
Li et al. Cybersecurity (2022) 5:13
https://doi.org/10.1186/s42400-022-00117-w

REVIEW

Hash‑based signature revisited
Lingyun Li1,2,3*  , Xianhui Lu1,2 and Kunpeng Wang1,2 

Abstract 

The current development toward quantum attack has shocked our confidence on classical digital signature schemes.
As one of the mainstreams of post quantum cryptography primitives, hash-based signature has attracted more and
more concern in both cryptographic research and application in recent years. The goal of this paper is to present, clas-
sify and discuss different solutions for hash-based signature. Firstly, this paper discusses the research progress in the
component of hash-based signature, i.e., one-time signature and few-time signature; then classifies the tree-based
public key authentication schemes of hash-based signature into limited number and stateful schemes, unlimited
number and stateful schemes and unlimited number and stateless schemes. The above discussion aims to analyze
the overall design idea of different categories of hash-based signatures, as well as the construction, security reduc-
tion and performance efficiency of specific schemes. Finally, the perspectives and possible development directions of
hash-based signature are briefly discussed.

Keywords:  Hash-based signature, One-time signature, Few-time signature, Hash tree

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Digital signature based on public-key cryptosystems
has been widely used in the modern online information
transmission, for example, electronic elections, digital
cash, etc., to provide entity authentication and non-repu-
diation, message integrity and confidentiality. The origi-
nal research of public-key digital signature is focused
on the schemes upon the computationally hard number
theoretic problems, such as RSA designed on the diffi-
culty assumption of factoring large integers (Rivest et al.
1978), ElGamal designed on the difficulty assumption of
discrete logarithms, etc. (ElGamal 1985) But the develop-
ment of quantum computer has shocked our confidence
on this kind of classical digital signature schemes (Gisin
et al. 2002; Bennett et al. 1992; Bernstein 2009; Bras-
sard et al. 2000; Ekert 1991; Bennett 1992; Gröblacher
et al. 2006), by applying “Shor’s algorithm” (Shor 1999),
theoretic problems will no longer be hard and classical
cryptosystems can be broken easily. We can only achieve

computational security by improving the related param-
eters in scale, it is dynamically affected by the develop-
ment of number theory and computing performance, as a
result, it lacks sustainedly durable security.

Another kind of public-key based signature scheme,
hash-based signature, which is believed to resist to both
classical and quantum computers, is attracting more and
more attention in cryptography research. Hash-based
signature is commonly designed in combining one-time
signature (OTS) (Merkle 1979b; Naor et al. 2005) or few-
time signature (FTS) (Perrig 2001; Reyzin and Reyzin
2002; Aumasson and Endignoux 2017, 2018; Bernstein
et al. 2017, 2019) with hash tree, and its security is only
based on the security assumptions of the underlying hash
function, such as collision resistance, second preimage
resistance, onewayness (Coron et al. 2005; Rogaway and
Shrimpton 2004), etc., avoiding the dependence on the
hard number theoretic problems of other digital signa-
ture schemes. Hash function is one of the foundational
topics in cryptography, and many different rapid design
approaches and relevant researches have been presented
to achieve different security properties. Opposite to the
digital signature designed on hard number theoretic
problem, attacks against a specific hash function will
not affect the overall security of hash-based signature; it

Open Access

Cybersecurity

*Correspondence: lilingyun@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, No. 89 Minzhuang Road, Haidian District,
Beijing 100093, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1125-7437
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00117-w&domain=pdf

Page 2 of 26Li et al. Cybersecurity (2022) 5:13

could be solved by replacing the attacked hash function
by others remain secure easily.

Due to the concision and efficiency in the design, hash
function has been implemented maturely after decades
of improvement, hash-based signature which treats hash
function as the central subroutine can achieve high effi-
ciency as well. In addition, through choosing distinct
underlying hash functions and their parameters, as well
as one-time/FTS schemes, tree traversal algorithms, etc.,
it is sufficiently flexible to make a trade-off between sig-
nature size, time and storage, etc., to meet distinct needs
in applications.

