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Abstract 

The current development toward quantum attack has shocked our confidence on classical digital signature schemes. 
As one of the mainstreams of post quantum cryptography primitives, hash-based signature has attracted more and 
more concern in both cryptographic research and application in recent years. The goal of this paper is to present, clas-
sify and discuss different solutions for hash-based signature. Firstly, this paper discusses the research progress in the 
component of hash-based signature, i.e., one-time signature and few-time signature; then classifies the tree-based 
public key authentication schemes of hash-based signature into limited number and stateful schemes, unlimited 
number and stateful schemes and unlimited number and stateless schemes. The above discussion aims to analyze 
the overall design idea of different categories of hash-based signatures, as well as the construction, security reduc-
tion and performance efficiency of specific schemes. Finally, the perspectives and possible development directions of 
hash-based signature are briefly discussed.
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Introduction
Digital signature based on public-key cryptosystems 
has been widely used in the modern online information 
transmission, for example, electronic elections, digital 
cash, etc., to provide entity authentication and non-repu-
diation, message integrity and confidentiality. The origi-
nal research of public-key digital signature is focused 
on the schemes upon the computationally hard number 
theoretic problems, such as RSA designed on the diffi-
culty assumption of factoring large integers (Rivest et al. 
1978), ElGamal designed on the difficulty assumption of 
discrete logarithms, etc. (ElGamal 1985) But the develop-
ment of quantum computer has shocked our confidence 
on this kind of classical digital signature schemes (Gisin 
et  al. 2002; Bennett et  al. 1992; Bernstein 2009; Bras-
sard et  al. 2000; Ekert 1991; Bennett 1992; Gröblacher 
et  al. 2006), by applying “Shor’s algorithm” (Shor 1999), 
theoretic problems will no longer be hard and classical 
cryptosystems can be broken easily. We can only achieve 

computational security by improving the related param-
eters in scale, it is dynamically affected by the develop-
ment of number theory and computing performance, as a 
result, it lacks sustainedly durable security.

Another kind of public-key based signature scheme, 
hash-based signature, which is believed to resist to both 
classical and quantum computers, is attracting more and 
more attention in cryptography research. Hash-based 
signature is commonly designed in combining one-time 
signature (OTS) (Merkle 1979b; Naor et al. 2005) or few-
time signature (FTS) (Perrig 2001; Reyzin and Reyzin 
2002; Aumasson and Endignoux 2017, 2018; Bernstein 
et al. 2017, 2019) with hash tree, and its security is only 
based on the security assumptions of the underlying hash 
function, such as collision resistance, second preimage 
resistance, onewayness (Coron et al. 2005; Rogaway and 
Shrimpton 2004), etc., avoiding the dependence on the 
hard number theoretic problems of other digital signa-
ture schemes. Hash function is one of the foundational 
topics in cryptography, and many different rapid design 
approaches and relevant researches have been presented 
to achieve different security properties. Opposite to the 
digital signature designed on hard number theoretic 
problem, attacks against a specific hash function will 
not affect the overall security of hash-based signature; it 
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could be solved by replacing the attacked hash function 
by others remain secure easily.

Due to the concision and efficiency in the design, hash 
function has been implemented maturely after decades 
of improvement, hash-based signature which treats hash 
function as the central subroutine can achieve high effi-
ciency as well. In addition, through choosing distinct 
underlying hash functions and their parameters, as well 
as one-time/FTS schemes, tree traversal algorithms, etc., 
it is sufficiently flexible to make a trade-off between sig-
nature size, time and storage, etc., to meet distinct needs 
in applications.

However, hash-based signature still has some draw-
backs which need to be solved to make it more practical. 
First, the signature key can be used only once to sign one 
message in the underlying OTS, even for FTS in which 
a single key pair could be used to sign a few messages, 
the security of the signature decreases as the number 
of signatures increases, it raises a crucial issue that how 
to manage large-scale public keys consequently. The 
tree-based public key authentication is a classical way 
to solve the public key management issue. In the origi-
nal path authentication schemes the signature size grows 
logarithmically with the number of signatures, and more 
path authentication schemes have been presented in the 
recent research to achieve more efficiency. Second, as 
the key pair has to be changed into a fresh one after each 
signature generation, a natural way is to utilize the state 
management to keep record of the state and synchroni-
zation between signer and verifier, otherwise, there may 
exists reduplicate use of the signature key, such that the 
adversary can forge a valid signature easily. Therefore, 
state management plays an essential role in many sce-
narios of the application of hash-based signature, but it 
also limits it less practical. In recent years, some stateless 
hash-based signatures have been presented which attract 
researcher’s concerns, but the stateless hash-based sig-
nature has significantly higher signatures size compared 
with the stateful ones in the analogous security level, as a 
result, it is difficult to be widely applied in practice.

The goal of this survey is to present, classify and dis-
cuss different schemes that provide solutions for OTS/
FTS, many-time and full-time hash-based signatures, 
focus on different security analysis and implementation 
strategies about stateful and stateless hash-based signa-
tures. The rest of the survey is organized as follows. In 
“Related work” section, we briefly introduce the related 
work and progress in the research of hash-based signa-
ture; in “Security notions” section, we give the security 
notions of hash function, as well as the definition and the 
corresponding security notions of signature scheme; in 
“Hash-based Signature” section, we discuss the progress 
in the component of hash-based signature in detail, i.e., 

one-time signature and few-time signature, and clas-
sify the tree-based public key authentication schemes of 
hash-based signature into limited number and stateful 
schemes, unlimited number and stateful schemes and 
unlimited number and stateless schemes, introduce their 
constructions, analyze and compare the security assump-
tions of underlying function required in these specific 
hash-based signature schemes; in “Conclusion” section, 
the perspectives and possible development directions of 
hash-based signature are briefly discussed.

Related work
Research into hash-based signature has a long history. 
In 1979, Merkle presented the first hash-based signature 
scheme constructed out of hash function only (Merkle 
1979b; Rogaway and Shrimpton 2004), therefore, it is also 
named as Merkle signature scheme, which is a combi-
nation of an OTS to sign a single message per key pair 
and a path authentication scheme to provide an authen-
tication path to verify the public key related to the sig-
nature of this single message. During the past 40  years, 
much more schemes with security analysis have become 
available on hash-based signature. For OTS, the follow-
ing schemes have been wildly studied: the Lamport OTS 
(Merkle 1989), the Merkle OTS (Merkle 1989), the Win-
ternitz OTS (Merkle 1989; Buchmann et  al. 2011a), the 
Bleichenbacher-Maurer (Bleichenbacher and Maurer 
1994) OTS and W-OTS + (Hülsing 2013), etc. Merkle 
OTS is designed based on the Lamport OTS, Winternitz 
OTS can be regarded and as a generalization of Mer-
kle OTS, Merkle OTS and Winternitz OTS, it iterates 
an underlying function repeatedly while iteration times 
relate to the message to be signed. Bleichenbacher and 
Maurer gave a generalization of OTS schemes on acyclic 
graphs. W-OTS + provides shorter signatures than previ-
ous schemes with the analogous security level, and offers 
a tight reduction that W-OTS + is existentially unforge-
able under an adaptive chosen message attack (EUCMA) 
in the standard model, if the underlying hash function 
family is second preimage resistant and undetectable 
one-way.

FTS, as the name suggests, can be used to sign more 
than one message with the same key pair. Typical 
schemes for FTS schemes are Biba FTS (Perrig 2001), 
Hors FTS (Reyzin and Reyzin 2002) with its variants 
Pors FTS (Aumasson and Endignoux 2017, 2018) and 
Fors FTS (Bernstein et al. 2017, 2019), etc. Biba FTS can 
achieve high verification efficiency at the cost of heavy 
pre-computation on key generation and signature; mean-
while, it requires time synchronization between the 
sender and receiver. Hors FTS is mainly focus on select-
ing some elements which is determined by the message 
to be signed from a far larger set. Pors and Fors FTS 
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improves Hors FTS in a way avoiding weak messages, 
which are mapped to a small subset and vulnerable to 
subset resilience attack.

Although all FTS schemes suggest using the single key 
pair to sign more than one message in contrast to one 
message in OTS scheme, the security of the signature 
decreases as the number of signatures increases.

Since key size increases linearly with the number of the 
signed messages in hash-based signature, it is essential 
to use key management to realize using fewer key pairs 
to authenticate more messages, thus path authentica-
tion scheme comes into being. Among them, tree-based 
authentication using the hash tree to authenticate public 
keys efficiently is wildly adopted to solve the problem of 
key management. To sign a message, after the OTS sig-
nature is generated, an authentication path generated by 
the tree-based authentication scheme has to be applied 
to verifier. Verifier authenticates the one-time public 
key along with the authentication path to construct the 
tree from leaf nodes to root, or from the root to bot-
tom, which comes into two main different approaches 
to authenticate public keys in large scale, depending on 
stateful or stateless of the hash-based signature scheme, 
and signing limited number or cryptographic unlimited 
number of messages. In terms of stateful hash-based 
signature, its signature key needs to be renewed when 
exceeding its service time, namely, the signing times it 
can be used to sign the messages; whereas the stateless 
hash-based signature selects signature key pseudoran-
domly, and doesn’t require key management. Typical 
schemes of limited number and stateful hash-based sig-
nature are Merkle hash-based signature (Merkle 1989), 
eXtended Merkle Signature Scheme (XMSS) (Buchmann 
et al. 2011b; Hülsing et al. 2018), Leighton-Micali signa-
ture (LMS) (Leighton and Micali 1995; Katz 2016; Failed 
2017; McGrew et  al. 2019; Buchmann et  al. 2006), etc.; 
typical Schemes of unlimited number and stateful hash-
based signature are generalized Merkle signature scheme 
(GMSS) (Buchmann et  al. 2006, 2007), XMSS with 
multi-tree (XMSSMT) (Hülsing et  al. 2018, 2013), Hier-
archical Signature System (HSS) (McGrew et  al. 2019), 
etc.; typical Schemes of unlimited number and state-
less hash-based signature are SPHINCS(Bernstein et  al. 
2015), SPHINCS + (Bernstein et al. 2017, 2019), Gravity-
SPHINCS (Aumasson and Endignoux 2017, 2018), etc.

There has been an increasing amount of literatures 
on traversal algorithm of hash-based signature, such 
as tree traversal algorithm and hash chain traversal 
algorithm, which allows for optimal trade-off between 
signature time and storage cost. In terms of tree tra-
versal algorithm, two different approaches are mainly 
discussed to compute authentication paths, depending 
on considering the node or the subtree of a Merkle tree 

as the basic computational element. In terms of frac-
tal hash chains traversal algorithm (Jakobsson 2002; 
Jakobsson et  al. 2003; Naor et  al. 2006; Coppersmith 
and Jakobsson 2002; Sella 2003; Berman et  al. 2007; 
Knecht et al. 1409; Buchmann et al. 2008), all elements 
in a hash chain are determined by the initial input and 
the combined output is a single element. As the main 
purpose of this paper is to introduce typical hash-based 
signature schemes which have been discussed and 
adopted widely, readers can refer to the literature in 
detail to learn more about traversal algorithm of hash-
based signature.

In the application, Even and Goldreich proposed an 
on-line/off-line signature scheme (Even et  al. 1996), 
which uses the efficient OTS scheme for the on-line sign-
ing, along with an ordinary signature scheme used for 
the off-line phase. Other applications such as TESLA 
(Perrig et  al. 2002), wireless security, etc., are also well 
researched (Perrig et al. 2001; Bergadano et al. 2002; Bul-
das et al. 2017, 2018).

Security notions
A hash function family H is a map 
H :=

{

hk : (0, 1)∗ → (0, 1)n|k ∈ (0, 1)n
}

 , such that 
n is polynomial in security parameter λ, here, {0, 1}* 
denotes the binary string of arbitrary length.

