
process. For example, the OSS-Fuzz (Serebryany 2017) 
project revealed over 30,000 bugs in 500 open source 
projects by using coverage-guided fuzzers such as lib-
Fuzzer (LLVM 2021), AFL++ (Fioraldi et al. 2020), and 
honggfuzz (Swiecki 2021).

Another important, growing area for fuzzing pertains 
to embedded systems, which are microcontroller-based 
devices in conjunction with their dedicated software. 
Typically developed for specific purposes, embedded 
systems are used pervasively in modern society, and 
innumerable examples could be made, including smart 
meters, pacemakers, and factory robots, to name just a 
few. The market of embedded computing has been grow-
ing constantly and this trend is expected to continue in 
the near future (Alsop 2019). Notably, embedded systems 
are key components for the Internet of Things (IoT) and 
for Cyber Physical Systems (CPSs). Therefore, the moti-
vation for fuzzing embedded systems is remarkable.

A first essential feature of embedded systems is that 
that their firmware is tightly coupled with the specific 
hardware, including connected peripherals. For example, 
the firmware of a smart light bulb or of a central heating 
control panel are both extremely unlikely to work seam-
lessly on different hardware. A second essential feature 
of embedded systems is their inherent diversity, which 
is reflected in the operating systems, CPU architectures, 
communication mechanisms, and hardware peripher-
als adopted. For example, while some embedded systems 
may run Linux-based operating systems, some run with-
out any operating system at all. Also, while desktop and 
server systems mainly rely on a few CPU architectures 
and operating systems, these may vary significantly for 
embedded systems.

We contend that these two features also form the two 
essential reasons why fuzzing embedded systems is still 
an open challenge at present (Muench et  al. 2018). For 
example, compiling distinct modules, such as libraries, 
into common user applications and exercising fuzzing on 
them is not an effective means of testing code portions 
that interact directly with the hardware; incidentally, 
because of the diverging compiler and environment, this 

would not test the exact code that ends up on the actual 
device. It becomes apparent that reliable, holistic fuzz 
testing of embedded systems ought to cover both the 
firmware code as well as the appropriate environment 
for that firmware. Moreover, the aforementioned diver-
sity poses the biggest challenge due to the need for the 
fuzzer to scale up to innumerable variants of hardware 
and firmware that are often poorly documented.

Therefore, we hypothesize that a golden tool and solu-
tion for fuzzing embedded systems (embedded fuzzing 
for short) do not exist yet. To verify this hypothesis, we 
formulate the following research question: What are the 
main features and limitations of current tools for fuzzing 
embedded systems? To address this question, this article 
conducts a systematic review of the state of the art of 
approaches to embedded fuzzing. Our review rests on a 
formal description of fuzzing for embedded systems and 
leverages it to advance a clustering of the reviewed works 
upon the basis of their underlying mechanisms. The tax-
onomy criteria used to categorize the reviewed works is 
presented in “Section Taxonomy criteria”.

The treatment highlights that emulation-based 
approaches work well for academic examples but may 
fail on real-world use cases. By contrast, hardware-based 
approaches with all their incarnations may yield best 
results albeit not without limitations. Hybrid approaches 
seem to bear disadvantages from both worlds. By pre-
senting the whole picture of fuzzing for embedded 
systems, this article demonstrates features as well as limi-
tations of each reviewed work, ultimately demonstrat-
ing what kind of future research is needed and deriving 
directions on how to pursue it.

“Section  Inclusion criteria” defines the criteria for a 
piece of research to be included in our review, and “Sec-
tion Background and notation” introduces our extended 
model for fuzzing embedded systems. Thereafter, we 
review related work of hardware-based and emulation-
based embedded fuzzing in “Sections  Hardware-based 
embedded fuzzing” and “Emulation-based embedded 
fuzzing”, respectively. Abstraction-based approaches are 
reviewed in “Section  Abstraction-based execution envi-
ronment”. We review the relevant works for embedded 
fuzzing in “Section Reviewing embedded fuzzing works”, 
discuss future trends in “Section  Discussion and future 
directions”, and related work in ’Section  Related work”. 
We conclude the article in “Section Conclusion”.

Inclusion criteria
The inclusion criteria for published material to be 
included in this review are: 
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C1	Research papers that are published in the top five 
venues in the category “Engineering & Computer 
Science”, sub-category “Computer Security & Cryp-
tography” according to Google Scholar (Scholar 
2021).

C2	Research papers that are published during the five 
years between 2017 and 2021.

C3	Research papers that mention “fuzzing” and “firm-
ware” or, alternatively, “fuzzing” and “embedded”.

C4	Research papers or tools that we feel convey relevant 
approaches to embedded fuzzing.

The first two criteria are objective, as Scholar offers con-
venient selection and sorting facilities for research ven-
ues. The chosen area of security is the one that we found 
most relevant to fuzzing in general, considering fuzzing 
as a technique for unveiling software vulnerabilities that 
an attacker could exploit. To confirm this, we also tried 
subcategories “Software Systems” and “Computing Sys-
tems” but none of the corresponding papers survived the 
criterion C4. The five venues arising through the first cri-
terion are: 

	V1	 ACM Symposium on Computer and Communica-
tions Security.

	V2	 IEEE Transactions on Information Forensics and 
Security.

	V3	 USENIX Security Symposium.
	V4	 IEEE Symposium on Security and Privacy.
	V5	 Network and Distributed System Security Sympo-

sium.

Criterion C3 is also objective. Scholar offers a convenient 
search facility for the contents of published papers. We 
searched in each of the five identified venues with follow-
ing search string:

However, many papers identified this way were not 
relevant to our purposes for a variety of reasons, rang-
ing from fuzzing being treated only marginally or being 
mentioned only in the paper references. Here is where 
criterion C4 comes into play, indicating that we had to 
exercise manual scrutiny to further select the very contri-
butions that would convey relevant approaches and tools 
for embedded fuzzing.

Moreover, we decided to appeal to an additional, 
purposely subjective, inclusion criterion in order to 
freely represent our experience through the review. It is 

apparent that criterion C4 does not deliberately refer to a 
specific time window or venue, hence applying it in isola-
tion from the previous criteria provides us with the free-
dom of selection we also wanted to have. Therefore, our 
resulting inclusion criteria can be represented as a sen-
tence in propositional logic:

Clearly, this sentence is logically equivalent to C4 because 
our personal judgement had to be applied to all possible 
candidates. However, its construction allows us to repre-
sent the numbers of papers for the meaningful combina-
tions of criteria and venue as well as the papers that we 
freely decide to consider. Such numbers, in particular for 
the two main disjuncts in the sentence, can be found in 
Table 1. The selection process is additionally depicted in 
Fig. 1.

It can be understood why our review features a total of 
42 papers.

Background and notation
In this section, a formal description of embedded fuzzing 
is proposed to mathematically describe fuzzing as a sto-
chastic process. Therefore, the distinct tasks an embed-
ded fuzzer must fulfil are described in an algorithmic 

(C1 ∧ C2 ∧ C3 ∧ C4) ∨ (C4 ∧ ¬(C1 ∧ C2 ∧ C3)).