However, hash-based signature still has some draw-
backs which need to be solved to make it more practical.
First, the signature key can be used only once to sign one
message in the underlying OTS, even for FTS in which
a single key pair could be used to sign a few messages,
the security of the signature decreases as the number
of signatures increases, it raises a crucial issue that how
to manage large-scale public keys consequently. The
tree-based public key authentication is a classical way
to solve the public key management issue. In the origi-
nal path authentication schemes the signature size grows
logarithmically with the number of signatures, and more
path authentication schemes have been presented in the
recent research to achieve more efficiency. Second, as
the key pair has to be changed into a fresh one after each
signature generation, a natural way is to utilize the state
management to keep record of the state and synchroni-
zation between signer and verifier, otherwise, there may
exists reduplicate use of the signature key, such that the
adversary can forge a valid signature easily. Therefore,
state management plays an essential role in many sce-
narios of the application of hash-based signature, but it
also limits it less practical. In recent years, some stateless
hash-based signatures have been presented which attract
researcher’s concerns, but the stateless hash-based sig-
nature has significantly higher signatures size compared
with the stateful ones in the analogous security level, as a
result, it is difficult to be widely applied in practice.

The goal of this survey is to present, classify and dis-
cuss different schemes that provide solutions for OTS/
FTS, many-time and full-time hash-based signatures,
focus on different security analysis and implementation
strategies about stateful and stateless hash-based signa-
tures. The rest of the survey is organized as follows. In
“Related work” section, we briefly introduce the related
work and progress in the research of hash-based signa-
ture; in “Security notions” section, we give the security
notions of hash function, as well as the definition and the
corresponding security notions of signature scheme; in
“Hash-based Signature” section, we discuss the progress
in the component of hash-based signature in detail, i.e.,

one-time signature and few-time signature, and clas-
sify the tree-based public key authentication schemes of
hash-based signature into limited number and stateful
schemes, unlimited number and stateful schemes and
unlimited number and stateless schemes, introduce their
constructions, analyze and compare the security assump-
tions of underlying function required in these specific
hash-based signature schemes; in “Conclusion” section,
the perspectives and possible development directions of
hash-based signature are briefly discussed.

Related work
Research into hash-based signature has a long history.
In 1979, Merkle presented the first hash-based signature
scheme constructed out of hash function only (Merkle
1979b; Rogaway and Shrimpton 2004), therefore, it is also
named as Merkle signature scheme, which is a combi-
nation of an OTS to sign a single message per key pair
and a path authentication scheme to provide an authen-
tication path to verify the public key related to the sig-
nature of this single message. During the past 40 years,
much more schemes with security analysis have become
available on hash-based signature. For OTS, the follow-
ing schemes have been wildly studied: the Lamport OTS
(Merkle 1989), the Merkle OTS (Merkle 1989), the Win-
ternitz OTS (Merkle 1989; Buchmann et al. 2011a), the
Bleichenbacher-Maurer (Bleichenbacher and Maurer
1994) OTS and W-OTS + (Hülsing 2013), etc. Merkle
OTS is designed based on the Lamport OTS, Winternitz
OTS can be regarded and as a generalization of Mer-
kle OTS, Merkle OTS and Winternitz OTS, it iterates
an underlying function repeatedly while iteration times
relate to the message to be signed. Bleichenbacher and
Maurer gave a generalization of OTS schemes on acyclic
graphs. W-OTS + provides shorter signatures than previ-
ous schemes with the analogous security level, and offers
a tight reduction that W-OTS + is existentially unforge-
able under an adaptive chosen message attack (EUCMA)
in the standard model, if the underlying hash function
family is second preimage resistant and undetectable
one-way.

FTS, as the name suggests, can be used to sign more
than one message with the same key pair. Typical
schemes for FTS schemes are Biba FTS (Perrig 2001),
Hors FTS (Reyzin and Reyzin 2002) with its variants
Pors FTS (Aumasson and Endignoux 2017, 2018) and
Fors FTS (Bernstein et al. 2017, 2019), etc. Biba FTS can
achieve high verification efficiency at the cost of heavy
pre-computation on key generation and signature; mean-
while, it requires time synchronization between the
sender and receiver. Hors FTS is mainly focus on select-
ing some elements which is determined by the message
to be signed from a far larger set. Pors and Fors FTS

Page 3 of 26Li et al. Cybersecurity (2022) 5:13 	

improves Hors FTS in a way avoiding weak messages,
which are mapped to a small subset and vulnerable to
subset resilience attack.

Although all FTS schemes suggest using the single key
pair to sign more than one message in contrast to one
message in OTS scheme, the security of the signature
decreases as the number of signatures increases.