In this section, firstly we give four security assump-
tions, one-way, second preimage resistant, collision 
resistant, enhanced target collision resistant hash func-
tion related to hash function, as the basic component 
of hash-based signature, the security of hash function 
affects the performance of corresponding hash-based sig-
nature seriously. Secondly, we give the definition and the 
corresponding security notion of signature scheme.

Definition 1  One-way hash function (Merkle 1979a).

Hash function family H, security parameter λ are 
defined as above. We give the definition that function 
family H is one way if for any probabilistic polynomial-
time adversary A there is a negligible function negl such 
that

Here x $←− X denotes that x is chosen from X uniformly at 
random.

Definition 2  Second preimage resistant hash function 
(Menezes et al. 2018).

AdvOWH = Pr

{

k
$←− {0, 1}n, y $←− {0, 1}n, m ← A(1�) :

Hk(m) = y

}

= negl(�)
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Hash function H, security parameter λ are defined as 
above. We give the definition of the function family H is 
second preimage resistant if for any probabilistic polyno-
mial-time adversary A there is a negligible function negl 
such that

Definition 3  Collision-resistant hash function 
(Damgård 1989; Preneel et  al. 1993; Black et  al. 2002; 
Goldwasser et al. 1988).

Hash function H, security parameter λ are defined as 
above. We give the definition of the function family H is 
collision resistant if for any probabilistic polynomial-time 
adversary A there is a negligible function negl such that

Definition 4  Enhanced target collision resistant hash 
function (eTCR​) (Halevi and Krawczyk 2006).

Hash function H, security parameter λ are defined as 
above. We give the definition of the function family H is 
eTCR​ if for any probabilistic polynomial-time adversary 
A there is a negligible function negl such that

In eTCR​ game, first A commits a message m, then 
receives a random key K, A wins the game if he can out-
put (m′, k′) such that

Definition 5  Signature scheme (Rivest et  al. 1978; 
ElGamal 1985).

A digital signature scheme ∏ is defined as a triple of 
probabilistic polynomial-time algorithms ∏ = (Gen, Sign, 
Ver):

AdvSPRH = Pr







k
$←− {0, 1}n, m $←− {0, 1}∗, m′ ← A

�

1�,m
�

:

Hk(m) = Hk(m′)







= negl(�)

Adv
CR

H = Pr







k
$←− {0, 1}n, (m,m′) ← A

�

1�
�

:

Hk(m) = Hk(m′)]







= negl(�)

Adv
eTCR

H = Pr







(m,m′) ← A
�

1�
�

; k
$←− {0, 1}n; (k′,m′) ← A

�

1�
�

:

Hk(m) = Hk ′(m′)]







= negl(�)

(m′, k′) �= (m, k) and Hk(m) = Hk′(m′).

Gen On input security parameter 1λ, output a private 
signature key sk and public verification key pk;

Sig On input a signature key sk, message m, output a 
signature σ;

Ver Ver is a deterministic algorithm, on input a public 

key, a message and its signature triple (pk, m, σ), output 1 
iff σ is a valid signature on m.

Definition 6  EUCMA security (Halevi and Krawczyk 
2006).

Let ∏ = (Gen, Sig, Ver) be a signature scheme with 
private key sk and public key pk. We define EUCMA as 
follows. The forger A has access to the public key and 
a signing oracle O (sk, ·). On input the query of a mes-
sage m, O returns A the signature Sig(m) on m. A has 
the chance to adaptively query O at most q times. The 
parameter q is bounded up with different kinds of signa-
ture schemes. For one time signature, q = 1. The property 
adaptive means a message may depend on answers of O 
replied previously. On input security parameter λ, ∏ is 
unforgeability under an adaptive chosen message attack if 
for any probabilistic polynomial-time A there is a negligi-
ble function negl such that

Definition 7  Forward-secure property (Krawczyk 2000; 
Bellare and Miner 1999).

Adv
EU−CMA

� = Pr



































(sk0, pk) ← Gen
�

1�
�

{(Mi, σi)}|
q
i=1be the q times answer

of O
�

skj , ·
�

;
(M∗, σ∗) ← A

�

pk , (Mi, σi)}|
q
i=1

�

:
M∗ �= Mi|

q
i=1, Ver(M∗, σ∗, pk) = 1



































= negl(�)
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Forward-secure property makes sense for key-evolv-
ing signature scheme, in which the whole signature 
process is divided into T periods, the public key pk i.e., 
the overall public key, is fixed for all these T periods, 
but the private key ski is evolved in each period, where 
i = 1, …, T. Compared with the conventional signature 
scheme, forward-secure signature scheme only gen-
erates pk and sk0 in key generation algorithm, and an 
additional secret key update algorithm Sku is needed, 
which generates ski on input ski-1, for i = 1, …, T; Sig in 
each period i takes as input the signature key ski and 
message m, output a signature σ along with the period 
index i.

Let ∏ = (Gen, Sku, Sig, Ver) be a key-evolving signa-
ture scheme with private key sk0 of the first period and 
public key pk. We define forward-secure EUCMA as 
follows.

The forger A has access to the total number of time 
periods, the current time period, the public key pk and 
a signing oracle O (sk, ·). In the chosen-message attack 
phase, on input the query of a message m, O returns 
A the signature Sig(m) on m under the private key sk1, 
…, skT in order. A has the chance to query O at most 
q times. The parameter q is bounded up with different 
kinds of signature schemes. For one time signature, 
q = 1.

A stops the chosen-message attack at a period of his 
choice, and then goes into the break-in phase, where 
A obtains skj of the current period j, his goal is to 
forge a signature (i, σ∗) on m* of his choice such that 
(i,M∗) �= (i,Mi|

q
i=1) and Ver(m∗, i, σ∗, pk) = 1 , where 

i < j. In the following, we use break-in to denote both 
the break-in phase and the index of it for simplicity. 
On input security parameter λ, ∏ is forward-secure 
EUCMA if for any probabilistic polynomial-time A 
there is a negligible function negl such that

Adv
FW−EUCMA

� = Pr



































































































(sk , pk) ← Gen
�

1�
�

repeat

j = j + 1; skj=Sku
�

skj−1

�

until break − in phase or j = T .

if not break − in phase and j = T , then j = T + 1

{(Mi, σi, p)}|
q
i=1 be the q times answer

of O
�

skp, ·
�

;
// the values of p are in ascending order

(i, M∗, σ∗) ← A
�

pk , (Mi, σi, p)}|
q
i=1, skbreak−in

�

:
(i,M∗) �=

�

i,Mi|
q
i=1

�

, Ver(i,M∗, σ∗, pk) = 1

0 ≤ i < break − in



































































































= negl(�)

Hash‑based signature
OTS
In this section, we introduce several OTS schemes, 
including Lamport OTS and its improved version 
Merkle OTS, Winternitz OTS and W-OTS + OTS. 
Compared with other kinds of OTS scheme, such as 
graph-based OTS, the above schemes following Mer-
kle and Winternitz’s approach are still more widely 
accepted and employed in the application.

Idea
One signature key of OTS can only be used to sign one 
message.

Fig. 1  Lamport OTS scheme
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Typical Schemes

(1)	Lamport OTS

The first OTS scheme was presented by Lamport in 
1979(Merkle 1989; Lamport 1979), called Lamport 
OTS or Lamport-Diffie OTS.

A.	Idea

Lamport OTS adopts the construction with maximum 
storage cost and the minimum calculation cost. In order 
to sign a k-bit message, it utilizes 2k private keys and 2k 
public keys. As shown in Fig. 1, each message bit corre-
sponds to two private keys. When the message bit is 0, it 
corresponds to the first private key; otherwise, it corre-
sponds to the second one. Only one hash evaluation of a 
one-way hash function is used to construct the public key 
on input the relevant private key.

B.	 Scheme

For Lamport OTS scheme Sig = (Gen, Sig, Ver), a one-
way hash function H is used which is a map: {0, 1}n → {0, 
1}n, where n is polynomial in security parameter λ. The 
message m is presented as m = (m0, m1, . . . , mk).

The signature scheme is described as follows.
Gen On input security parameter 1λ, choose private 

key sequence sk = (sk1,0, sk1,1, sk2,0, sk2,1, . . . , skk , skk ,0,1)
$←−(0,1)n*2k, n is polynomial in security parameter λ, then 

output the public key sequence pk as follows:

Sig On input the message m = (m0, m1, . . . , mk) and 
private key sequence sk, output the signature as follows:

Ver On input the message m, public key sequence pk, 
signature σ, the following compution and comparison are 
done in order to verify the signature.

To sign a message of arbitrary length, compression 
hash function should be used to compute message digest, 
which is applied to the signature algorithm as input.

pk =
(

pk1,0, pk1,1, pk2,0, pk2,1, . . . , pkk ,0, pkk ,1
)

=
(

H
(

sk1,0
)

,H
(

sk1,1
)

,H
(

sk2,0
)

,H
(

sk2,1
)

,

. . . ,H
(

skk ,0
)

,H
(

skk ,1
))

σ = (σ1, σ2 , . . . , σk) =
(

sk1,m1 , sk2,m2 , . . . , skk ,mk

)

(H(σ1),H(σ2), . . . ,H(σk))
?=
(

pk1,m1 , pk2,m2 , . . . , pkk ,mk

)

C.	Security

Unforgeability of Lamport OTS depends on the one-
wayness of hash function H.

(2)	Improved Lamport OTS: Merkle OTS

A.	Idea

Merkle improves Lamport OTS by appending an 
extra checksum value to each message before sign-
ing the message, which records the quantity of 0 bit in 
the message, as shown in Fig.  2. The length needs to 
be signed becomes 

⌊

log k
⌋

 + 1 bits longer than that of 
Lamport OTS, set s = 

⌊

log k
⌋

 + 1.

B.	 Scheme

The public key sequence pk is generated as 
pk = (pk1, pk2, . . . , pkk+s)

= (H(sk1),H(sk2), . . . ,H(skk+s))
.

To sign a message m, m||checksum = (m1, …, mk+s), 
the signer only needs to reveal the ski which is related 
to mi = 1, i = 1, …, k + s. The signature σ turns to be:

Fig. 2  Merkle OTS scheme
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where mjp = 1, 0 < jp ≤ k + s.
Consequently, the verification becomes into check:

Adversary who what to alter the bit value of the mes-
sage to be signed has to reveal at least one preimage 
concerning either the original message or its checksum.

C.	Security and Efficiency

Lamport OTS scheme and Merkle OTS is EUCMA as 
long as the used hash function is one-way.

Although the key generation, signature and verification 
of Lampot OTS becomes more efficient, the scale of the 
signature and corresponding key pair is still quite large; 
compared with Lamport OTS, Merkle OTS only achieves 
limited improvement in performance.

(3)	Winternitz OTS

In this section we describe Winternitz OTS mentioned 
in Merkle (1989); Buchmann et  al. 2011a), which is an 
improvement of Lamport OTS and Merkle’s scheme, 
achieves shorter signature and key pair size. An iterative 
function is applied in the Winternitz OTS to compute the 
public keys from the private keys.

A.	Idea

The main drawback of Lamport OTS signatures is its 
long signature size as well as key pair size, the signature 

σ =
(

σj1 , σ2 , . . . , σjp
)

=
(

skj1 , sk2 , . . . , skjp
)

,

(

H
(

σj1
)

,H
(

σj2
)

, . . . ,H
(

σjp
)) ?=

(

pkj1 , pk2, . . . , pkjp
)

size of Lamport OTS increases proportionally with the 
bit length of message to be signed by n times, where n is 
the bit length of each component of key sequence. More-
over, both private key and private key size as 2n times as 
bit length of message. Although by appending a check-
sum to each message, only limited decrease has been 
made in Merkle OTS of signature and key pair size. The 
idea of Winternitz OTS is to reduce the signature size 
and key pair size at the expense of some extra hash eval-
uations as shown in Fig.  3. Concretely, Winternitz OTS 
processes message m to the new form in base w represen-
tation firstly, then decomposes m into blocks of length 
log w. for each block, iterates a one-way hash function 
at most w–1 times, and the output of the hash function 
is considered as the signature for each block, which will 
be concatenated sequentially to form the whole signature 
of m. Winternitz OTS provides a trade-off between the 
signature time and the signature size using the parameter 
w. The larger w is, the smaller signature size will be. For 
example, on input a 256 bits message, the hash functions 
used in Lamport OTS and Winternitz OTS are both maps 
of {0, 1}n to {0, 1}n, when w is chosen as 16, the signature 
size of Winternitz OTS is 67n bits, signature generation 
requires 960 and 483 evaluations of the underlying hash 
function in the worst case and average case, separately; 
when w is chosen as 256, the signature size of Winternitz 
OTS is 34n bits, signature generation requires 8160 and 
4082 evaluations of the underlying hash function in the 
worst case and average case, separately; compared with 
signature size of 256n bits and signature generation of 
512 hash evaluations in Lamport OTS, signature size of 
264n bits and 136n bits in worst case and average case, 
signature generation of 264n hash evaluations in Merkle 
OTS.