Papers from the top
5 “Computer Security
& Cryptography”
conferences (C1)

published within the
last 5 years (C2)

4299

Automated filtering
according to relevant
search string (C3)

219

Manual selection (C4)
24

Union
42

Apply C4 to papers out-
side of C1, C2, and C3

18

Fig. 1  The selection process for finding relevant works, including the 
numbers of papers each step has mined

Table 1  Numbers of papers per criterion and venue

C1∧C2 C1∧C2∧C3 C1∧C2∧C3∧
C4

C4 ∧¬
(C1∧C2∧
C3)

V1 1400 61 2 –

V2 1350 12 1 –

V3 716 79 15 –

V4 518 38 2 –

V5 315 29 4 –

� 4299 219 24 18
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manner. We use the notation introduced by Böhme 
(2018) and apply it to fuzzing systems.

Let a system S be our target that we fuzz. The sample 
space for system S is the input space D . Fuzzing is then a 
stochastic process (D,F ,P) of selecting inputs ti from the 
input space D . The event space F  , or fuzzing campaign, 
is then the collection of all drawn input, i.e.

The probability function P dictates the selection of an 
input ti with probability pi to be part of the fuzzing cam-
paign F  . Note that we leave out the often used but poorly 
specified terms black-box, gray-box, or white-box fuzz-
ing. The degree of smartness is modeled by adjusting 
probability function P, i.e. probability pi for each drawn 
test input. A tool that implements the sampling function 
of (D,F ,P) is called a fuzzer.

The probability function P can depend on observations 
of the system S . If no observations influence the proba-
bility pi for selecting a new input ti (all pi ’s are equal), the 
fuzzing campaign is a uniform random tester1.

Sampled inputs ti are processed by system S with its 
configuration C , as in equation  2. The configuration C 
describes the static environment of the system, including 
hardware properties.

In contrast to existing formal definitions, we introduce 
an observing mechanism that can observe system S in 
desired dimensions that are not further specified. The 
observation of the system’s behavior when processing 
input ti is then described by Oti ∈ O and is obtained by

where observe
←−−−− describes the observations of the system 

during the execution. This construction allows, for exam-
ple, to gather code coverage of a system or to observe 
whether exceptional states of the system have been 
reached. It also allows us to monitor emitted physical 
side-channel data or perform liveness checks of the sys-
tem after a processed input. Further observations can 
be execution time or the output of a system. The spe-
cific observation space depends on the actual device and 
observer.

For fuzzing, algorithm  1 is built around equation  2, 
which is called in line 4, where Oti is the concrete obser-
vation of system SC on processing input ti.

(1)F = {ti|ti ∈ D}
N
i=1

(2)Oti

observe
←−−−− SC(ti), 1 ≤ i ≤ N ,

The algorithm continuously samples inputs ti ∈ D on 
behalf of the probability function P, which are then pro-
cessed by system S. The observation Oti is inspected for 
unspecified behavior in function specified. For example, 
the specification can contain maximum execution dura-
tions or illegal states of the system. If unspecified behav-
ior is discovered, the (hopefully) responsible input ti is 
preserved in T×.

Finally, the probability function P may be adjusted 
by function adjust, based on the new observation Oti . 
For example, mutation-based coverage-guided fuzz-
ers implicitly alter their probability function, when a 
new execution path has been discovered by adding the 
responsible input to an input corpus. On each iteration, 
a seed is picked from the input corpus and mutated ran-
domly to generate a new input—so the seeds directly 
influence the probability space of newly sampled inputs.

Differential Fuzzing (Nilizadeh et al. 2019; Noller et al. 
2020; He 2020) refers to fuzzing of different programs 
with respect to differences between the observations Oti , 
such as coverage or execution time. With an adaption 
of algorithm  1, systems can be fuzzed differentially, e.g. 
to test two implementations of the same algorithm for a 
deviating behavior.

We model stateful fuzzing by allowing ti to contain 
multiple inputs, ti = �t

1
i
, t2
i
, . . . , tm

i
� . Executing such a 

sequence on system S brings it to a state s, which we col-
lect as part of S ’s observation Oti.

Ensemble Fuzzing, as introduced by Chen et al. (2019), 
is when multiple fuzzers execute algorithm 1. The main 
idea is that the different tools synchronize their observa-
tions. The same system S can be run with different con-
figurations C and C′ . For example, configuration C′ can 
have the input validation, such as a checksum, turned off 
to allow a fuzzer to get deeper into the SUT more quickly. 
The original configuration C is then used to validate 
inputs from configuration C′ to reduce false positives.

1  Even a non-deterministic black-box fuzzer could have some non-empty 
observations or some non-uniform probabilities.
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Fuzzing Harness, or Fuzz Wrapper, is an adapter 
between a fuzzer and a specific target. Applications that 
process data directly from a file or console input chan-
nel can most likely be fuzzed without any adapter in 
between. For all other cases—a typically lightweight—
fuzzing harness is necessary to route input data from the 
fuzzer to the target’s interface.

Hardware‑based embedded fuzzing
The high coherency of software and hardware in embed-
ded systems suggests that fuzz testing is to be performed 
on the actual device. However, observing of the device, 
i.e. implementing observe

←−−−− , already poses a challenge. In 
this section, we present approaches that aim to run the 
target application in its designed hardware environment.

Fan (2020) ported the popular fuzzer AFL to ARM-
based IoT devices. Within their ARM-AFL project they 
developed a code instrumentation strategy for ARM 
assembly and implemented a lightweight heap memory 
corruption detector. The whole fuzzing process runs on 
the target device itself, leading to a high throughput. In 
principle, the fuzzing process works exactly like fuzzing 
on a desktop PC. The target process is observed on crash 
signals and code coverage in each Oti . ARM-AFL requires 
Linux as the operating system and the source code of the 
target program.

Frida (FRIDA 2020) is a dynamic code instrumenta-
tion toolkit that can hook into arbitrary user processes 
enabling transparent access to the execution. It can also 
be controlled remotely, allowing for hooking into Linux, 
QNX, Android, and iOS applications. In addition, Frida 
enables the collection of code coverage data from the 
hooked process to facilitate fuzzing. However, the Frida 
server application must be executed on the target device, 
which can be challenging on closed/commercial devices.

Bogad and Huber (2019) developed Harzer Roller—
a linker-based instrumentation tool for embedded secu-
rity testing. They address the problem that embedded 
firmware often needs closed-source libraries in order 
to communicate with the hardware, which cannot be 
instrumented by the compiler. These libraries are usually 
shipped as an object file and are integrated into the firm-
ware by the linker. To be able to generate call traces, all 
functions within the object file are renamed and appro-
priate proxy functions are generated. For detecting stack 
overflows, a stack canary can be generated by the frame-
work before calling the original function. The authors 
state that this technique is meant for simple embedded 
devices with limited debug capabilities. The instrumenta-
tion of an object file increases its size up to 150%, which 
usually makes it impossible to instrument all libraries on 
memory-limited targets. The framework has been used 

for fuzzing an ESP8266 using Boofuzz (Pereyda 2017) 
as black-box fuzzer.

Oh et  al. (2015) present a simple Dynamic Binary 
Instrumentation (DBI) method for embedded systems 
without any dependency on the operating system. They 
connect the target device with a debugger and insert soft-
ware breakpoints at manually chosen locations. When a 
breakpoint is reached, the instrumentation framework 
is notified, and the breakpoint is removed for further 
execution. This method enables observation of manually 
selected, executed code parts in Oti and could be used for 
coverage-guided fuzzing of any embedded system that 
provides a suitable debugger. According to the measure-
ments of the authors, the overhead of this method is only 
around 1%. However, the measurements have only been 
performed on one device.