Since key size increases linearly with the number of the
signed messages in hash-based signature, it is essential
to use key management to realize using fewer key pairs
to authenticate more messages, thus path authentica-
tion scheme comes into being. Among them, tree-based
authentication using the hash tree to authenticate public
keys efficiently is wildly adopted to solve the problem of
key management. To sign a message, after the OTS sig-
nature is generated, an authentication path generated by
the tree-based authentication scheme has to be applied
to verifier. Verifier authenticates the one-time public
key along with the authentication path to construct the
tree from leaf nodes to root, or from the root to bot-
tom, which comes into two main different approaches
to authenticate public keys in large scale, depending on
stateful or stateless of the hash-based signature scheme,
and signing limited number or cryptographic unlimited
number of messages. In terms of stateful hash-based
signature, its signature key needs to be renewed when
exceeding its service time, namely, the signing times it
can be used to sign the messages; whereas the stateless
hash-based signature selects signature key pseudoran-
domly, and doesn’t require key management. Typical
schemes of limited number and stateful hash-based sig-
nature are Merkle hash-based signature (Merkle 1989),
eXtended Merkle Signature Scheme (XMSS) (Buchmann
et al. 2011b; Hülsing et al. 2018), Leighton-Micali signa-
ture (LMS) (Leighton and Micali 1995; Katz 2016; Failed
2017; McGrew et al. 2019; Buchmann et al. 2006), etc.;
typical Schemes of unlimited number and stateful hash-
based signature are generalized Merkle signature scheme
(GMSS) (Buchmann et al. 2006, 2007), XMSS with
multi-tree (XMSSMT) (Hülsing et al. 2018, 2013), Hier-
archical Signature System (HSS) (McGrew et al. 2019),
etc.; typical Schemes of unlimited number and state-
less hash-based signature are SPHINCS(Bernstein et al.
2015), SPHINCS + (Bernstein et al. 2017, 2019), Gravity-
SPHINCS (Aumasson and Endignoux 2017, 2018), etc.

There has been an increasing amount of literatures
on traversal algorithm of hash-based signature, such
as tree traversal algorithm and hash chain traversal
algorithm, which allows for optimal trade-off between
signature time and storage cost. In terms of tree tra-
versal algorithm, two different approaches are mainly
discussed to compute authentication paths, depending
on considering the node or the subtree of a Merkle tree

as the basic computational element. In terms of frac-
tal hash chains traversal algorithm (Jakobsson 2002;
Jakobsson et al. 2003; Naor et al. 2006; Coppersmith
and Jakobsson 2002; Sella 2003; Berman et al. 2007;
Knecht et al. 1409; Buchmann et al. 2008), all elements
in a hash chain are determined by the initial input and
the combined output is a single element. As the main
purpose of this paper is to introduce typical hash-based
signature schemes which have been discussed and
adopted widely, readers can refer to the literature in
detail to learn more about traversal algorithm of hash-
based signature.

In the application, Even and Goldreich proposed an
on-line/off-line signature scheme (Even et al. 1996),
which uses the efficient OTS scheme for the on-line sign-
ing, along with an ordinary signature scheme used for
the off-line phase. Other applications such as TESLA
(Perrig et al. 2002), wireless security, etc., are also well
researched (Perrig et al. 2001; Bergadano et al. 2002; Bul-
das et al. 2017, 2018).

Security notions
A hash function family H is a map
H :=

{

hk : (0, 1)∗ → (0, 1)n|k ∈ (0, 1)n
}

 , such that
n is polynomial in security parameter λ, here, {0, 1}*
denotes the binary string of arbitrary length.

In this section, firstly we give four security assump-
tions, one-way, second preimage resistant, collision
resistant, enhanced target collision resistant hash func-
tion related to hash function, as the basic component
of hash-based signature, the security of hash function
affects the performance of corresponding hash-based sig-
nature seriously. Secondly, we give the definition and the
corresponding security notion of signature scheme.

Definition 1  One-way hash function (Merkle 1979a).

Hash function family H, security parameter λ are
defined as above. We give the definition that function
family H is one way if for any probabilistic polynomial-
time adversary A there is a negligible function negl such
that

Here x $←− X denotes that x is chosen from X uniformly at
random.

Definition 2  Second preimage resistant hash function
(Menezes et al. 2018).