Fig. 3  Winternitz OTS scheme
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B.	 Scheme

For Winternitz OTS scheme Sig = (Gen, Sign, 
Ver), a one-way keyed hash function h is used: 
(0, 1)n × k → (0, 1)n where k is chosen from the key 
space K uniformly at random. Two parameter w (to be 
power of two) and l are used, which are related to the bit 
length of message block and the number of key compo-
nents in one signature respectively.

The iteration function hi(x) is constructed by repeat-
ing the function h(x) i times, where i ∈ {0,..., w − 1}, that 
is, h2(x) = h(h (x)) and h 0(x) = x. On input a m bits mes-
sage, process it to the new form (m1, m2, …, mp) in base 
w representation, then attach checksum 
C =

p

�
i=1

(w − 1−mi) in base w representation is to m, 
denote the whole string of m||C as (b1, b2, …, bl), where 

l =
⌈

m
logw

⌉

+

⌈

log
(⌈

m
logw

⌉

·(w−1)
)

logw

⌉

.The signature scheme is 

described as follows.
Gen On input security parameter 1λ, choose private 

key sequence sk = (sk1, sk2, . . . , skl)
$←−(0,1)n*l, n is poly-

nomial in security parameter λ, then compute public 
key sequence pk as follows:

Sig On input the message m and private key sequence 
sk, compute the signature sequenceσis:

pk = (pk1, . . . , pkl) =
(

hw−1(sk1), . . . , h
w−1(skl)

)

Ver On input the message m, public key sequence 
pk, signature sequence σ, the following compution and 
comparison are done verify the signature:

A collision resistant hash function should be utilized 
here to sign message of arbitrary length.

C.	Security

It has been proven that the Winternitz OTS is 
EUCMA if using either a collision resistant, undectable 
hash function or a PRF (Dods et al. 2005).

In Dods et  al. (2005), the Authors provide security 
reductions for graph based OTS schemes, and achieves 
the conclusion that any compressed graph based OTS 
scheme with strongly compatible signature sets, includ-
ing Winternitz OTS, is secure if the underlying functions 
are collision-resistant, one-way and undetectable.

In Buchmann et al. (2011a), it is proven that a variant of 
W-OTS is EUCMA when instantiated with PRF. Further-
more, it has been proven that a variant of one-way func-
tion named key onewayness function exists if PRF exists. 
Actually, this variant of W-OTS is proven to be EUCMA 
directly if the underlying function is key-one-way in 
their reduction. The following conclusions about original 
Winternitz OTS can be obtained spontaneously that the 

σ=(σ1, . . . , σl) =
(

hb1(sk1), . . . , h
bl (skl)

)

(

hw−1−b1 (σ1), . . . , h
w−1−bl (σl)

)

?= (pk1, . . . , pkl)

Fig. 4  W-OTS + scheme
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Winternitz OTS is EUCMA when the used hash function 
is one-way. Here, we omit the reduction for concision.

It is not discussed that whether or not the message to 
be signed needs to be compressed into a digest in Win-
ternitz OTS in Merkle (1989), we come to the above con-
clusion in the assumption that the message will not be 
compressed by a hash function before being signed, and 
if on the contrary, no better conclusion than collision 
resistance can be drawn.

(4) W-OTS + 

A.	Idea and Scheme

W-OTS + presented in Hülsing (2013) still follows the 
construction of WOTS as shown in Fig. 4, the main dif-
ference between them is that W-OTS + uses a new itera-
tion function hi (sk, x) constructed as follows.

For Winternitz OTS scheme Sig = (Gen, 
Sign, Ver), a one-way function family F is used: 
F :=

{

fk : k × (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 , k is chosen 
from {0, 1}n uniformly at random. Definitions and assign-
ment of two parameters w, l are same as that of WOTS. 
On input the iteration counter i ∈ {0, …, w − 1}, rand-
omized element r = (r1, …, rj) ∈ {0, 1}n*j where j ≥ i. the 
iteration function hi(x, r) is constructed by repeating the 
function h(x) i times, hi (x, r) = hi−1 (x, r) ⊕ ri,h 0(x) = x.

W-OTS + is only designed to sign the message of fixed 
length, similarly a collision resistant hash function should 
be utilized for message of arbitrary length.

B.	 Security

It has been proven that the W-OTS + is EUCMA as 
long as the used hash function family is second preimage 
resistant and undetectable one-way function family.

The bit security of Winternitz OTS is n-w-1-2log(w), 
compared with n-log(w2l + w) of that of W-OTS + . It can 
be concluded that as a negative impact on the security 
level, w has a linear effect on Winternitz OTS whereas 
logarithmic effect on W-OTS + . In consequence, it 

is more autonomous in setting security level by using 
W-OTS + in implementations.

We describe a variant of W-OTS + in RFC8391 (Hüls-
ing et al. 2018) in "Typical Schemes" section. In order to 
randomize each call of the iteration function, a unique 
pair of key and bitmask is used, which is generated by a 
PRF taking a seed key and a unique address as input at 
the cost of two additional PRF calls. For more details see 
"Typical Schemes" section.

Performance and security comparison
Here, we compare the performance and security level 
of Lampot OTS, Merkle OTS, Winternitz OTS and 
OTS + in the average size of signature key, verification 
key, signature, the average time cost of key generation 
scheme Gen, signature scheme Sig, verification scheme 
Ver, and the security level, separately, as shown in Table 1, 
where k denotes the bit length of message, n denotes the 
input and output bit length of hash/one-way function, w 
and l follow the definition in WOTS and W-OTS + . We 
measure the average timing in terms of evaluations of 
underlying hash/ one-way function, we just concern the 
time cost related to the computations of hash/one-way 
function, and omit the time cost of initial elements gener-
ation such as generating the private key and randomized 
elements, we also ignore the computation cost of XOR 
operation, as it can be neglected compared with the oper-
ation cost of hash function. As shown above, in terms of 
former two OTS schemes, although the key generation, 
signature and verification of are very efficient, the scale 
of the signature and corresponding key pair is quite large, 
and only limited decrease has been made in Merkle OTS 
compared with Lamport OTS in performance. The latter 
two OTS schemes reduced the key pair size and signature 
size significantly at the cost of additional computation, 
they perform similar in size of key pair and signature and 
the time cost when ignoring the producing cost of ran-
domized elements and computation cost of XOR opera-
tion. The main difference between Winternitz OTS and 
W-OTS + is the influence of parameter w on the security 
levels. That is, w impacts the security level of Winternitz 

Table 1  Performance and security comparison of OTS schemes

Average size Average timing (evaluation times of 
underlying hash function)

Security level

Scheme Signature key Verification key Signature Gen Sig Ver

Lampot OTS 2nk 2nk nk 2 k 0 k n

Merkle OTS (k + ⌊log k⌋ + 1)n (k + ⌊log k⌋ + 1)n
(

k
2
+ ⌊log k⌋ + 1

)

n k + ⌊log k⌋ + 1 0 k
2
+ ⌊log k⌋ + 1 n

Winternitz OTS ln ln ln l(w–1) l(w−1)
2

l(w−1)
2

n–w–1–2log(lw)

WOTS +  ln (l + w–1)n ln l(w–1) l(w−1)
2

l(w−1)
2

n–log(w2l + w)
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OTS negative linearly while impacts W-OTS + negative 
logarithmically in sense of security level, which leads that 
w will be limited if we target a specific security level in 
WOTS compared with W-OTS + .

FTS
In this section, we introduce several FTS schemes, 
including Biba, Hors, Pors.

Idea
FTS, as the name suggests, can be used to sign more than 
one message with the same key pair. Although all FTS 
schemes uses the single key pair to sign more than one 
message in contrast to one of OTS scheme, the security 
of the signature decreases with the number of messages 
to be signed. Examples for FTS schemes are Biba, Hors, 
Pors, Fors, etc. Biba FTS can achieve high verification 
efficiency at the cost of signature generation time as well 
as the public key scale, it is suggested to use Biba in the 
secure broadcast communication protocol to achieve 
low communication overload and high robustness to 
packet loss. On the downside, this scheme requires time 

synchronization between the sender and receiver, and 
heavy pre-computation before signature generation. 
Hors, Pors, Fors is mainly focus on selecting k elements 
which is determined by the message to be signed from a 
large set of t, where t >  > k. The security of Hors is based 
on the subset-resilient assumption. But actually, Hors 
maps some messages to small subsets which are easier 
to be covered in a subset resilience attack. Pors solves 
this problem in such a way that a pseudorandom num-
ber generator (PRG) is utilized to obtain a pseudorandom 
subset, Fors is designed that k elements are selected from 
k sets of t elements each, i,e, one in each.

Typical schemes

(1)	Biba

In this section we describe BiBa signature scheme 
mentioned in Perrig (2001), which achieves fast verifi-
cation and small signature size, at the cost of signature 
generation time as well as the public key scale. We also 
describe the main idea of a secure broadcast commu-
nication protocol based on Biba mentioned in Perrig 
(2001).

A.	Idea

BiBa exploits k-way (k ≥ 2) collision of a hash func-
tion family to generate the signature. Precisely, the signer 
precomputes a large scale of random numbers which are 
authenticated by the public keys. In particular, the calcu-
lation from random numbers to public keys is one-way. 
Then, use the random numbers to generate BiBa signa-
ture in a way that the signature is the k random elements 
among them who collides in the relatively function fam-
ily. The verification can easily and efficient be achieved 
by verify the output of the relatively function family on 
input the k elements of the signature separately. The veri-
fiable random number possessed by the signer is signifi-
cantly larger than that of the adversary, as a result, signer 
can find a signature with overwhelming probability than 
adversary.

B.	 Scheme
(a)	 Initial Biba FTS
i.	 Scheme

For Biba FTS scheme Sig = (Gen, Sign,Ver), the follow-
ing hash function h, one-way function family G are used:

On input a message to be signed, the digest of the 
message h(m) needs to be computed first. The signature 
scheme is described as follows.

Gen On input security parameter 1λ, firstly generate 
t random numbers SEALi from (0, 1)n , for i = 1,…, t, t is 
polynomial in security parameter λ. Then on input SEALi 
for i = 1, …, t, output the public keys sequence as follows:

Sig On input the message m, SEALi i = 1,…, t, choose k 
SEALjp by checking

where p = 1,…, k, i ≤ jp ≤ t.
Output the signature as follows:

Ver On input the message m, public key sequence 
(pk1, . . . , pkt), signature sequence (σ1, . . . , σk) , the fol-
lowing compution and comparison are done in order to 
verify the signature:

F : (0, 1)n×(0, 1)n1 → (0, 1)n h : (0, 1)∗ → (0, 1)n2 G(n2) =
{

Gh : (0, 1)n → [0, n− 1]|h ∈ (0, 1)n2
}

(pk1, . . . , pkt) =
(

FSEAL1(0), . . . , FSEALt (0)
)

Gh(m)

(

SEALj1
)

=Gh(m)

(

SEALj2
)

= · · · = Gh(m)

(

SEALjk
)

,

σ = (σ1, ..., σk)

=
(

SEALj1 , SEALj2 , . . . , SEALjk
)
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	 ii.	 Why is Biba FTS?