Börsig et  al. (2020) present a method to instrument 
code for ESP32 microcontrollers, whereby the coverage 
data is returned to the fuzzer’s host via a JTAG connec-
tion. For this, the source code must be available and the 
GCC​ coverage instrumentation mechanism is used. The 
input data is sent to the target via the original channel, 
e.g. WiFi. However, the transfer of the coverage data 
via the JTAG interface slows down the fuzzing process 
roughly by a factor of ten.

Tychalas et al. (2021) investigate security evaluation of 
Programmable Logic Controllers (PLCs). Although, PLC 
binaries are not regular programs, the authors show that 
they can introduce vulnerabilities into systems. To reveal 
such vulnerabilities, they propose a method to instru-
ment PLC binaries, and enable coverage-guided fuzzing 
on them.

Song et  al. (2019) presented PERISCOPE to examine 
communication between devices and drivers over Mem-
ory-Mapped IO (MMIO) and Direct Memory Access 
(DMA). The extension PERIFUZZ allows fuzzing on this 
hardware-OS boundary. PERISCOPE needs to be com-
piled directly into the target’s kernel. Analysis and fuzz-
ing can then be performed directly on present MMIO 
and DMA regions. For demonstration, AFL is used, but 
the actual fuzzer is interchangeable.

Delshadtehrani et al. (2020) designed the programma-
ble hardware monitor PHMon for debugging, assisting 
vulnerability detection, and enforcing security policies. 
A prototype of the hardware monitor has been deployed 
on a Field Programmable Gate Array (FPGA) in conjunc-
tion with a RISC-V processor. It can be used to generate 
coverage feedback directly from the execution on the 
hardware. The authors state that coverage-guided fuzzing 
with PHMon and AFL is 16 times faster than fuzzing in 
a full-system emulator. However, the hardware monitor 
module needs to be included directly on the hardware 
chip, to enable this performance advantage.
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Sperl and Böttinger (2019) present a side-channel 
approach of gathering code coverage from embedded 
systems by precisely monitoring the power consump-
tion of the target device during execution. Therefore, an 
oscilloscope is used to record power traces, which are 
processed further on a host PC to recognize the differ-
ent executed basic blocks. The recognition is realized 
by machine learning classification algorithms. With this 
technique, they are able to approximate the Control Flow 
Graph (CFG) with correlation coefficients of up to 0.9. 
For correct results the setup needs to be calibrated and 
trained on the actual Device under Test (DUT).

García et  al. (2020) use timing and electromagnetic 
emanation side channels from embedded devices for 
analyzing implementations of cryptographic algorithms. 
They use these side channels in a specialized feedback-
driven fuzzing algorithm to recover cryptographic pri-
vate keys.

Chen et al. (2018) present IoTFuzzer, which aims for 
fuzzing IoT devices that are controlled by mobile phone 
applications—in this case Android apps only. It makes 
use of the fact that accompanying mobile apps of IoT 
devices are aware of the exact protocol and encryption 
for controlling the device. The idea is to reuse the mobile 
app to send correct messages to the target device, thereby 
enabling protocol-aware fuzzing. For this, the mobile app 
is initially scanned for functions that consume user input 
and send it to the IoT device. These functions are then re-
used to send fuzzing messages to the target device. This 
way, the generation of syntactically and semantically cor-
rect fuzzing messages is ensured. Crashes are detected 
by observing the communication or performing liveness 
checks.

Redini et  al. (2021) have refined this method in their 
tool DIANE. In contrast to IoTFuzzer, DIANE tries not 
to hook into the function that consumes user input first, 
but the last possible one, before the message is encoded 
and send to the SUT. Thereby, eventual sanitization of 
the user input within the mobile application is bypassed 
and the possible input space is enlarged.

Snipuzz (Feng et  al. 2021), also aims to fuzz test 
IoT devices with accompanying mobile applications. 
Unlike IoTFuzzer and DIANE, it additionally ana-
lyzes responses from the target device to enable feed-
back-driven fuzzing. Appropriate message sequences 
are gathered by reading the public API, when it is avail-
able, or from analyzing the communication between the 
accompanying mobile application and the target device. 
As an alternative, the accompanying mobile applica-
tion can also be disassembled, but this usually requires 
more effort. Although Snipuzz aims to be lightweight, 
it requires some manual analysis to gather valid initial 
seeds and select the right message sequences for fuzzing.

Aafer et  al. (2021) present a technique to perform 
feedback-driven fuzzing of Android TV boxes based on 
logging outputs. First, static analysis is applied to extract 
logging statements within the target’s firmware. With 
taint analysis, the collected logging statements are classi-
fied according to whether they are related to input valida-
tion. This labelled collection of logging statements is then 
used to train a Convolutional Neural Network (CNN) 
model, which serves as a classifier for logging outputs. 
During fuzzing, output logs are analyzed by using the 
model to detect diverging behavior of the target and to 
provide feedback to the fuzzer. In addition, they intro-
duce an external component that detects visual and audi-
tory anomalies by capturing and comparing video and 
audio signals before and after each fuzzing step. This 
method generates a coarse-grained feedback, compared 
to branch code coverage, and is designated for rather 
talkative devices, that give feedback via logs.

Emulation‑based embedded fuzzing
Emulators offer transparency and control of the emulated 
subject and enable a precise observation Oti of internal 
operations in manifold dimensions. Furthermore, multi-
ple instances of an emulator can be created easily, ena-
bling horizontal scaling of the fuzzing process.

However, running firmware of embedded devices in an 
emulator presents several challenges, which are carved 
out well by Wright et al. (2021). Most notable for fuzzing 
is the fidelity and the effort needed to adapt an emulator 
to a specific target.

Figure 2 shows an architecture model for embedded sys-
tems. While the application logic is contained in the appli-
cation layer, potential operating systems are located within 
the system software layer. However, there are embed-
ded systems without a dedicated operating system, often 
referred to as bare-metal systems. The system software 
layer then may contain bootloader, drivers, and Hardware 
Abstraction Layer (HAL) modules. Executing the applica-
tion within an emulator can be realized by either replacing 
the hardware layer with a system emulator or by moving 
only the application into a user-mode emulator.

Application

System
Software

HW

Fig. 2  Embedded systems architecture model according to 
Noergaard (2012)
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In this section, the most notable approaches are pre-
sented that enable embedded fuzzing in an emulator.

User mode emulation fuzzing
User applications that are built for running in an operat-
ing system can potentially be executed very easily in an 
emulator, because of the well-defined operating system 
interfaces at the application layer. User mode emulation 
enables fuzzing of binary-only applications with coverage 
guidance.

It is also possible to transfer user applications from (in 
particular Linux-based) embedded systems into a user 
mode emulator like QEMU to perform coverag-guided 
fuzzing, independently from the instruction set architec-
ture. However, accesses to the hardware that embedded 
applications normally rely on need to be treated ade-
quately by the emulator.

All investigated fuzzing frameworks in this category 
use a custom kernel for this purpose, also depicted in 
Fig.  3. The thick boxes depict the parts that originate 
from the actual target.