AdvOWH = Pr

{

k
$←− {0, 1}n, y $←− {0, 1}n, m ← A(1�) :

Hk(m) = y

}

= negl(�)

Page 4 of 26Li et al. Cybersecurity (2022) 5:13

Hash function H, security parameter λ are defined as
above. We give the definition of the function family H is
second preimage resistant if for any probabilistic polyno-
mial-time adversary A there is a negligible function negl
such that

Definition 3  Collision-resistant hash function
(Damgård 1989; Preneel et al. 1993; Black et al. 2002;
Goldwasser et al. 1988).

Hash function H, security parameter λ are defined as
above. We give the definition of the function family H is
collision resistant if for any probabilistic polynomial-time
adversary A there is a negligible function negl such that

Definition 4  Enhanced target collision resistant hash
function (eTCR​) (Halevi and Krawczyk 2006).

Hash function H, security parameter λ are defined as
above. We give the definition of the function family H is
eTCR​ if for any probabilistic polynomial-time adversary
A there is a negligible function negl such that

In eTCR​ game, first A commits a message m, then
receives a random key K, A wins the game if he can out-
put (m′, k′) such that

Definition 5  Signature scheme (Rivest et al. 1978;
ElGamal 1985).

A digital signature scheme ∏ is defined as a triple of
probabilistic polynomial-time algorithms ∏ = (Gen, Sign,
Ver):

AdvSPRH = Pr







k
$←− {0, 1}n, m $←− {0, 1}∗, m′ ← A

�

1�,m
�

:

Hk(m) = Hk(m′)







= negl(�)

Adv
CR

H = Pr







k
$←− {0, 1}n, (m,m′) ← A

�

1�
�

:

Hk(m) = Hk(m′)]







= negl(�)

Adv
eTCR

H = Pr







(m,m′) ← A
�

1�
�

; k
$←− {0, 1}n; (k′,m′) ← A

�

1�
�

:

Hk(m) = Hk ′(m′)]







= negl(�)

(m′, k′) �= (m, k) and Hk(m) = Hk′(m′).

Gen On input security parameter 1λ, output a private
signature key sk and public verification key pk;

Sig On input a signature key sk, message m, output a
signature σ;

Ver Ver is a deterministic algorithm, on input a public

key, a message and its signature triple (pk, m, σ), output 1
iff σ is a valid signature on m.

Definition 6  EUCMA security (Halevi and Krawczyk
2006).

Let ∏ = (Gen, Sig, Ver) be a signature scheme with
private key sk and public key pk. We define EUCMA as
follows. The forger A has access to the public key and
a signing oracle O (sk, ·). On input the query of a mes-
sage m, O returns A the signature Sig(m) on m. A has
the chance to adaptively query O at most q times. The
parameter q is bounded up with different kinds of signa-
ture schemes. For one time signature, q = 1. The property
adaptive means a message may depend on answers of O
replied previously. On input security parameter λ, ∏ is
unforgeability under an adaptive chosen message attack if
for any probabilistic polynomial-time A there is a negligi-
ble function negl such that

Definition 7  Forward-secure property (Krawczyk 2000;
Bellare and Miner 1999).

Adv
EU−CMA

� = Pr



































(sk0, pk) ← Gen
�

1�
�

{(Mi, σi)}|
q
i=1be the q times answer

of O
�

skj , ·
�

;
(M∗, σ∗) ← A

�

pk , (Mi, σi)}|
q
i=1

�

:
M∗ �= Mi|

q
i=1, Ver(M∗, σ∗, pk) = 1



































= negl(�)

Page 5 of 26Li et al. Cybersecurity (2022) 5:13 	

Forward-secure property makes sense for key-evolv-
ing signature scheme, in which the whole signature
process is divided into T periods, the public key pk i.e.,
the overall public key, is fixed for all these T periods,
but the private key ski is evolved in each period, where
i = 1, …, T. Compared with the conventional signature
scheme, forward-secure signature scheme only gen-
erates pk and sk0 in key generation algorithm, and an
additional secret key update algorithm Sku is needed,
which generates ski on input ski-1, for i = 1, …, T; Sig in
each period i takes as input the signature key ski and
message m, output a signature σ along with the period
index i.

Let ∏ = (Gen, Sku, Sig, Ver) be a key-evolving signa-
ture scheme with private key sk0 of the first period and
public key pk. We define forward-secure EUCMA as
follows.