In Biba FTS, for any message digest, the signer all can 
find k-way collisions with high probability to form the sig-
nature of the messages as long as the signer has sufficient 
SEALs, which are verifiable as the preimage of the cor-
responding public key of function F; meanwhile, we have 
pointed that the SEALs possessed by the signer is signifi-
cantly larger than that of the adversary, signer can find a 
signature with overwhelming probability than adversary. 
Therefore, the more signatures have been generated, the 
more SEALs can be obtained by the adversary simultane-
ously, and the higher probability the adversary is with to 
forge a signature successfully. For a k-way collision, the 
probability that adversary forges a signature is as follows:

where t is the number of SEALs revealed by previous 
signature.

(b)	Broadcast Authentication Protocol Based on Biba

The main idea of the broadcast authentication protocol 
based on Biba is to use one-way hash chains to achieve 
the fast authentication and replenishment of SEALs. Two 
pseudorandom functions (PRF) F, F′ are used here to gen-
erate the SEALs and the corresponding dedicated-keys.

For the dedicated-key sequence {Ki} where1 ≤ i ≤ l,

For the dedicated-key sequence {SEALi,j} where i = 1, 
…, t, 1 ≤ j ≤ l,

The label i in the above is considered as the signature 
period, which is used from 1 to l in accordance with 
signature order. In each time period p, the SEAL1,p, …, 
SEALt, p and dedicated-key Kp are active. These k colliding 

(

pkj1 , . . . , pkjk
) ?=

(

Fσ1(0), . . . , Fσk (0)
)

Gh(m)(σ1)
?=Gh(m)(σ1)

?= . . .
?=Gh(m)(σk)

P =
Ck
t · (n− 1)t−k

nt−1
,

F : (0, 1)n × (0, 1)n1 → (0, 1)n,

F ′ : (0, 1)n1 × (0, 1)n1 → (0, 1)n1

Kl
$←− {0, 1}n1 , Ki = F ′

Ki+1
(0)(1 ≤ i < l).

SEALi,l
$←− {0, 1}n2 , (1 ≤ i < t)

SEALi,j = FSEALi,j+1

(

Kj+1

)

,
(

i = 1, . . . , t, 1 ≤ j < l
)

elements to generate the signature in Biba schemes are 
chosen form SEAL1, p, …, SEALt, p. In order to verify the 
signature, the signer publishes Kp, and sends SEALi,p–1 
(i = 1, …, t) and Kp–1 over an authenticated channel. The 
following compution and comparison are done in order 
to achieve the signing verification: firstly, check whether 
the SEALs corresponding to the k elements in the signa-
ture are generated correctly by function F on input the 
related SEALs of previous period and dedicated-key of 
current period; secondly, verify whether k elements in 
the signature collide with each other of function G. This 
broadcast authentication protocol requires time synchro-
nization between the signer and verifier.

(2)	Hors

A.	Idea

Hors can be considered as a generalization of Lamport 
OTS proposed in 2002 (Reyzin and Reyzin 2002), in 
which a large number of public keys are precomputed on 
input the related private keys of a one-way function. The 
essence of Hors is to solve the problem of selecting a 
small subset containing k elements from a large set of t 
elements pseudo-randomly, t >  > k. The message digest is 
interpreted as a label sequence which indicates a specific 
subset of the key pairs, and the private keys in this subset 
form the signature. In order to sign a few messages using 
these key pairs, the underlying hash function H used to 
digest the message should be r-subset-resilient, i.e., for 
any probabilistic polynomial-time adversary A who can 
output (m1, m2,…, mr+1) such that H(mr+1)

r
⊆
i=1

H(mi) 

successfully with negligible probability.

B.	 Scheme

For Hors FTS scheme Sig = (Gen, Sign, Ver), the fol-
lowing one-way function f, hash function h are used:

h : (0, 1)∗ → (0, 1)l.
On input a message to be signed, digest the message m 

to be h(m) first, then sign h(m) as follows.
Gen On input security parameter 1λ, firstly generate t 

n-bit private keys ski uniformly at random, for i = 1,…, t, 
t is polynomial in security parameter λ. Then, output the 
public keys sequence as follows:

f : (0, 1)n → (0, 1)n

(pk1, . . . , pkt) =
(

f (sk1), . . . , f (skt)
)
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Sig On input the message m, private keys ski i = 1, …, 
t, denote h(m) as (b1, b2, …, bk) in base t representation, 
where l = k ∗ log t. Output the signature as follows:

Ver On input the message m, public key sequence 
(pk1, . . . , pkt), signature sequence (σ1, . . . , σk) , firstly 
digest the message m to be h(m) and denote h(m) as (b1, b2, 
…, bk) in base t representation, the following compution 
and comparison are done in order to check the signature:

C.	Security

It has been proven that the signatures are r-time 
EUCMA if the hash function used to digest the message 
is r-subset-resilient and function used to generate the 
public keys is one-way.

(3)	Pors

The security of Hors is based on the subset-resilient 
assumption (Aumasson and Endignoux 2018). But actu-
ally, Hors maps some messages to small subsets which 
are easier to be covered in a subset collision attack. 
Pors solves this problem in such a way that a PRG is 
utilized to obtain a pseudorandom subset. Concretely, 
a hash function family H: {hk : (0, 1)∗ → (0, 1)n|k ∈ K } 
and a PRF G: (0, 1)n → (0, 1)∗ is used in Pors. Firstly, 
on input a message m into G, choose the first k distinct 
output (b1, b2, …, bk) as label sequence which indicates 
the specific subset of the key pairs, where each block is 
in base t representation, i.e., G(m) = (b1, b2, …, bk).

The key generation is the same as that of Hors, and 
the above k indices are used to select k parameters as 
the signature value, from the private key which con-
tains t values.

(4)	Fors

A.	Idea

Fors is presented in the SPHINCS + hash-based signa-
ture in 2017 (Bernstein et al. 2017), which is also a suc-
cessor of Hors. As Hors selects k elements all from one 
set of t elements, the same indices of the message digests 
yield the same elements in the signature; in order to solve 
this issue, Fors is designed in such a way that k elements 

σ = (σ1, . . . , σk)

=
(

skb1 , skb2 , . . . , skbk
)

(

pkb1 , . . . , pkbk
) ?=

(

f (σ1), . . . , f (σk)
)

are selected from k sets of t elements each, i,e, one for 
each; t is set to be power of 2, t >  > k. In this case, only 
the same indices with the same position in the message 
digest blocks sequence yield the same elements in the sig-
nature. a PRF F: (0, 1)n × (0, 1)32 → (0, 1)n and a tweak-
able hash function H is used in Pors.

Tweakable hash utilizes a public parameter and a 
tweakable parameter in addition to the message as input 
to a hash function to generate different outputs, in order 
to be multi-function multi-target resistant. Several spe-
cific tweakable hash functions are introduced in Bern-
stein et  al. (2019), one can choose one among them on 
demand, for more details of tweakable hash see (Bern-
stein et al. 2019; Hülsing et al. 2016).

B.	 Scheme

Fors FTS scheme Sig = (Gen, Sig, Ver) is described as 
follows.

Gen On input security parameter 1λ, firstly choose n-
bit private keys sk uniformly at random, n is polynomial 
in security parameter λ. Then, on input sk, the address of 
each private key ADRSi, i = 1, …, kt, output the private 
keys sequence as follows:

For each set (skit+1, …, sk(i+1)t), i = 0, …, k-1, use the 
tweakable hash function H to build a binary tree with 
height of log t, and the roots of k trees consist of the set 
of (pk1, . . . , pkk) , which is then input into a tweakable 
hash function, generating the final public key pk.

Sig On input the message m, private keys ski i = 1, …, 
kt, denote h(m) as (b1, b2, …, bk) in base t representation, 
where l = k ∗ log t. Output the signature as follows:

where pathauth,i is the authentication path in the ith tree, 
authentication path of the hash tree will be thoroughly 
discussed in section.

Ver On input the message m, public key pk, signature σ, 
firstly digest the message m to be h(m) and denote h(m) 
as (b1, b2, …, bk) in base t representation, the following 
compution and comparison are done in order to check 
the signature:

Firstly, invoke the tweakable hash function on input 
(

skbi+(i−1) t , pathauth,i
)

 to compute PKi, i = 1, …, k. Then, 
(pk1, ..., pkk) is input into the tweakable hash function, 
generating the final public key pk’.

Finally, compare pk′ ?= pk , if yes, it is a valid signature.

(sk1, . . . , skkt) = (H(sk ,ADRS1), . . . ,H(sk ,ADRSkt))

σ = (σ1, . . . , σk)

=
(

skb1 , pathauth,1, skb2+t , pathauth,2,

. . . , skbk+(k−1)t , pathauth,k

)
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Performance and security comparison
Here, we compare the performance and security level of 
Biba, Hors and Pors in the size of signature key, verifica-
tion key and signature, the time cost of key generation 
scheme Gen, signature scheme Sig, verification scheme 
Ver and the security level, separately, as shown in Table 2. 
Without loss of generality, in all schemes t denotes the 
number of key pairs (also the number of private keys and 
public keys separately), k denotes the component number 
in the signature, n denotes the input and output of hash/
one-way function, r denotes the signature times, l and n1 
follow the definition in broadcast authentication protocol 
based on Biba, q and q’ denote the number of queries to 
oracle and hash function separately, Ps denotes the prob-
ability that the signer can find a signature in one trial. We 
measure the timing in terms of evaluations of underlying 
hash function/one-way function/PRF. We compare the 
security level of the above scheme in r-non-adaptive-cho-
sen-message attack model, in which the adversary que-
ries signatures r times on r messages of his choice, and 
then he tries to forge a signature on a new message m of 
his choice.

As shown above, all these schemes can be used to sign 
t messages with the same key pair and achieve high veri-
fication efficiency at the cost of signature generation time 
as well as the public key scale. As an improvement of 
Hors, Pors can achieve a higher security level.

Tree‑based public key authentication
We have pointed out the main drawback of both OTS 
and FTS schemes is that one key pair can only be used 
to sign one or a few messages. In a signature scheme, we 
authenticate the message based on the integrity of public 
key. As a result, to authenticate public key on a large scale 
has become a vital issue in the research of hash-based 
signature.

The tree-based public key authentication is a classical 
way to solve the public key management issue. Further-
more, as the key pair has to be changed into a fresh one 
after each signature generation, a natural way is to utilize 
the state management to keep record of the state and syn-
chronization between signer and verifier, otherwise there 
may exists reduplicate use of the signature key, such that 
the adversary can forge a valid signature easily. There-
fore, state management plays an essential role in many 
scenarios of the application of hash-based signature, but 
it also limits it less practical. Stateless hash-based signa-
ture settles state management at the cost of significantly 
higher signature size compared with the stateful ones in 
the analogous security level.

In this section, we focus on different constructions 
and security analysis about hash-tree based public 
key authentication of hash-based signature, classify 
hash-based signature into limited number and stateful 
schemes, unlimited number and stateful schemes and 
unlimited number and stateless schemes, the goal is to 
present, classify and discuss different solutions for tree-
based public key authentication.

Different ideas

(1)	Limited number or (cryptographic) unlimited num-
ber

A.	Down-top or top-down

Tree-based authentication scheme efficiently using the 
hash tree to authenticate public keys is wildly adopted 
to solve the problem of key management. To sign a mes-
sage, after the OTS is generated, the following param-
eters, including the message, the OTS and its index, the 

Table 2  Performance and security comparison of FTS schemes

Size Timing (evaluations of hash 
function)

Security level
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one-time public key, along with an authentication path 
generated by the tree-based authentication scheme, have 
to be applied to verifier. Verifier authenticates the signa-
ture in two steps. Firstly, verify the OTS by the first four 
parameters of the signature; Secondly, authenticate the 
one-time public key along with the authentication path 
to construct the tree from leaf nodes to root, or from 
the root to bottom, which comes into two main differ-
ent approaches to authenticate public keys in large scale, 
depending on signing limited number or cryptographic 
unlimited number of messages.