Chen et  al. (2016) developed the Firmadyne frame-
work, which allows for automated dynamic analysis of 
Linux-based embedded firmware images. It extracts the 
root filesystem from a binary firmware image and utilizes 
a custom kernel to run the image within the QEMU full-
system emulator. With this setup, dynamic analysis of 
the user applications in the firmware can be performed, 
which is demonstrated by providing a set of known 
exploits that can be tried on the emulated device. Even 
though the full-system mode of QEMU is used, Firma-
dyne should be considered to enter at the application 
layer, because it deploys its own customized kernel and 
only the user space applications from the firmware are 
executed. The custom kernel partially compensates for 
missing hardware emulation, for example, by providing 
an emulated NVRAM that embedded devices often use.

The Firmadyne framework is enhanced by Kim et al. 
in FirmAE (Kim et al. 2020). They claim that the Firma-
dyne framework could only get 16.28% of their tested set 
of firmware images up and running for dynamic analy-
sis. To solve this problem, they introduced heuristics to 
configure boot parameters, kernel parameters, network 

interfaces, and file systems correctly. With these modifi-
cations, they were able to automatically run 79.36% of the 
aforementioned set of firmware images within QEMU.

FirmFuzz (Srivastava et  al. 2019) is an automated 
introspection and analysis framework for IoT firmware. 
It is designed for embedded devices that offer user inter-
faces through a webpage and are based on Linux. The 
QEMU system emulator is set up with a customized ker-
nel in conjunction with fake peripheral drivers to com-
pensate for potential missing hardware emulation. A 
headless browser is used to communicate with the device 
automatically through a virtual network interface to find 
user interfaces. After the static analysis of the firmware, a 
generation-based fuzzer is set up. Seed input data is gen-
erated, using the contextual information that is gathered 
from the firmware image. The target is monitored for 
faults by the modified Linux kernel within the emulator.

FIRM-AFL (Zheng et  al. 2019) is based on AFL and 
Firmadyne. The idea is to speed up fuzzing within 
QEMU by letting the target user process run in the 
user-mode as long as possible. When necessary, the user 
process is translated to the full-system emulator of the 
appropriate device hardware. As a result, the overhead 
of a full-system emulation is largely omitted. The authors 
state that with this mechanism, the fuzzing process can 
be sped up by a factor of ten. However, it is required that 
the target device runs a POSIX-compatible operating sys-
tem and the hardware can be emulated by QEMU.

Transferring embedded applications from Linux-based 
devices into an emulator by providing a customized ker-
nel can be successful in some cases, in particular when 
the target application does not rely on special hardware 
peripherals. Nevertheless, there remain many embedded 
systems to which this does not apply, and which demand 
a different approach for emulation-based fuzzing.

Full‑system emulation fuzzing
Once an embedded system can be emulated adequately, 
code coverage, fault states, and other meta information 
of the execution can be obtained easily. The next section 
is about methods that enable full-system emulation of 
embedded devices. For a correct emulation of embed-
ded firmware, all hardware peripheral accesses must be 
treated in the emulator.

Peripheral emulation
A hardware access manifests itself in read and write 
operations on the hardware address space. Addition-
ally, hardware interrupts are a mechanism to let hard-
ware peripherals trigger code areas from the firmware. 
Implementing software equivalents of hardware periph-
erals and providing them on their expected locations in 
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Fig. 3  Scheme of fuzzing applications in a user-mode emulator
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the hardware address space is a way to enable emulation. 
When all peripherals from a target device can be emu-
lated, an unmodified firmware image can be executed 
and fuzzing can be enabled with little effort, as depicted 
in Fig. 4.

The QEMU system mode is a popular full-system 
emulator, which already provides configurations for sev-
eral microcontrollers and peripherals and supports a 
large variety of architectures. TriforceAFL (Hertz and 
Newsham 2021) combines AFL with QEMU and enables 
emulation-based coverage-guided fuzzing for targets that 
can be emulated with QEMU. If the desired target device 
is not supported, the implementation and configuration 
can be very laborious and requires deep knowledge of the 
hardware.

Herdt et al. (2020) present a different solution for emu-
lating the whole hardware of an embedded system. They 
apply libFuzzer to a SystemC virtual prototype. Sys-
temC is defined as IEEE-1666 standard (Group S-SCSW 
2011) and provides a set of C++ libraries to define vir-
tual prototypes. Virtual prototypes are models of the 
entire hardware system and allow an accurate simulation. 
They are an established way of testing systems during 
their development in the industry. Fuzzing is performed 
on the virtual hardware by using a fully booted state of 
the system, which is preserved by a fork-server mecha-
nism. However, the complete system must be described 
in SystemC, which requires deep insights into the SUT 
and can again require a lot of manual work.

Clements et  al. (2020) present HALucinator to 
address the problem of emulating peripherals by using 
the HAL as an entry point. First, it locates HAL functions 
in the firmware through binary analysis. Second, it inter-
cepts the execution of the HAL functions and instead 
mimics its expected behavior. Handlers for each HAL 
function must be implemented manually once. Beside 
correct emulation, HALucinator can intercept func-
tions that provide random values and is able replace them 
by deterministic functions, which can render fuzzing 
more efficient.

Kim et  al. (2019) proposed RVFuzzer for detecting 
input validation bugs in robotic vehicles. Robotic vehicles 

are cyber-physical systems managed in real-time by a 
microcontroller. It needs to control actuators, process 
sensor data, and react to control commands. A careful 
validation of incoming control commands is therefore 
required, especially if they are received from an unen-
crypted broadcast medium. RVFuzzer tries to detect 
(sequences of ) control commands that bring the robotic 
vehicle into an unstable state. Therefore, the control pro-
gram is connected to a physical simulation of the robotic 
vehicle, and input commands as well as environment 
parameters are mutated. Instabilities are detected by 
observing whether the presumed state in the control pro-
gram deviates too much from that in the simulation.

Peripheral proxying
When deep knowledge about the SUT is missing, hard-
ware accesses of the firmware must be treated differ-
ently. An alternative solution is to forward each hardware 
access to the real device. Therefore, a proxy application 
is introduced to route appropriate values and triggered 
interrupts between the actual hardware and the emula-
tion, as shown in Fig. 5.

PROSPECT (Kammerstetter et  al. 2014) uses TCP/
IP connection to forward hardware accesses, Avatar 
(Zaddach et al. 2014) a debugging connection, and SUR-
ROGATES (Koscher et al. 2015) routes hardware accesses 
through a dedicated FPGA to the actual hardware.

Regarding mobile system drivers, Talebi et  al. (2018) 
developed Charm that enables fuzzing of device driv-
ers by forwarding hardware peripheral accesses through 
a USB-based connection. Since the drivers need to be 
modified for this method, Charm works only with open 
source drivers.

Avatar has a successor, Avatar2 (Muench et al. 2018), 
which is not only intended for hardware access rerouting, 
but more for orchestrating different frameworks to ena-
ble dynamic analysis. Its flexibility is proven by Muench 
et al. (2018).