The forger A has access to the total number of time
periods, the current time period, the public key pk and
a signing oracle O (sk, ·). In the chosen-message attack
phase, on input the query of a message m, O returns
A the signature Sig(m) on m under the private key sk1,
…, skT in order. A has the chance to query O at most
q times. The parameter q is bounded up with different
kinds of signature schemes. For one time signature,
q = 1.

A stops the chosen-message attack at a period of his
choice, and then goes into the break-in phase, where
A obtains skj of the current period j, his goal is to
forge a signature (i, σ∗) on m* of his choice such that
(i,M∗) �= (i,Mi|

q
i=1) and Ver(m∗, i, σ∗, pk) = 1 , where

i < j. In the following, we use break-in to denote both
the break-in phase and the index of it for simplicity.
On input security parameter λ, ∏ is forward-secure
EUCMA if for any probabilistic polynomial-time A
there is a negligible function negl such that

Adv
FW−EUCMA

� = Pr



































































































(sk , pk) ← Gen
�

1�
�

repeat

j = j + 1; skj=Sku
�

skj−1

�

until break − in phase or j = T .

if not break − in phase and j = T , then j = T + 1

{(Mi, σi, p)}|
q
i=1 be the q times answer

of O
�

skp, ·
�

;
// the values of p are in ascending order

(i, M∗, σ∗) ← A
�

pk , (Mi, σi, p)}|
q
i=1, skbreak−in

�

:
(i,M∗) �=

�

i,Mi|
q
i=1

�

, Ver(i,M∗, σ∗, pk) = 1

0 ≤ i < break − in



































































































= negl(�)

Hash‑based signature
OTS
In this section, we introduce several OTS schemes,
including Lamport OTS and its improved version
Merkle OTS, Winternitz OTS and W-OTS + OTS.
Compared with other kinds of OTS scheme, such as
graph-based OTS, the above schemes following Mer-
kle and Winternitz’s approach are still more widely
accepted and employed in the application.

Idea
One signature key of OTS can only be used to sign one
message.

Fig. 1  Lamport OTS scheme

Page 6 of 26Li et al. Cybersecurity (2022) 5:13

Typical Schemes

(1)	Lamport OTS

The first OTS scheme was presented by Lamport in
1979(Merkle 1989; Lamport 1979), called Lamport
OTS or Lamport-Diffie OTS.

A.	Idea

Lamport OTS adopts the construction with maximum
storage cost and the minimum calculation cost. In order
to sign a k-bit message, it utilizes 2k private keys and 2k
public keys. As shown in Fig. 1, each message bit corre-
sponds to two private keys. When the message bit is 0, it
corresponds to the first private key; otherwise, it corre-
sponds to the second one. Only one hash evaluation of a
one-way hash function is used to construct the public key
on input the relevant private key.

B.	 Scheme

For Lamport OTS scheme Sig = (Gen, Sig, Ver), a one-
way hash function H is used which is a map: {0, 1}n → {0,
1}n, where n is polynomial in security parameter λ. The
message m is presented as m = (m0, m1, . . . , mk).

The signature scheme is described as follows.
Gen On input security parameter 1λ, choose private

key sequence sk = (sk1,0, sk1,1, sk2,0, sk2,1, . . . , skk , skk ,0,1)
$←−(0,1)n*2k, n is polynomial in security parameter λ, then

output the public key sequence pk as follows:

Sig On input the message m = (m0, m1, . . . , mk) and
private key sequence sk, output the signature as follows:

Ver On input the message m, public key sequence pk,
signature σ, the following compution and comparison are
done in order to verify the signature.

To sign a message of arbitrary length, compression
hash function should be used to compute message digest,
which is applied to the signature algorithm as input.

pk =
(

pk1,0, pk1,1, pk2,0, pk2,1, . . . , pkk ,0, pkk ,1
)

=
(

H
(

sk1,0
)

,H
(

sk1,1
)

,H
(

sk2,0
)

,H
(

sk2,1
)

,

. . . ,H
(

skk ,0
)

,H
(

skk ,1
))

σ = (σ1, σ2 , . . . , σk) =
(

sk1,m1 , sk2,m2 , . . . , skk ,mk

)

(H(σ1),H(σ2), . . . ,H(σk))
?=
(

pk1,m1 , pk2,m2 , . . . , pkk ,mk

)

C.	Security

Unforgeability of Lamport OTS depends on the one-
wayness of hash function H.