In terms of authentication down-top, the root, i.e., 
the overall public key, which can be used to verify all 
of the public key as leaf nodes, should be constructed 
form the leaf nodes in the bottom layer to the top. In 
terms of authentication top-down, along this direction 
one can establish the trust relationship, as well as the 
tree with unlimited number leaf nodes, each node in 
the tree can be constructed independent in contrast to 
the down-to the tree with unlimited number leaf nodes, 
each node in the tree can be constructed independent 
in contrast to the down-top approach that the interior 
nodes need to be constructed by its children nodes, the 
private key corresponding to the node on the higher 
layer which has already been authenticated is used to 
sign the node on one layer lower, the building-up of all 
these signatures in the authentication path is based on 
the authenticated root, along top-down direction one 
can establish the trust relationship.

Specifically, in the case of down-top authentication, 
we set all the public keys to be leaf nodes of a binary 
hash tree, these nodes above the lowest layer are cal-
culated from the output of hash function on input 
the two closest nodes, called children nodes one level 
lower. For a binary tree whose height we denote as h, 
actually, it has 2h leaf nodes and h + 1 layers, which are 
ranged from 0 to h from bottom up. All of the nodes 
are denoted as Ni,j, where i = 0, …, h, denotes the height 
of the node counted from bottom to top in the tree, 
j = 0, …, 2i – 1, denotes the horizontal index counted 
from left to right. To authenticate the ith public key, 
an inner node sequence is used as the authentication 

path which consist of the sibling nodes on the path 
from N0,i to root Nh,0. As shown in Fig.  5, to authen-
ticate N0,4, the corresponding authentication path is 
N0,5 → N1,3 → N2,0 → N3,0 in order, along with the mes-
sage, the OTS and its index have to be applied to verify 
the signature in the verification phase. In many cases 
the one-time public key can be calculated from the 
message and the OTS, and needs not to be transmit-
ted to the verifier as a consequence. The nodes in the 
authentication path should be used in order, with N0,i 
as the initial one, to generate the root node, the signa-
ture is valid as long as the root node generated by the 
verifier equals the authenticated one.

In the case of top-down authentication, firstly, one 
generates OTS key pairs randomly or pseudorandomly, 
here we will not discuss how to generate these key 
pairs, which depends on the specific application sce-
nario; then, construct the authentication path in the 
opposite directions compared with the above approach, 
i.e., from root node to leaf node, the private key related 
to the parent node is used to sign its child node in 
the top-down order. As shown in Fig.  5, to authen-
ticate N0,4, the corresponding authentication path is 
N3,0 → N2,1 → N1,2 → N0,4 in order. Specifically, N3,0 is 
the overall public key of the whole system whose integ-
rity has already been authenticated, i.e., the private key 
corresponding to N3,0 is used to sign the node N2,1, and 
so on, till N0,4, the building-up of all these signatures 
in the authentication path is based on the authenticated 
N3,0. This approach is similar to the case of hierarchi-
cal public key infrastructure  (PKI), where public key 
of root CA is signed by a trusted authority, and cor-
responding public key certificate of root CA has been 
distributed to all other entities in this PKI system, and 
can be verified when necessary. Take three layers PKI 
for example, the root CA is on the highest layer will the 
end entities in on the lowest layer. The intermediate CA 
certificate is issued by Root CA, i.e., the public key of 
the intermediate certificate is signed by the Root CA’s 
private key. The intermediate certificate then issues cer-
tificates to end entities. Authentication is done from 
top to bottom.

For the two tree authentication approaches mentioned 
above, it is a natural way to construct the authentica-
tion tree by the first approach as long as the number the 
signatures is acceptable, and there no other computing 
expense except signing the original message and generat-
ing the related authentication path in the tree. Neverthe-
less, the key generation cost goes up exponentially with 
the number of layers in the tree in this approach. Com-
pared with the first approach, the number of signatures 
generated by the tree is no longer fixed in the second one, 
and it exponentially reduces the computing and storing Fig. 5  Tree authentication
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cost to generate the authentication path at the expense of 
linearly increasing signatures with the quantity of the lay-
ers, which are generated by the private key correspond-
ing to the node on the higher layer. In consequence, the 
top-down authentication is a more flexible way to sign 
unlimited number of messages.

B.	 Hyper-tree

For a larger scale hash-based signature signing enough 
messages, it is common to use the hyper-tree trees which 
combines both of the two approaches above, such as 
GMSS, XMSSMT and HSS which are the hyper-tree vari-
ants of Merkle hash-based signature, LMS and XMSS 
separately; SPHINCS with many of its variants such as 
SPHINCS + , Gravity SPHINCS, etc., allowing to make a 
tradeoff between the signature size and time by the num-
ber of layers.

A whole tree of height h is constructed by d layers sub-
trees of height (h + 1)/d-1, where h, d ∈ N, d|h + 1. The 
whole tree can be used to sign 2h messages while single 
sub-tree to sign a group of 2(h+1)/d public keys or mes-
sages in the hash-based signature, these sub-trees will be 
used consecutively and only one sub-tree on each layer 
needs to be computed.

By using the multi-layer sub-trees, firstly, the key 
generation time reduces from O(2h) to O(2h+1/d) at 
the cost of additional (d–1) signatures. The computa-
tion scale reduces approximately exponentially with 
increase of the number of layers, as a consequence, 
can meet the requirement of signing enough message 
in  the  resource-limited  environment; secondly, using 
a single tree to generate a large scale of signature keys 
will inevitably lead to a variety of problems in key stor-
ing and distributing. When the signature key is copied 
for distributing to other application module, there is 
risk of reuse. By using the multi-layer sub-trees, one 
can using a single sub-tree to generate the one-time 
key pairs for one specific usage, by doing this, the above 
problems are easily solved.

(2)	Stateful or stateless

The hash-based signature schemes commonly used 
in practice are stateful due to the underlying OTS/FTS, 
the signature key needs to be renewed when exceed-
ing its service time, namely, the signing times it can 
be used to sign the messages, thus it is necessary to 
update the internal key state over time, otherwise, it 
is feasible for the forger to generate a new signature 
without recovering the signature key. Although it is a 
natural way to use this stateful approach to construct a 
hash-based signature scheme, it is not in line with the 

standard definition of digital definition, in which there 
is no requirement about the key state management; 
moreover, state management may be difficult to imple-
ment in a cryptosystem with limited functions. In con-
sequence, how to design stateless hash-based signature 
has become a raised concern.

In the design of the stateless hash-based schemes, to 
select a signature key pseudorandomly when signing 
a message, to sign as many messages as possible on the 
same system scale, to design a tree in a much larger scale 
and to efficiently generate each sub-tree are all the key 
issues needed to be fulfilled in the stateless schemes. See 
“Typical schemes” section for detailed analysis.

Typical schemes

(1)	Limited number and stateful schemes

As analyzed above, to build authentication path from 
bottom top and update the signature key after exceed-
ing its service time, is the most fundamental way to 
construct hash-based signature.

A.	Merkle tree

Merkle tree is proposed by Merkle in 1979 (Merkle 
1989), which is the original tree authentication scheme 
following the approach of signing limited number of 
messages mentioned above. A hash function H:{0, 
1}2n → {0, 1}n is utilized to construct the nodes in it. A 
Merkle tree is a binary tree with 2 h leaves on the bot-
tom layer, whose height we denote as h. for interior 
nodes we denote the two nearest nodes on the first 
lower layer as its children nodes, the interior nodes val-
ues are set in such a way that it is the output of the hash 
function H on input their children node values, i.e.,

where i = 1, …, h, j = 0, …, 2i – 1.
The interior nodes are computed from left to right, 

from bottom to top sustainedly, and we denote the node 
on h + 1th layer as Root.

A hash-based signature consisting of OTS and Mer-
kle tree works in the following way. Firstly, a Merkle 
tree is constructed whose leaf on the lowest layer is the 
one-time public key (or its digest). The Root is authen-
ticated by public key authentication technology such 
as digital certificate. The Root is the overall public key 
which will be used to authenticate all the signatures 
constructed by the one-time key related to the leaf in 
the Merkle tree.

Ni, j = H
(

Ni−1,2j||Ni−1,2j+1

)
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To sign a message, the one-time private key is used to 
generate the one-time signature. Then, the following data 
related to the signature, including the message, the one-
time signature and its index, the public key, along with 
authentication path by the tree authentication scheme, 
have to be applied to verifier. Before the verification, 
the authentication of the Root, such as the root’s digital 
certificate, has to been sent to verifier in advance. The 
verifier authenticates the Root first, then verifies the one-
time signature, finally validates the one-time public key 
using the authentication path sequentially from bottom 
up to calculate the tree root, and compare the calculated 
root with Root, if they are equal, the signature is valid.

Treehash algorithm has been presented to compute the 
root of the Merkle tree with lower storage requirement. 
The basic idea is to use a stack along with the push and 
pop operations to store the value of nodes when neces-
sary. The treehash algorithm is also used in the BDS algo-
rithm as a subroutine. For more details see (Buchmann 
et al. 2008).

B.	 XMSS

XMSS, short for eXtended Merkle Signature Scheme 
proposed in 2011 (Buchmann et al. 2011b), can be con-
sidered as an improved version of SPR-MSS and achieves 
forward secure and EUCMA if the underlying hash func-
tion family is second preimage resistant.

a)	 Idea

The original version of XMSS uses WOTS as its under-
lying OTS scheme (which is changed to W-OTS + in 
the later version), and an XOR tree as its authentica-
tion scheme. First, in order to achieve forward secure, 
XMSS makes the following changes to the underlying 
OTS scheme: using a forward-secure PRG to generate 
the signature key sequence instead of generating them 
randomly. It has been proven by Krawczyk (2000) that 
an unforgeable forward-secure signature scheme can 
be constructed by combining a forward-secure PRG to 
generate the signature keys and an unforgeable signa-
ture scheme to generate the signature. In this way, XMSS 
achieves forward secure analogously. Second, in the pub-
lic key authentication phrase, XMSS uses the XOR tree 
authentication proposed by Bellare and Rogaway, to con-
struct unforgeable hash-based signature scheme, in order 
to relax the security assumption of the underlying hash 
function to second preimage resistance instead of colli-
sion resistance. In this way, the signature size is reduced 
in the analogical security level. Compared with SPR-
MSS which use Lamport OTS as its underlying OTS in 
its reduction to compute its security level, the usage of 

WOTS in XMSS reduces the signature size by more than 
75% in the analogical security level.

(b)	Scheme

As we have discussed about WOTS scheme in "Typical 
schemes’ section, here, we just introduce the one-time 
key generation scheme and tree authentication scheme of 
XMSS.

i.	 One-Time Key Generation

A PRF F(n) = 
{

fk : (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 is used 
in XMSS to iteratively generate the state in each Winter-
nitz OTS started from a random initial state SEED. Pre-
cisely, to generate each Winternitz OTS signature key, 
beginning with the initial state SEED, XMSS uses the 
state Statei−1 of the i-1th Winternitz OTS to produce a 
new state Statei and a new SEEDOTSi of the ith Winternitz 
OTS, and then use SEEDOTSi to generate the one-time 
private key sequence ski, i.e.,

where i = 1, …, l.
The public key pki are computed in the same way as 

that of WOTS on input the corresponding ski.
The one-time key pair generation above using the itera-

tive PRG to achieve the key-evolving has already been 
proven to be the forward-secure PRG (Krawczyk 2000).

	 ii.	 Tree authentication

Two type of authentication tree, L-tree and XMSS-tree, 
are used in the XMSS tree authentication scheme. The 
former is to construct each leaf node of the XMSS tree 
on input the one-time public key, whereas the latter is 
to reduce the authentication of all these one-time public 
keys to a single root of XMSS-tree.