They enable coverage-guided fuzzing on a wide variety 
of devices by using PANDA (Dolan-Gavitt et al. 2015) as 
the emulator, Avatar2 (Muench et al. 2018) for forward-
ing non-emulatable hardware accesses, and Boofuzz 
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(Pereyda 2017) as the fuzzer. Furthermore, they uncover 
the issue of silent memory corruptions that can occur 
in embedded devices without Memory Management 
Units (MMUs) or operating systems that take care of 
memory accesses. These are memory corruptions that 
do not result in a crash of the device upon occurrence 
and are therefore are not easily observable. To detect 
silent memory corruptions, they present heuristics that 
can be applied to an emulator, regardless of the manner 
of hardware access treatment. When using these heuris-
tics all, occurring memory corruptions of a device can be 
discovered.

Peripheral proxying offers a solution for emulating an 
embedded device without excessive implementation 
effort. However, the forwarding of peripheral accesses to 
the real hardware can present a bottleneck, depending 
on the number of requests to the hardware. Additionally, 
manual configuration and setup of the proxying mecha-
nism is required.

Peripheral modeling
Where implementing virtual hardware requires too much 
effort and peripheral proxying is too slow for fuzzing, 
automated hardware modeling can be a solution. The 
idea is to learn how to respond to hardware accesses such 
that the firmware continues its execution. The periph-
eral model is thereby directly connected to the MMIO 
address space and can be supported by the fuzzer, as 
depicted in Fig. 6.

Gustafson et  al. (2019) present a semi-automated re-
hosting framework, called PRETENDER. They solve the 
modeling of hardware peripherals by means of prelimi-
nary observation and recording of the behavior of the real 
device with Avatar2 . As a result, not only accesses to the 
hardware are recorded, but also the timings and orders 
of interrupts. Next, a rather complex step of categoriz-
ing MMIO registers and initializing State Approximation 
model occurs. This should allow for smart responses to 
hardware accesses of the firmware. Finally, human inter-
action is needed to define the entry point of the fuzzing 

data. The authors state that PRETENDER allows for a 
survivable execution, which can just be sufficient for a 
dynamic analysis of the device.

Spensky et al. (2021) refined this approach with Con-
ware, which can also learn hardware peripheral behavior 
by first recording interactions between the firmware and 
the real hardware peripheral and subsequently extract-
ing models for each of them. The extracted models can 
then be used for a full-system emulation. In contrast to 
PRETENDER, Conware claims to be more generic and 
can even model peripheral behavior that has not been 
recorded directly.

Another hardware-agnostic approach for embedded 
fuzzing is presented by Feng et  al. (2020). Their frame-
work P2 IM responds to each peripheral access (a read 
from the MMIO address space) with input data from the 
fuzzer. Therefore, the MMIO registers are categorized 
into Control Registers, Status Registers, Data Registers, 
and Control-Status Registers by observing how the firm-
ware accesses the registers. Depending on the category, 
interaction with the registers is treated differently. Most 
important is the treatment of Data Registers, where P2 
IM directly injects input data from the fuzzer. Thereby, 
the fuzzer itself models all of the peripheral input generi-
cally, omitting the need for finding and choosing the cor-
rect input vector for the target. The interrupt emulation 
is implemented quite pragmatically by sequentially firing 
one interrupt per 1000 executed basic blocks. When the 
initially supplied fuzz input buffer is exhausted, the exe-
cution is terminated and the code coverage is fed back to 
the fuzzer. The explorative nature of the fuzzer is used to 
improve the hardware peripheral modeling successively. 
The framework allows existing fuzzers to be added as a 
drop-in component, offering AFL as default. However, 
peripherals that use DMA are not modeled by P2 IM, as 
this would require insights on the internal design of the 
target device.

For automatic emulation of DMA input channels in P2 
IM, Mera et al. (2020) present the drop-in solution DICE. 
It observes the behavior of running firmware in the emu-
lator and recognizes candidates for DMA input channels 
heuristically. In principle, it searches for pointers to the 
internal RAM that are written to memory-mapped IO-
registers. The authors claim that, during their tests, DICE 
did not create any false positive categorization and suc-
cessfully detected 21 out of 22 actively used DMA input 
channels. With negligible overhead, it enables fuzzing of 
DMA input processing firmwares without further hard-
ware knowledge.

Johnson et  al. (2021) present a more targeted periph-
eral modeling approach with Jetset. In this case, an 
analyst manually defines a goal address in the firmware 
that should be reached, and Jetset tries to derive the 
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necessary hardware peripheral responses to reach this 
address with symbolic execution. For instance, the transi-
tion from kernel space to user space can be used as such 
a goal address. The explicit goal address allows Jetset to 
mitigate path explosion during symbolic execution.

Zhou et al. (2021) enable peripheral modeling in their 
tool µEmu by mixing symbolic and concrete execu-
tion to calculate appropriate responses to hardware 
accesses. First, all hardware peripheral dependent inputs 
are treated symbolically. To avoid path explosion, sym-
bolically calculated values are cached and reused dur-
ing concrete execution. When invalid execution states 
are reached, the responsible cached values and the state 
itself are marked as invalid and different paths are taken 
by future symbolic executions. This way, the hardware 
peripherals are enhanced iteratively.

Scharnowski et  al. (2020) refine the mechanism of P2 
IM. Instead of putting a memory-mapped register into a 
category, their framework Fuzzware handles each indi-
vidual access to a memory-mapped register by addition-
ally considering the program counter on each access. On 
the first occurrence of an access, the emulator is reset 
to the instruction right before accessing the memory-
mapped register and Dynamic Symbolic Execution (DSE) 
is used to determine whether and how the value affects 
the further execution. Accordingly, the individual mem-
ory-mapped register access is assigned just enough ran-
dom input bits to ensure that all dependent branches can 
be reached. This leads to a minimal consumption of input 
bits from the fuzzer while fuzzing the whole peripheral 
interaction. The authors claim that DMA could also be 
modeled with further effort, but this is considered out of 
scope of their work.

Sandbox emulation fuzzing
In cases where a full-system emulation is not feasi-
ble, lightweight sandbox emulation can be a solution. 
Thereby, the binary code is executed from a manually 
chosen point with a manually created context. The idea is 
to fuzz functions that do not communicate with periph-
erals at all, meaning that the hardware peripherals do 
not need to be emulated. This technique is almost hard-
ware-independent since only a simulator for the respec-
tive instruction set is required. Fuzzing a function from 
a binary firmware file within a sandbox can be realized as 
shown in Fig. 7.

Miasm is a reverse engineering tool to analyze, mod-
ify, and partially emulate binary programs. It offers fea-
tures such as assembling and disassembling for various 
architectures, emulation with Just-In-Time (JIT) and 
symbolic execution. In combination with Python-AFL, 
Miasm can be used to perform fuzzing (Guedou 2017). 
Therefore, a sandbox is created by Miasm, input data 

needs to be mapped to appropriate memory addresses, 
and registers need to be initialized correctly. This tech-
nique is mainly interesting for penetration testers, who 
reverse engineer binaries and want to perform fuzzing 
of interesting functions in this way. If the source code 
is available, it is easier to perform fuzzing of hardware-
independent functions by compiling them into a user 
application and using a general purpose fuzzer.

The Unicorn CPU Simulator (Nguyen and Dang 2015) 
was used by Nathan in Voss (2021) in a similar way.

Maier et  al. (2020) present BaseSAFE, where they 
also used the Unicorn CPU Simulator to fuzz differ-
ent layers of a smartphone baseband chip on manually 
selected target functions and manually created memory 
contexts. The downside of these sandbox emulation fuzz-
ing approaches is the constrained, manual selection of 
the target function and manual creation of the execution 
context.

A semi-automated approach of supplying an execution 
context to the target code is presented by Harrison et al. 
(2020) with their tool PartEMU. They present required 
steps that allow experts to set up and configure an emu-
lator to enable dynamic analysis of TrustZones from 
embedded systems. Therefore, it is explained when hard-
ware and software components should be emulated or 
reused, and how specific emulation stubs can be imple-
mented. Nevertheless, developing such an emulation-
based execution context can involve huge manual effort 
and requires expert knowledge.

Ruge et al. (2020) present Frankenstein, a highly spe-
cialized framework for fuzzing wireless modem firmware 
in an emulated environment. They run the firmware of 
a Broadcom Bluetooth chip within QEMU user mode. 
Through sophisticated reverse engineering, about 100 
locations in the code have been determined, where the 
execution needs to be redirected and substituted manu-
ally. This hooking is required to ensure correct emulation 
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of the firmware. With this setup, they were able to fuzz 
the Bluetooth modems of popular mobile phones from 
Apple and Samsung and unveiled several security prob-
lems. However, the setup is highly customized and 
requires a lot of manual effort to adapt it to other embed-
ded firmware.

An automated sandbox-based fuzzing tool for IoT 
Firmware is presented by Gui et  al. (2020) with FIRM-
CORN. First, the firmware image is disassembled and 
detected functions are rated based on the memory opera-
tions they contain and the use of predetermined sensitive 
functions, such as read, strcpy, and execve. For high 
rated functions, a context dump (memory and register 
values) at the starting point of the function is gathered 
from the actual device. This allows specific fuzzing of 
potential vulnerable functions within the CPU emulator 
Unicorn. An automated mechanism detects crashes of 
the emulator, which result from missing emulated hard-
ware, and skips these crashing functions during further 
virtual execution. They state that the tool is developed 
for Linux-based devices only, but it should be possible to 
extend it to further platforms.

Abstraction‑based execution environment
Symbolic execution is known for several decades (King 
1976) and seems not to be located within the domain 
of fuzzing at first glance. It analyzes the target program 
independently from its execution environment. The core 
idea is to treat all input vectors of a program symbolically 
(similarly to a variable in a mathematical formula) and 
derive input constraints for all possible program paths. 
From these constraints, concrete inputs can be extracted 
that are known to trigger all possible program paths—
which is exactly the goal of fuzzing.

However, for each conditional branch in a program, 
each possible path must be considered in different states. 
This can lead to the state explosion problem and usually 
prevents the use of pure symbolic execution in real-life 
applications.

Symbolic execution of embedded firmware
Symbolic execution does not execute the program code 
directly, but rather interprets it. It is therefore a good 
candidate for tackling the challenge of lacking hardware 
peripheral emulation. All values from hardware periph-
erals can therefore be symbolized and possible program 
paths can be calculated. However, the more hardware 
values are symbolized, the more constraints and paths 
are present (usually growing exponentially).

Davidson et al. (2013) implemented FIE, which allows 
symbolic execution of firmware for MSP430 microcon-
trollers by using a modified version of KLEE (Cadar et al. 
2008). They assume that software of embedded systems 

is simple enough to allow symbolic execution. Therefore, 
the target firmware is compiled into a representation that 
can be symbolically executed with KLEE. FIE includes 
two notable optimizations: state pruning and memory 
smudging. State pruning detects whether the current state 
has already been reached before and prunes it, instead of 
adding it to the set of active states. The memory smudg-
ing function allows to avoid an intractable state, e.g. an 
infinite loop with an increment inside. In this case, the 
state pruning cannot work because the state is not equiv-
alent due to the presence of the increased variable. The 
memory smudging sets a threshold for consecutive states 
that differ only in one memory location.

Corteggiani et  al. (2018) present Inception, a sym-
bolic execution engine for embedded firmwares, also 
based on the KLEE engine. They added a mechanism to 
symbolically execute assembly code, which is commonly 
found in embedded firmware code. Additionally, they 
enable hardware access forwarding for retrieving con-
crete values from the actual hardware to reduce the sym-
bolical input space.

Concolic execution of embedded firmware
Concolic execution refers to the combination of CON-
Crete and symbOLIC execution. In this case, traces are 
used to analyze reached conditions during a concrete 
execution, and related constraints are derived. These 
constraints can be used to generate new input data that 
exercises a different path of the code. This idea is also 
termed as hybrid or concolic fuzzing.

Several general-purpose hybrid fuzzers, such as QSYM 
(Yun et al. 2018), SymCC (Poeplau and Francillon 2020) 
are available, as well as frameworks that focus on con-
colic execution for embedded firmwares. Herdt et  al. 
(2019) present an approach to integrate a concolic test-
ing engine with SystemC-based virtual prototypes for the 
RISK-V architecture. This is once again subject to all the 
requirements of virtual prototypes.

Ai et al. (2020) propose a concolic execution approach 
for embedded devices that supports various architec-
tures. They perform the concrete execution on the physi-
cal device and move the symbolic execution to the host 
via a debugging connection.

Although concolic execution is a promising method to 
test code, it faces similar challenges as other embedded 
fuzzers, because it relies on concrete program traces.

Reviewing embedded fuzzing works
A summary of the relevant embedded fuzzing works is 
given in Table 2.
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Table 2  Reviewed embedded fuzzing works

Environment Framework Source 
Code 
Agnostic

Available Key contributions Limitations

Hardware-based Instrumentation ARM-AFL (Fan 2020) ✗ ✗ Static instrumentation 
for ARM code

On-target fuzzing only

Frida (FRIDA 2020) ✓ ✓ Dynamic instrumenta-
tion for various OSes

Application on the target 
required

Harzer Roller (Bogad 
and Huber 2019)

✓ ✗ Static instrumentation 
for object files

Function traces only

Os-less DBI (Oh et al. 
2015)

✗ ✗ Dynamic instrumenta-
tion with breakpoints

Manual selection of 
breakpoint locations

ESP32 Fuzzing (Börsig 
et al. 2020)

✗ ✓ Static instrumentation 
for ESP32 applications

Slow coverage data 
transmission

ICSFuzz (Tychalas et al. 
2021)

✓ ✓ Static instrumentation 
for PLC binaries

Dedicated to PLCs

PERIFUZZ (Song et al. 
2019)

✗ ✓ Fuzzing at hw-os 
boundary, driver moni-
toring

Must be compiled into 
the kernel

PHMon (Delshadtehrani 
et al. 2020)

✓ ✓ Hardware module for 
gathering coverage 
data

Specific hardware 
required

Side-Channel Side-Channel Aware 
Fuzzing (Sperl and Böt-
tinger 2019)

✓ ✗ Code-coverage derived 
from power analysis

Calibration needed

Certified Side Channels 
(García et al. 2020)

✓ ✗ EM and timing side-
channels

For crypto libraries only

Message Interface 
Reusing

IoTFuzzer (Chen et al. 
2018)

✓ ✓ Reuse of accompanying 
mobile applications

Not feedback driven, 
Android only

DIANE (Redini et al. 
2021)

✓ ✓ Enhanced IoTFuzzer 
mechanism

Not feedback driven, 
Android only

Snipuzz (Feng et al. 
2021)