Both the two kinds of trees use the following algo-
rithm to construct the whole tree: A keyed hash function 
Hht(n) =

{

hk : (0, 1)4n → (0, 1)n|k ∈ (0, 1)n
}

 is utilized 
to construct the nodes on the tree. Similar to that in the 
Merkle tree, the two nearest nodes on the first lower 
layer in the tree are defined as the children nodes of the 
interior nodes. For a tree whose height we denote as h, 
the bitmasks bl,j ||br,j are chosen uniformly at random 
from {0, 1}2n*h, k is chosen uniformly at random from {0, 
1}n. All of the nodes are denoted by Ni,j, where i denotes 
the height of the node counted from bottom to top in the 
tree, j denotes the horizontal serial index counted from 
left to right, both i and j are counted from 0. The interior 
nodes values are calculated as:

State0=SEED

Statei||SEEDOTSi = fStatei−1(0)||fStatei−1(1)

skOTSi = fSEEDOTSi
(0)|| · · · ||fSEEDOTSi

(l − 1).
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Ni, j = Hht

(

Ni−1,2j||Ni−1,2j+1 ⊕ bl,j||br,j
)

,where i = 1, …, 
h, j = 0, …, 2i–1.

The interior nodes are computed from left to right, 
from bottom to top sustainedly.

The main differences between L-tree and XMSS-tree 
are as follows. Firstly, the number of leaf nodes of XMSS-
tree must be set to the power of 2, but it is not neces-
sary for L-tree, which leads that the last node in some 
layers of L-tree may have no sliding node. In this case, 
this last node will be raised to the lowest higher layer 
in which it has the sibling node in the L-tree. Secondly, 
the leaf nodes of each L-tree are the public keys from the 
underlying OTS scheme, whereas the leaf nodes of each 
XMSS-tree are the root nodes of each L-tree.

The verification is done similarly as in the Merle-tree 
hash-based signature. The message, OTS, the state, the 
authentication path along with the public key of the 
XMSS-tree has to been sent from the signer to verifier. 
The verifier authenticates the message by verifying OTS 
first, then validates the one-time public key by using the 
nodes in the authentication path sequentially from bot-
tom up to calculate the tree root, and compare it with the 
received one, the signature is valid if they are equal.

	iii.	 Security

By using a forward-secure PRF F(n), a second preimage 
resistant hash function family Hht as well as W-OTS +, 
XMSS achieves forward secure and EUCMA.

B’ a Variant of XMSS in RFC 8391

In RFC 8391 (Hülsing et  al. 2018), a variant of XMSS 
was proposed using variants of W-OTS + and tree 
authentication scheme, the EUCMA of this variant can 
be deduced from multi-function multi-target second pre-
image resistance of the underlying function.

(a)	Idea

Multi-function multi-target notions of preimage, 
second preimage resistance and eTCR, which have 
been proven to have identical or similar security as the 
standard notions of that in single-function single-target 
notions (Hülsing et  al. 2016). However, initial XMSS 
along with its tree and multi-tree variant, like XMSSMT 
and SPHINCS, are referred to single-function multi-tar-
get notions, where an attacker obtains d target images 
or preimages together with a random function from the 
hash function family, he attacks successfully if he can 
just find one preimage or second preimage for d targets 
with non-negligible probability. It has been proven that 
for single-function multi-target attack, the complexities 
are reduced by d and 

√
d in classical and quantum attacks 

respectively. By using independent keys and bitmasks to 

randomize each call of the PRF and the hash function in 
the OTS and the hash tree, the EUCMA of XMSS can be 
deduced from multi-function multi-target second preim-
age resistance of the underlying function.

(b)	 Scheme
i.	 A Variant of W-OTS + 

In this section, we introduce the address generation 
scheme, iteration function, Key generation, signature and 
verification schemes used in this variant of W-OTS+.

•	 An Address Generation Scheme

In order to randomize each call of either the PRF or 
the hash function, a unique pair of key and bitmask is 
used, which is generated by a PRF taking a seed key and a 
unique address as input. We describe the address genera-
tion scheme in detail as follows.

For different usages in OTS, L-tree, and multi-tree, the 
addresses are generated in different way. Generally, the 
address begins with the layer address and tree address, 
which separately describe the height of a tree and the 
position in a layer, to indicate the position of a specific 
tree in multi-tree and are set to zero in the case of a sin-
gle tree as in OTS and L-tree. The third parameter called 
type is used to distinguish the different usages of this 
address, which is set to different values to indicate the 
OTS address, L-tree address, sub-tree address respec-
tively. For a OTS address, the next three words are OTS 
address, chain address and hash address which describe 
the position of the OTS in the tree, the chain address 
and the index of the hash call in the chain. For an L-tree 
address, the next three words are the L-tree address, 
tree height and the tree index which describe the index 
of the corresponding leaf calculated with this L-tree, the 
height of the node for the next computation and the posi-
tion of the node at this height in the L-tree. For a multi-
tree address, the next three words are zero padding, tree 
height and the tree index, the latter two describe the 
height of the node for the next computation and the posi-
tion of the node at this height in the multi-tree. For the 
three types of addresses, the last parameter called key-
AndMask indicates the different usage of the address, 
which is set to different values for generating the key, the 
most significant bytes and the least significant bytes of 
bitmask.

•	 Iteration Function

Compared with the initial W-OTS + , this variant 
randomizes each call of the iteration function family 
H(n) =

{

hk : (0, 1)n × (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 by 
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a PRF G(n) =
{

gSEED : (0, 1)n → (0, 1)n|SEED ∈ (0, 1)n
}

 
on input a seed key and the corresponding address to 
generate a key of H and a bitmask with whom the inter-
mediate value will XOR with. Definition of parameters w 
is same as in W-OTS + . On input a value x ∈ {0, 1}n, an 
iteration counter i ∈ {0, …, w − 1}, a public seed key SEED, 
an address ADRSkey,i or ADRSmask,i with index indicating 
its usage in the ith iteration, the new iteration function 
hi(x) with G works as follows.

The iteration function iterated as needed times returns 
the output of any length of this chain, i.e., iterating from 
the initial state or any intermediate state any rounds as 
needed.

The above is an instance of tweakable hash. For more 
discuss of tweakable hash see "Typical schemes" section.

•	 Key Generation, Signature and Verification

The private keys are either chosen uniformly at ran-
dom or generated pseudorandomly. Similar as in the ini-
tial W-OTS + , the public keys are generated by iterating 
the private key w–1 times, while signature and verifica-
tion are generated by iterating either the private key or 
the signature certain times determined by the message to 
be signed, with only difference of the above new iteration 
function used.

G
(

SEED,ADRSkey,i
)

= ki

G
(

SEED,ADRSmask ,i

)

= Maski

h0(x, seed) = x

hi(x, seed) = h
(

ki, h
i−1(x, seed)⊕Maski)

)

	 ii.	 A Variant of XMSS Tree Authentication

The variant of XMSS in 8391 uses the above 
W-OTS + variant as its OTS scheme, before inputting 
into the W-OTS + variant, the message of arbitrary 
length is compressed by a hash function 
Hdgt : (0, 1)n × (0, 1)n × (0, 1)n × (0, 1)∗ → (0, 1)n to n-
bit message digest; after OTS scheme, a specific tree 
authentication scheme with the PRF G(n) required in 
the above W-OTS + and a hash function 
H ′

ht
(n) =

{

h′
ht, k

: (0, 1)n × (0, 1)2n → (0, 1)n|k ∈ (0, 1)n
}

 
will be used to compute a authentication path, as shown 
in Fig. 6. Finally, the private key is renewed to prepare 
for the next signature. We describe the message digest 
scheme and the tree authentication scheme in detail.

•	 Message Digest

Choose private key skdgt uniformly at random from {0, 
1}n; on input skdgt, public SEED, public key PKroot, mes-
sage m, index of the signature IDX,

Calculate

The generation of PKroot is described in the following 
tree authentication scheme.

•	 Tree Authentication

In the variant of XMSS in 8391 (Hülsing et al. 2018), 
as shown in Fig.  6, each subroutine Hht used to the 

Rand = Hrdm

(

skdgt , IDX
)

;
Mdgt = Hdgt(Rand||PKroot ||IDX ,m).

Fig. 6  variant of XMSS in 8391
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XMSS tree is randomized by using a PRG on input a 
seed key and the corresponding address to generate a 
key of Hht’ and two bitmasks with whom the intermedi-
ate values will XOR with in Hht’.

The variant of XMSS still uses L-tree and XMSS-tree 
of similar structure in constructing authentication tree, 
but with the distinct tree function Hht’ as follows.

The bitmasks Maski and function key ki of H’ht are 
generated by function G(n) of public SEED and corre-
sponding address. The interior node value Ni, j of the 
hash tree is calculated by function Hht’ as:

where Ni-1,2j and Ni-1,2j+1 are two nearest nodes on the 
first lower layer in the tree, i = 0, …, h, j = 0, …, 2i-1.

The nodes on the bottom layer of the L-tree are each 
component of one public key, whereas those of XMSS-
tree are the root nodes of each L-tree. The interior nodes 
are computed from left to right, from bottom to top sus-
tainedly, and the root of XMSS-tree is PKroot.

The authentication path of a public key node N0,i con-
sists of the sibling nodes on the path from N0,i to root 
Nh,0.

•	 Security

In contrast to the original XMSS, in which once the key 
is randomly chosen, the function will be fixed until the 
whole tree is constructed, and all the bitmasks in the tree 
are chosen uniformly at random as well, tree authentica-
tion scheme in this variant by using independent keys 
and bitmasks to randomize each call in the OTS and the 
hash tree, can achieve multi-function multi-target resist-
ance in the related security assumption of hash function.

It is obvious to see that if the signature is EUCMA, the 
adversary cannot find a second preimage (Rand’, m’) of 
(Rand, m) under Hdgt in message digest phase, otherwise, 
the adversary can output a forge a signature by simply 
replace (Rand, m) with (Rand’, m’) in a valid signature, it 
is a more stringent security assumption than eTCR​.

The literature (Aumasson and Endignoux 2018) gives 
the security reduction of XMSS-T. The difference between 
XMSS-T and the variant of XMSS are: first, two secret keys 
must be generated pseudorandomly by function Hprf; sec-
ond, PKroot is not part of the input parameters in the mes-
sage digest function Hdgt’; therefore, Hdgt’only needs to be 
(post-quantum) eTCR secure in XMSS-T. XMSS-T is post-
quantum EUCMA under the following assumptions: the 
hash function family H(n) in the variant of W-OTS + and 
H’ht (n) in tree authentication scheme are post-quantum 

G
(

SEED,ADRSkey,i
)

= ki

G
(

SEED,ADRSmask ,i

)

= Maski

Ni, j = h′ht
(

ki,Ni−1,2j||Ni−1,2j+1 ⊕Maski
)

multi-function multi-target second pre-image resistant, 
where F has at least two preimages; Hrdm and Hprf are PRF; 
G(n) needs to be programmed as quantum random oracle, 
the message digest function Hdgt’ to be post-quantum eTCR 
secure.

C.	LMS
(a)	 Scheme

The LMS scheme was proposed in 1995 as a USA pat-
ent by Leighton and Micali (1995), and recently was pub-
lished as RFC8554 by IETF (McGrew et al. 2019). The LMS 
scheme also can be considered as an improved version 
Merkle scheme, and can achieve stronger security by using 
different prefix in its iteration function. The main differ-
ence between LMS and Merkle scheme lies in the iteration 
function from the perspective of designing structure. Here, 
we mainly introduce the iteration function of the version in 
RFC8554.

LMS randomizes each call of the iteration function 
h : (0, 1)n ∗ (0, 1)n → (0, 1)n by an additional prefix as 
part of the input. Precisely, when using the iteration func-
tion h in the OTS of LMS, on input a value x ∈ {0, 1}n, itera-
tion counter i ∈ {0, …, w − 1}, PRIFIXi which is related to 
sub-tree address, the position of the OTS in the sub-tree, 
the chain address and the index of the hash call in the 
chain, etc. The iteration function hi(x) works as follows.