✓ ✓ Communication analy-
sis for feedback

For unencrypted chan-
nels only

Android TV Fuzzing 
(Aafer et al. 2021)

✓ ✗ Using log output for 
feedback

Detailed logs needed, 
Android only

Emulation-based User Mode Emulation Firmadyne (Chen et al. 
2016)

✓ ✓ Custom kernel for 
emulation

Linux-based applications 
only

FirmAE (Kim et al. 2020) ✓ ✓ Enhanced Firmadyne 
mechanism

Linux-based applications 
only

FirmFuzz (Srivastava 
et al. 2019)

✓ ✓ Fuzzing of IoT configu-
ration webpages

Linux-based applications 
only

Firm-AFL (Zheng et al. 
2019)

✓ ✓ Speedup by hybrid user 
and system emulation

Linux-based applications 
only

Full-System Emulation TriforceAFL (Hertz and 
Newsham 2021)

✓ ✓ Coverage-guided fuzz-
ing with QEMU

Target must be emulat-
able by QEMU

SystemC VP Fuzzing 
(Herdt et al. 2020)

✓ ✗ Coverage-guided fuzz-
ing on VP

Virtual prototype required

HALucinator (Clements 
et al. 2020)

✓ ✓ Re-hosting at HAL Stubs for HALs required

RVFuzzer (Kim et al. 
2019)

✓ ✗ Fuzzing controller for 
robotic vehicles

Rich physical simulation 
required
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Table 2  (continued)

Environment Framework Source 
Code 
Agnostic

Available Key contributions Limitations

Peripheral Proxying PROSPECT (Kammer-
stetter et al. 2014)

✓ ✗ Peripherals proxying 
through TCP/IP

Requires pthreads and 
TCP/IP support on target

SURROGATES (Koscher 
et al. 2015)

✓ ✗ Proxying through a 
custom FPGA

JTAG connection required

Charm (Talebi et al. 
2018)

✗ ✓ Proxying through USB Recompilation needed

Avatar2 (Muench et al. 
2018)

✓ ✓ Flexible, multi-purpose 
orchestrating frame-
work

Any access to device 
required

Peripheral Modeling PRETENDER (Gustafson 
et al. 2019)

✓ ✓ Peripheral modeling by 
recording and learning 
of peripheral behavior

Unseen peripheral behav-
ior is not modeled

Conware (Spensky et al. 
2021)

✓ ✓ Additional modeling 
of unseen peripheral 
behavior

Program for recording 
must be executed on the 
target

P2 IM (Feng et al. 2020) ✓ ✓ Peripheral modeling by 
automated classification 
of requests

Missing DMA support

DICE (Mera et al. 2020) ✓ ✓ Modeling of DMA-
based peripherals

DMA buffer size not iden-
tifiable in advance

Jetset (Johnson et al. 
2021)

✓ ✓ Peripheral modeling by 
symbolic execution and 
manual guidance

Manual guidance 
required

µEmu (Zhou et al. 2021) ✓ ✓ Peripheral modeling by 
concolic execution

Caching can cause false 
hardware modeling

Fuzzware (Scharnowski 
et al. 2020)

✓ ✓ Peripheral modeling by 
detailed classification

Not for complex systems

Sandboxing MIASM (Guedou 2017) ✓ ✓ Multi-purpose reverse 
engineering tool

Reverse engineering 
required

BaseSAFE (Maier et al. 
2020)

✓ ✓ Coverage-guided fuzz-
ing of baseband chips

Manually assembled 
environment

PartEMU (Harrison et al. 
2020)

✓ ✗ Coverage-guided fuzz-
ing of TrustZones

Manually assembled 
environment

Frankenstein (Ruge et al. 
2020)

✓ ✓ Coverage-guided 
fuzzing of wireless 
firmwares

Customized for one 
specific device

FIRMCORN (Gui et al. 
2020)

✓ ✓ Automated sandboxing 
of functions

Linux-based applications 
only

Abstraction-based Symbolic Execution FIE (Davidson et al. 
2013)

✗ ✓ Symbolic execution 
for MSP430 microcon-
trollers

Complex programs lead 
to state explosion

Inception (Corteggiani 
et al. 2018)

✗ ✓ Symbolic execution, 
even for handwritten 
assembly and binary 
libraries

Complex programs lead 
to state explosion
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Taxonomy criteria
This section summarizes the criteria used to cluster the 
relevant embedded fuzzing works.

The columns in Table 2 show what we feel are the rel-
evant elements of comparison for each work.

•	 Source Code Agnostic—This criterion indicates 
whether the fuzzer needs the source code of the 
SUT to run, which is a major factor for many appli-
cation scenarios.

•	 Available—This criterion indicates whether any 
implemented tool of the proposed approach is 
readily available and functioning, irrespective of 
whether it is open or closed source.

•	 Key Contributions & Limitations—This column pre-
sents the key features as well as the limitations of 
each approach.

The rows in Table 2 categorize the works based on the 
execution environment. The categories are as follows.

•	 Hardware-based

•	Instrumentation
•	Side-Channel
•	Message Interface Reusing

•	 Emulation-based

•	User Mode Emulation
•	Full-System Emulation
•	Peripheral Proxying
•	Peripheral Modeling
•	Sandboxing

•	 Abstraction-based

•	Symbolic Execution
•	Concolic Execution

Overall, the wide variety of approaches in Table  dem-
onstrates the diversity in the steadily growing research 
field of embedded fuzzing. Therefore, devising mean-
ingful categories for the existing approaches in order to 
effectively group the lines in Table  requires care and con-
sideration of existing attempts.

Notably, general principles for evaluating and bench-
marking traditional fuzzers exist, as proposed by Klees 
et al. (2018). Fuzzers should be tested against a large set 
of benchmark programs, such as GCG​ (Cyber grand 
challenge 2014) or LAVA-M (Dolan-Gavitt et  al. 2016) 
multiple times for at least 24 hours, with the perfor-
mance plotted over time. The performance should ide-
ally be measured in the number of detected bugs. The 
reached code coverage can be used as a secondary per-
formance measure. Additionally, different sets of seeds 
should be considered and documented. Arguably, a 
transfer of these principles to embedded fuzzers would 
be useful. However, current research on embedded fuzz-
ing still faces more fundamental issues of portability and 
scalability, namely about enabling a fuzzing approach 
over the widest possible variety of embedded systems of 
any complexity.

Wright et  al. (2021) propose to compare different 
re-hosting frameworks particularly with regard to the 
amount of user interaction needed for the setup, termed 
as application effort. The application effort refers to the 
ease of adapting a framework to new targets. Preferably, 
a framework can be adapted with little knowledge of the 
target and low configuration effort. It could be measured 
in the estimation of time needed for the setup, but this 
would heavily depend on the developer, thus making the 
results highly subjective.

In light of the existing classification attempts, we feel 
that the relatively young field of embedded fuzzing may 
currently be partitioned most beneficially on the basis 
of how the execution environment is served to the SUT. 
Therefore, we build three essential categories: hardware-
based approaches for those that use the very hardware 
of the SUT to operate, emulation-based approaches for 

Table 2  (continued)

Environment Framework Source 
Code 
Agnostic

Available Key contributions Limitations

Concolic Execution Concolic Testing on VP 
(Herdt et al. 2019)

✓ ✓ Concolic testing of 
RISC-V virtual proto-
types

Target must be proto-
typed

Concolic Execution on 
Proxy (Ai et al. 2020)

✓ ✗ Symbolic execution on 
host combined with 
concrete execution on 
target

For unix-like systems only
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those that re-host the firmware of the SUT into an emula-
tor, abstraction-based approaches for those that abstract 
away the details of the hardware. We further classify each 
category according to finer observations.

Hardware-based approaches let the target software 
run in its designated environment. Therefore, we decide 
to further divide these approaches upon the basis of how 
they gather feedback from the hardware about the execu-
tion of the software. Thus the hardware category features 
the three sub-categories Instrumentation, Side-Channel, 
and Message Interface Reusing.

A defining feature for emulation-based approaches is 
the way they treat hardware peripheral accesses. There-
fore, we coherently decide the five sub-categories User 
Mode Emulation, Full-System Emulation, Peripheral 
Proxying, Peripheral Modeling, and Sandboxing.

The last category features abstraction-based 
approaches, hence the two sub-categories for enabling 
the abstraction process are Symbolic Execution and 
Concolic Execution. It should be noted that concolic 
approaches usually need traces from the execution envi-
ronment and therefore a concrete execution environment 
but (manually) selected input vectors can be made sym-
bolic. Therefore, we decide to keep these with abstrac-
tion-based approaches.

Discussion and future directions
Desktop user programs communicate via well defined 
syscalls and do run in their particular virtual address 
space. Therefore, fuzzing such programs can benefit from 
different flavours of feedback and sanitizing options. 
Similarly, well defined target constraints and bounda-
ries are present for hardware fuzzing. Hardware designs 
are usually represented in HDLs, where hardware fuzz-
ing approaches can be based on Trippel et  al. (2021), 
Laeufer et al. (2018). In between, embedded fuzzing faces 
a much less precisely specified environment. Generalized 
statements about interfaces, the environment, and other 
circumstances can not be made for embedded applica-
tions. In fact, an embedded program is an accumulation 
of machine code instructions that only function prop-
erly together with their intended environment and made 
assumptions.

This is why despite the growing attention and prolifera-
tion of embedded systems, the research field of embed-
ded fuzzing still lacks generic solutions. Even comparing 
different tools remains a big challenge. It would seem that 
most tools are evaluated on a small set of targets, chosen 
by the authors themselves, whereas it would be useful to 
devise public, independent benchmarks.

The effectiveness of embedded fuzzers can only be 
evaluated when testing can be performed on a large 
collection of test subjects. A benchmarking suite for 

embedded fuzzers may consist of open-source embed-
ded firmwares in conjunction with appropriate hardware 
peripheral emulation solutions. In this way, different 
fuzzing strategies can be evaluated on embedded systems 
instead of relying on the ones that are developed for user 
applications.

Furthermore, the different characteristics of embedded 
systems in contrast to user applications should be consid-
ered. Traditional fuzzing originates from quickly termi-
nating data processing applications. Embedded systems, 
on the other hand, are continuously running systems that 
usually do not terminate after processing a single input. 
If the internal state of a system changes during sequences 
of inputs, it is called stateful. Recently, several fuzzers 
for stateful software have been proposed (Yu et al. 2019; 
Pham et  al. 2020; Natella 2021; Schumilo et  al. 2021). 
In particular, Pham et  al. (2020) showed that stateful 
programs, like network servers, have to be fuzzed with 
awareness of their state to be efficient. Since embedded 
systems typically are stateful, stateful embedded fuzzing 
approaches are needed as well.

Most reviewed papers are emulation-based and emula-
tors currently seem to be the preferred way of enabling 
embedded fuzzing. Beside their mentioned advantages, 
there is always the disadvantage of a lower fidelity, which 
makes it necessary to validate all found bugs on the 
actual hardware or at least an accurate model of it. This 
process may be automated by putting the actual device in 
the loop and testing input candidates directly.

The other disadvantage of emulators is the setup and 
configuration effort required to imitate the whole execu-
tion environment. However, with the actual hardware, 
there is an environment already present in which the 
embedded software runs as expected. Therefore, we see 
more research potential in performing fuzzing on the 
actual hardware and extracting feedback from existing 
functionalities e.g. debug interfaces. Common embedded 
debugging tools from Lauterbach (Lauterbach 2021) or 
SEGGER (Segger 2021) provide real-time tracing mecha-
nisms for a wide variety of microcontrollers, which may 
be used for fuzzing feedback.

Another albeit rarely handled aspect is that an embed-
ded system has multiple interfaces that can be highly 
entangled. Further research is needed to consider the 
whole system, and not only individual functions, inter-
faces, or processes while fuzzing. Such a fuzzer could 
fuzz on multiple interfaces simultaneously, while observ-
ing the whole system. Multiple fuzzers or harnesses 
would need to synchronize their observations, similarly 
to ensemble fuzzing.

Recently, plenty of automated peripheral modeling 
approaches, such as P2 IM (Feng et  al. 2020) and FUZ-
ZWARE (Scharnowski et al. 2020), have been proposed. 
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For now, they seem to target rather simple embedded 
systems. Since they need to model all hardware periph-
erals that are accessed by the firmware, the approaches 
do not scale well for more complex systems. Neverthe-
less, automated peripheral modeling remains one of the 
most promising methods to enable generic embedded 
fuzzing. Further research in this area could also enable 
emulation-based fuzzing with low application effort for 
more complex embedded systems. Another option could 
be to design generic and reusable HALs to ease re-host-
ing and enable efficient fuzz testing of hardware-related 
code. Moreover, as highlighted by Boehme et  al. (2020) 
for traditional fuzzing, we also advocate a larger scope for 
embedded fuzzers, which should identify a range of vul-
nerabilities, such as information and timing leakages, and 
not just bugs.

Future research and tools should aim to unite existing 
techniques in an embedded ensemble fuzzing framework 
in order to eliminate their current, individual disadvan-
tages. In addition, such a framework should be cross-
architecture, state-aware, and compatible with emulated 
and real devices. Embedded Fuzzing should consider the 
whole system in all its details.

Related work
Detailed summaries of the challenges of fuzzing embed-
ded systems (Muench et al. 2018) and security analysis of 
embedded systems (Fasano et al. 2021; Wright et al. 2021) 
have been published. However, these reviews do concen-
trate almost solely on emulation-based approaches. We 
agree that emulation-based approaches are on the rise, 
but to get the whole picture of embedded fuzzing, hard-
ware-based approaches in all their facets need to be con-
sidered, too. We aim to draw such a complete picture and 
particularly want to highlight the diversity and creativity 
of the reviewed methods in this article.

Conclusion
This article reviewed the current state of the art of 
embedded fuzzing. To structure the field, we proposed 
a formal definition of embedded fuzzing and suggested a 
taxonomy for it. We carved out the additional challenges 
of embedded fuzzing compared to the research field of 
traditional fuzzing. Furthermore, we showed that no eas-
ily applicable solution for embedded fuzzing exists. As 
traditional fuzzing has already found numerous vulner-
abilities in non-embedded software, efficient and easily 
applicable embedded fuzzing would increase the security 
and integrity of the ubiquitous embedded systems people 
interact with every day.
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