When using it in the tree authentication generation, the 
parameter PRIFIXi is related to node number and some 
fixed values, Ni-1,2j and Ni-1,2j+1 denote the values of two 
children nodes. The iteration function H’ht(x) is changed 
into:

where i = 0, …, h, j = 0, …, 2i–1.
For more recommended parameters see (Cooper et  al. 

2019).

(b)	Security

As we can see from above, different prefixes are used in 
each iteration function, as a result, the following attack 
will be prevented: the adversary tries some random 
inputs of H or or H’ht or the hash function used to gener-
ate the one-time public key by digesting the concatena-
tion of each single public key component, to check if the 
related outputs match the outputs of these functions, in 
some sense this kind of attack is essentially equivalent 

h0(x) = x

hi(x) = h
(

PRIFIXi||hi−1(x)
)

hht(x) = h′ht
(

PRIFIXi||Ni−1,2j||Ni−1,2j+1

)



Page 20 of 26Li et al. Cybersecurity            (2022) 5:13 

to multi-function multi-target attack proposed in Hüls-
ing et al. (2016). The iteration functions of OTS and hash 
tree both need to be second preimage resistant. The lit-
erature (Eaton 2017) gives the security reduction of LMS 
in quantum random oracle model.

Security analysis of LMS is given in the random ora-
cle model; in addition, the hash compression function is 
also needed to be a random oracle, which is less convinc-
ing compared with that of initial XMSS analyzed in the 
standard model (in the variant of XMSS in RFC8391, PRF 
G(n) used to generate the bitmask and key for each call 
of hash function, needs to be programmed as random 
oracle).

In terms of implementation performance, the prefix 
values in LMS are just related to position and some fixed 
values that can be prepared in the initialization phase, 
compared with some parameters of the iteration in the 
XMSS dependent on the output of the previous round, 
LMS is faster than XMSS in the signature generation. 
Meanwhile, LMS is more flexible and adaptable, one can 
implement initialization and signature generation on sep-
arated devices.

(2)	Unlimited Number and Stateful

As the name suggests, unlimited number and stateful 
hash-based signature can sign cryptographic unlimited 
number of messages, meanwhile, the signature key must 
be renewed after exceeding its service time. One can use 
the limited number and stateful hash-based signature 
schemes as the sub-tree to construct the correspond-
ing hyper-tree schemes to sign enough messages. Most 
of the limited number and stateful hash-based signature 

schemes have their own unlimited number and stateful 
versions, such as the GMSS, XMSSMT and HSS which are 
the multi-tree variants of Merkle tree scheme, XMSS and 
LMS separately, which we will introduce in this section.

Generally, by using its limited number and stateful ver-
sion as the sub-tree, the unlimited number and stateful 
scheme builds a whole tree of height h by d layers sub-
trees of height (h + 1)/d–1, where h, d ∈ N, d|h + 1, as 
shown in Fig. 7. As a stateful scheme, one can make full 
use of all the one-time/few-time signature keys with the 
key state management algorithm, as a consequence, k*2 h 
signatures can be made by the whole tree while only a 
single sub-tree of height (h + 1)/d–1 needs to be com-
puted per layer signing one message, where k is the times 
one key pair used in signature.

To sign a message, authentication path inner a sub-tree 
follows down-top approach, and the root node of the sub-
tree is calculated from the bottom node to the top; while 
authentications between sub-trees follows top-down 
approach, the leaf nodes of the higher sub-tree is used to 
authenticate the root of the sub-tree one layer lower. Con-
cretely, each sub-tree is constructed independently; the leaf 
nodes of each sub-tree are the public keys, nodes of the 
subtree above the lowest layer are calculated by the tree 
hash on input the two children nodes. In this way, we have 
established all the nodes of the whole tree. The root of the 
top sub-tree is the overall public key; it is based on its integ-
rity that the leaf nodes of sub-tree on the higher layer can 
be used to authenticate the signature of the root of the sub-
tree one layer below consecutively. Key state management 
chooses the signature key to sign the message directly, 
whose related public key is one leaf node of the bottom 
sub-tree. The signature can be presented as follows:

The following data related to the signature σ have to be 
applied to verifier, including the message m, the OTS/FTS 
σm and its index i, along with the following data per layer 
containing signature σj of the root of the sub-tree on layer j 
generated using a signature key of the sub-tree on layer j–1, 
and the authentication path Authj used to construct the 
root of sub-tree on layer j from the bottom up to verify or 
construct the one-time/few-time public key on the bottom 
of this sub-tree traversed by the whole authentication path, 
where j = 1,…d–1.

What need to be mentioned here is, in many cases, the 
one-time/few-time public key traversed by the authen-
tication path on the bottom of each sub-tree can be 
deduced by the corresponding one-time/FTS of the root 
of the sub-tree below, as a consequence, it need not to 
be contained in the signature σ, we just use each OTS/
FTS to construct the corresponding public key along the 

σ =
(

i, σm, Authd−1, σd−2,Authd−2, . . . , σ0,Auth0
)

Fig. 7  structure of unlimited number and stateful hash-based 
signature
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authentication path until the root of the sub-tree on the 
top layer, and compare it with the overall public key. The 
signature is valid if the comparison returns equal; other-
wise, it is rejected. If in some exceptional cases the inte-
rior one-time/few-time public keys mentioned above 
cannot be deduced in this way, we still need to contain 
them in the signature σ, which turns to be:

σ =
(

i, σm, Authd−1, Pkd−1, σd−2, Pkd−2, Authd−2, ..., σ0,Pk0, Auth0
)   , 

where Pki is the interior public keys per layer, i = 1, …, d.
The verification can be done similarly as the above 

schemes.

A.	GMSS and XMSSMT

Structural comparison of GMSS and XMSSMT is shown 
in Table 3.

(a)	GMSS

GMSS is a variant of the Merkle signature presented in 
2007 (Buchmann et al. 2007), which allows signing cryp-
tographically unlimited number of messages by using 
hyper-tree. It can be seen as an improved version of 
CMSS proposed in 2006 which just consists of two lay-
ers of trees (Buchmann et  al. 2006). To sign a message, 
GMSS uses a hash function to generate its digest, Win-
ternitz OTS as its OTS scheme to sign the message digest 
and the root of each single sub-tree expect the top one, 
Merkle tree to build the interior authentication path in a 
single tree. For a sub-tree, the leaf nodes of each Merkle 
tree are the hash values of concatenation of public keys 
from the Winternitz OTS one-time signature scheme, 
whereas the leaf nodes of each XMSS-tree are the root 
nodes of each L-tree.

Similar to the construction of XMSS, a PRF F is used 
in GMSS to iteratively generate the state and key pairs in 
each Winternitz OTS started from a random initial state 
SEED. Precisely, GMSS uses the state Statei−1 of the i–
1th Winternitz OTS as the index to choose a fixed func-
tion fStatei−1 from the PRF, then uses fStatei−1 to produce a 
new state Statei and a new SEEDOTSi of the ith Winternitz 
OTS, and at last uses SEEDOTSi to generate the one-time 
private key sequence ski of the ith Winternitz OTS. The 

public key pki are computed in the same way as that of 
WOTS on input the corresponding ski. It has been men-
tioned above that, the one-time key pair generation in the 
above way has already been proven to be forward-secure 
PRG if the underlying F is a secure PRF.

Remark 

1.	 Sub-tree in different layers may have different 
heights.

2.	 Different Sub-tree may use different Winternitz 
parameters.

•	 Security Comments

No exact security reduction has been given in Buch-
mann et al. (2007). As GMSS uses hash function to gen-
erate message digest and the leaf nodes of each Merkle 
tree, security obviously cannot be better than the colli-
sion resistance of the underlying hash function. The argu-
ment is similar to the above schemes and it is straight 
forward to obtain the following conclusion that GMSS 
achieves EUCMA if F is a PRF, the underlying message 
digest function is collision resistant, and the hash tree 
function is one-way. The proof is omitted for the sake of 
brevity.

Furthermore, the GMSS key generation approach fits 
the construction to generate the forward-secure signa-
ture proposed in Cooper et  al. (2019). In consequence, 
we can extend the security of GMSS as follows: if GMSS 
is an unforgeable signature scheme and the function F 
used to generate the one-time keys is a secure PRF, then 
the GMSS is an unforgeable forward-secure signature 
scheme.

(b)	 XMSSMT

i.	 Construction

•	 Basic Construction

XMSSMT, an abbreviation for XMSS with Multi-Tree, 
is the hyper-tree vision of XMSS which allows signing 
cryptographically unlimited number of messages pur-
posed in Bernstein et al. (2015). It uses XMSS to build 
the interior authentication path in a sub-tree, and Win-
ternitz OTS to sign the root of the sub-tree by the signa-
ture key corresponding to the leaf node on the one layer 
higher.

Table 3  Structural comparison of GMSS and XMSSMT

Scheme Component

Underlying single tree Signatures of the root of 
each single tree

GMSS WOTS + Merkle tree WOTS

XMSSMT XMSS WOTS(W-OTS + in RFC8391)



Page 22 of 26Li et al. Cybersecurity            (2022) 5:13 

•	 Using BDS Algorithm

Particularly, XMSSMT applies the BDS algorithm to 
make a trade-off between the signature generation time 
and the storage cost, which can decrease runtime in the 
worst case by incomplete calculation of the authenti-
cation path at the cost of some additional storage. By 
doing this, the signature generation time in the worst 
case reduces from 2  h − 1 to (h − k)/2 computations of 
leaf and TreeHash, where h denotes the tree height and 
k is the BDS parameter.

•	 Optimal Parameters Selection

Moreover, optimal parameters for XMSSMT, including 
the BDS parameters, Winternitz parameters, the number 
of layers, the tree height and the security level, have been 
provided by linear optimization, to meet different appli-
cation requirements towards the key size, key generation 
time, signature time, signature size, etc. For more details 
about parameter selection see (Hülsing et al. 2013).

	 ii.	 Security

The security of XMSSMT can be deduced from that 
of Winternitz OTS and XMSS directly. we omit it for 
concision.

B.	 HSS
(a)	 Construction

HSS, an abbreviation for Hierarchical Signature Sys-
tem, is the hyper-tree version of LMS which allows sign-
ing cryptographically unlimited number of messages. 
In its construction, it uses LMS both to build the inte-
rior authentication path in a sub-tree, and the signature 
between the sub-tree. For more details about parameter 
selection see (McGrew et al. 2019).

(b)	Security

The EUCMA of HSS is based on the EUCMA of LMS, 
i.e., if the adversary can forgery a valid signature for HSS 
with negligible probability, implies he can also forgery a 
valid signature for the LMS with negligible probability. 
The iteration functions of OTS and hash tree both need 
to be second preimage resistant as in the LMS.

(3)	Unlimited Number and Stateless

Stateless hash-based signature schemes don’t need 
key state management to update the signature key any 
more, i.e., the signature key is chosen pseudorandomly 

when signing a message. In the consequence, it col-
lides with the probability of k−1/2 based on the birthday 
attack if the OTS schemes are used to sign messages, 
where k is the signature keys space, i.e., p2 signature 
keys are needed if signing p messages. Therefore, the 
scale of the whole tree is much larger than that of the 
same number of messages to be signed in the stateful 
schemes. Several key issues should be concerned in the 
design unlimited number and stateless hash-based sig-
nature schemes.

Firstly, an efficient algorithm should be used to select 
the key from the space of all the signature keys randomly 
or pseudorandomly instead of selecting sequentially by 
the key state management; in practice, most stateless 
hash-based signature schemes take the message to be 
signed as one input of the PRG algorithm to select the 
key pseudorandomly.

Secondly, hyper-tree is still the most common approach 
to construct unlimited number and stateless schemes. A 
whole tree in a much larger scale needs to be constructed 
to avoid the key collision in which one key is used twice 
to sign two messages. As we analyzed in previous section, 
by using the hyper-tree in hash-based signatures, only 
one sub-tree needs to be computed on each layer, the key 
generation time reduces exponentially just at the cost of 
linear increase of the number of signatures between sub-
trees. Therefore, hyper-tree is still an extraordinary appli-
cable way in designing unlimited number and stateless 
schemes, which is similar to the unlimited number and 
stateful schemes.

Finally, the specific implementation should be effi-
cient enough to make this scheme practical. Several 
approaches could be used to reduce the storage and com-
putation cost. For instance, at the bottom of the whole 
tree, FTS schemes are used to sign the messages instead 
of signing them by OTSs; in terms of generating the sub-
tree in each layer, PRG is used to generate its leaf nodes 
efficiently with a short seed, instead of producing them 
randomly, etc.

Similarly, the signature consists of the index of the pri-
vate key being used, FTS of the message, as well as the 
signatures and corresponding authentication path of the 
root public key on each layer.

A.	SPHINCS

SPHINCS schemes purposed in 2015 is the first prac-
tical stateless hash-based signature with practical per-
formance (Bernstein et  al. 2015); moreover, its security 
is given in the standard model instead of the random 
oracle.
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(a)	Idea

SPHINCS can be viewed as the combination of pseu-
dorandom signature key chosen algorithm, Horst FTS, 
and XMSSMT. The whole structure can be viewed as a 
hyper-tree of height h with d layers of sub-tree of height 
(h + 1)/d-1, PRG and PRF are used to generate the pri-
vate keys and select them pseudorandomly to sign the 
message. XMSSMT is used to sign the root nodes of the 
sub-tree, Horst is used on the bottom layer to sign the 
message directly.

(b)	Construction

In this section, we introduce the construction of 
SPHINCS by explaining how it solves the several key 
issues in the stateless hash-based signature.

Firstly, to solve the matter of selecting the signature key 
(pseudo-)randomly, SPHINCS uses a hash function H: 
{0, 1}2n → {0, 1}n and a PRF F:{0, 1}n × {0, 1}* → {0, 1}2n to 
generate the index IDX of Horst signature key on input 
the message m as follows.

Choose two private key skrand, skSEED uniformly at ran-
domly from {0, 1}n;

Calculate

where prefixa, b (x) denotes the bit sub-string of x from 
the ath bit to bth bit counted from left to right Starting 
with 1; IDX and prefix1, n (Rand) are parts of the final 
signature.

Secondly, SPHINCS uses XMSSMT as its hyper-tree 
scheme, i.e., the root of each sub-tree is signed by the 
W-OTS + key pairs of the trees one layer higher, each 
sub-tree is constructed using XMSS excepting the 
sub-tree on the bottom layer whose leaf nodes used to 
authenticate the signature of message are generated by 
Horst FTS.

Finally, two main approaches are used in SPHINCS to 
achieve more efficient and practical. On one hand, the 
FTS scheme Hors is used instead of OTSs to sign the mes-
sages. Moreover, in order to reduce the public key size 
of Hors and the combined signature size, an improved 
scheme Horst, which is the  abbreviation for Hors with 
tree, is used in SPHINCS for further compressing public 
key. Concretely, a single primary tree is used to compress 
t components in one Horst public key to one Horst root. 
As a result, a Horst signature consists of k signature keys 
and the related authentication paths, one for each. Horst 
reduces the public key size by increasing authentication 

Rand = F(skrand ,m);
Mdgt = Hdgt

(

prefix1, n(Rand),m
)

;
IDX = prefixn+1,n+h(Rand).

paths in the signature. Particularly, an optimization 
technique is used in generating Horst authentication 
path to make the combined size of signature and pub-
lic key minimum. On the other hand, SPHINCS uses an 
address algorithm, to allocate a unique address ADRS 
for each node in the whole tree which is set to different 
values to indicate OTS address, Horst address, L-tree 
address, and sub-tree address respectively. Then the PRF 
F is used to generate the seed of private key on input of 
the ADRS address in Hors or W-OTS + and private key 
skSEED, then PRG G will be used to generate the Horst or 
W-OTS + private key sequence KHorst or W-OTS+,1, KHorst 

or W-OTS+,2, …, KHorst or W-OTS+, t where n is polynomial in 
security parameter, i.e.,

(c)	Security

SPHINCS is EUCMA under the following condition: 
the iteration function used in W-OTS + is second preim-
age resistant and undetectable one-way, the hash function 
used to generate authentication path is second preimage 
resistant, PRG and PRF used are secure pseudorandom 
and the underlying function to generate the Horst sig-
nature is subset-resilient. Furthermore, SPHINCS-256 
achieves 128-bit security against quantum attack.

(d)	Performance

SPHINCS-256 instantiated with BLAKE-256, 
BLAKE-512, CHACHA etc., generating a signature of 
a short message takes around 51  M cycles on a single 
core while hashing throughput is 1.6 cycles per byte, 
and can generate 200 signatures per second on a 4-core 
3.5 GHz Intel CPU, with size of 41 KB, public keys size 
of 1  KB and private key size of 1  KB, which makes it 
practical in application.

B.	 SPHINCS + 

SPHINCS + is an improved version of SHINCS 
and purposed in 2017 (Aumasson and Endignoux 
2017, 2018; Bernstein et  al. 2017, 2019), the follow-
ing improvements have been made compared with 
SHINCS: firstly, Hors is replaced by Fors, which has 
been introduced in "Typical schemes" section. Fors is 

SeedHorst or W−OTS+ = F(ADRS, skSEED);
G(SeedHorst or OTS)

=
(

KHorst or W−OTS+,1,

KHorst or W−OTS+,2, . . . ,

KHorst or W−OTS+,t

)
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designed in such a way that k elements are selected from 
k sets instead one, to solve the weak message problem 
in which the same indices of the message digests yield 
the same elements in the signature; secondly, tweakable 
hash is utilized to achieve multi-fucntion multi-target 
attack resistant, different bitmask and function key are 
applied to each evaluation of the underlying hash func-
tion; finally, all the components in one W-OTS + pub-
lic key are compressed by one call of tweakable 
hash instead of L-tree. Though these improvements, 
SPHINCS + reduces the signature size dramatically, and 
becomes one of the eight candidate algorithms in the 
third round PQC standardization process.

Alike SPHINCS, SPHINCS + can be considered as the 
combination of pseudorandom signature key chosen 
algorithm, XMSSMT of the version in RFC8391, along 
with Fors FTS. Similarly, the whole structure also can be 
viewed as a hyper-tree with d layers of sub-tree, XMSSMT 
is used to sign the immediate nodes in the hyper-tree, 
excepting that Fors is used on the bottom layer to sign 
the messages directly. PRG and PRF are used to generate 
the private keys and select them pseudorandomly to sign 
the message. Specially, tweakable hash functions men-
tioned in “Typical schemes” section are used in many 
components of SPHINCS +, such as the iteration func-
tions, the public keys compression, etc., to make each 
call of the hash function is independent with each other, 
so as to prevent the multi-function multi-target attack.

We also introduce the construction of SPHINCS + by 
explaining how it solves the key issues in the stateless 
hash-based signature; moreover, the main improvement 
of SPHINCS + compared with SPHINCS will be included 
in this section as well.

Firstly, in order to achieve stateless, SPHINCS + uses 
a hash function H and a PRF F to generate the message 
digest and the index Idx of the Fors signature key on 
input the message m and a pair of public parameters PK.
seed and PK.root which separately denote the public seed 
and overall root:

Choose private key skrand (pseudo-)randomly;
Calculate Rand = F (skrand, R, m) and make it public;
where R is set to zero by default, and also can be gener-

ated (pseudo-)randomly.

Compared with the index selection algorithm of 
Horst in SPHINCS, which uses private key as part of 
input and cannot be verified, the adversary can attack 
SPHINCS by evaluating index randomly, computing 
the related message digest, and then checking if the 
private keys of Horst used to sign this message have 
already been revealed in previous signatures; and if yes, 
the adversary forges the signature successfully. It will 
not happen in SPHINCS + as all the input parameters 
used to generate the index are public and can be veri-
fied. Therefore, it is not needed to contain the index in 
signature of SPHINCS + anymore.

Secondly, for the hyper-tree, SPHINCS + also uses 
XMSSMT as its hyper-tree scheme, excepting the sub-tree 
on the bottom layer are generated using Fors FTS.

Finally, several approaches are adopted by 
SPHINCS + to reduce the signature size, and to make the 
whole scheme more efficient and practical.

On the first place, the Fors is used in SPHINCS + instead 
of Hors. For Hors which is the most principal component 
of Horst, its underlying subset-resilience problem has been 
proven to be insecure against adaptive attacks; further-
more, Hors pseudorandomly selects k elements from the 
set of t elements, and the distribution of the selected k ele-
ments should be as uniform as possible, but in fact, some 
weak messages will map the digest into a smaller space, 
which makes it easier to be attacked. Fors, the abbrevia-
tion of forest of random subsets, selects k elements from 
t sets rather than one, and compress each set using a sub-
tree; finally, uses a tweakle hash function to compress the k 
toot nodes to construct an overall public key for one Fors 
instance.

Digest||Idx = H(Rand, PK .seed, PK .root, m).

Table 4  Required security required security of underlying function in hash tree and pseudorandom key selection

Scheme Merkle tree XMSS XMSS in RFC 8391 LMS GMSS XMSSMT HSS SPHINCS SPHINCS + 

Required security of underlying 
function in hash tree and pseu-
dorandom key selection

CR SPR PRF of G(n);
multi-function 
multi-target SPR 
of H

SPR CR SPR SPR PRF of F;
Subset-
resilience of 
Hdgt;
SPR of H

PQ-MM-SPR of 
H and tweakable 
hash;
PQ-PRF of F;
PQ-target subset 
resilience of Hdgt

Model Standard Standard RO RO Standard Standard RO Standard RO
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Security comparison
In this section, we analyze and compare the security 
assumptions of underlying function of hash tree and reduc-
tion model required in these specific hash-based signature 
schemes, the relevant conclusions are shown in Table 4.

For all the hash-based signature schemes mentioned 
above, we do not consider the security assumptions of 
underlying function required in key generation. In terms 
of stateful signature schemes, we only discuss the security 
assumptions of underlying functions used in construct-
ing hash tree. In terms of the stateless signature scheme, 
we consider not only that in constructing hash tree, but 
security assumptions of the underlying function related to 
pseudorandom key selection. H in the table above denotes 
the underlying function used to generate parent node in 
hash tree, other representations are defined in the spe-
cific schemes. Among the above conclusions, CR, SPR, 
PQ, MM, RO denote collision resistant, second preimage 
resistant, post-quantum, multi-function and multi-target, 
random oracle, separately. The security of CR, SPR, PRF 
decreases in turn, MM-SPR has the same security level 
with standard SPR against classical and quantum attacks.

In practice, we expect to design the hash-based signa-
ture scheme with the security assumption of underling 
function as weak as possible. Only consider the required 
security of underlying function in hash tree, under the 
same security level, the output length of the above SPR-
based signature algorithm is halved compared with CR-
based one. In addition, the proof given in standard model 
is more convincing than that of RO.

Conclusion
In this paper, firstly, we discuss the research progress in the 
component hash-based signature, i.e., OTS and FTS, then 
classify the tree-based public key authentication schemes 
of hash-based signature into limited number and state-
ful schemes, unlimited number and stateful schemes and 
unlimited number and stateless schemes, to analyze the 
overall design idea of different categories of hash-based 
signatures, as well as the construction, security reduction 
and performance of specific schemes. Due to the bet-
ter performance of stateful hash-based schemes, they are 
more widely accepted and become standards in practice, 
such as the XMSS and XMSSMT are specified by IETF in 
RFC8391, whereas LMS in RFC8554. However, in the 
standardization of post standard quantum cryptography 
algorithms, stateless hash-based signature, which is more 
in line with the core of digital signature primitive, has 
attracted more interest in both research and application. 
The research of the stateful and stateless hash-based signa-
ture parallel needs to be carried out parallelly and cannot 
be replaced with each other. The specification of stateful 
schemes is more conducive to its application in industry; 

however, in scenarios that do not support key manage-
ment, stateless schemes is the necessary choice.
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