(2)	Improved Lamport OTS: Merkle OTS

A.	Idea

Merkle improves Lamport OTS by appending an
extra checksum value to each message before sign-
ing the message, which records the quantity of 0 bit in
the message, as shown in Fig. 2. The length needs to
be signed becomes

⌊

log k
⌋

 + 1 bits longer than that of
Lamport OTS, set s = 

⌊

log k
⌋

 + 1.

B.	 Scheme

The public key sequence pk is generated as
pk = (pk1, pk2, . . . , pkk+s)

= (H(sk1),H(sk2), . . . ,H(skk+s))
.

To sign a message m, m||checksum = (m1, …, mk+s),
the signer only needs to reveal the ski which is related
to mi = 1, i = 1, …, k + s. The signature σ turns to be:

Fig. 2  Merkle OTS scheme

Page 7 of 26Li et al. Cybersecurity (2022) 5:13 	

where mjp = 1, 0 < jp ≤ k + s.
Consequently, the verification becomes into check:

Adversary who what to alter the bit value of the mes-
sage to be signed has to reveal at least one preimage
concerning either the original message or its checksum.

C.	Security and Efficiency

Lamport OTS scheme and Merkle OTS is EUCMA as
long as the used hash function is one-way.

Although the key generation, signature and verification
of Lampot OTS becomes more efficient, the scale of the
signature and corresponding key pair is still quite large;
compared with Lamport OTS, Merkle OTS only achieves
limited improvement in performance.

(3)	Winternitz OTS

In this section we describe Winternitz OTS mentioned
in Merkle (1989); Buchmann et al. 2011a), which is an
improvement of Lamport OTS and Merkle’s scheme,
achieves shorter signature and key pair size. An iterative
function is applied in the Winternitz OTS to compute the
public keys from the private keys.

A.	Idea

The main drawback of Lamport OTS signatures is its
long signature size as well as key pair size, the signature

σ =
(

σj1 , σ2 , . . . , σjp
)

=
(

skj1 , sk2 , . . . , skjp
)

,

(

H
(

σj1
)

,H
(

σj2
)

, . . . ,H
(

σjp
)) ?=

(

pkj1 , pk2, . . . , pkjp
)

size of Lamport OTS increases proportionally with the
bit length of message to be signed by n times, where n is
the bit length of each component of key sequence. More-
over, both private key and private key size as 2n times as
bit length of message. Although by appending a check-
sum to each message, only limited decrease has been
made in Merkle OTS of signature and key pair size. The
idea of Winternitz OTS is to reduce the signature size
and key pair size at the expense of some extra hash eval-
uations as shown in Fig. 3. Concretely, Winternitz OTS
processes message m to the new form in base w represen-
tation firstly, then decomposes m into blocks of length
log w. for each block, iterates a one-way hash function
at most w–1 times, and the output of the hash function
is considered as the signature for each block, which will
be concatenated sequentially to form the whole signature
of m. Winternitz OTS provides a trade-off between the
signature time and the signature size using the parameter
w. The larger w is, the smaller signature size will be. For
example, on input a 256 bits message, the hash functions
used in Lamport OTS and Winternitz OTS are both maps
of {0, 1}n to {0, 1}n, when w is chosen as 16, the signature
size of Winternitz OTS is 67n bits, signature generation
requires 960 and 483 evaluations of the underlying hash
function in the worst case and average case, separately;
when w is chosen as 256, the signature size of Winternitz
OTS is 34n bits, signature generation requires 8160 and
4082 evaluations of the underlying hash function in the
worst case and average case, separately; compared with
signature size of 256n bits and signature generation of
512 hash evaluations in Lamport OTS, signature size of
264n bits and 136n bits in worst case and average case,
signature generation of 264n hash evaluations in Merkle
OTS.

Fig. 3  Winternitz OTS scheme

Page 8 of 26Li et al. Cybersecurity (2022) 5:13

B.	 Scheme

For Winternitz OTS scheme Sig = (Gen, Sign,
Ver), a one-way keyed hash function h is used:
(0, 1)n × k → (0, 1)n where k is chosen from the key
space K uniformly at random. Two parameter w (to be
power of two) and l are used, which are related to the bit
length of message block and the number of key compo-
nents in one signature respectively.

The iteration function hi(x) is constructed by repeat-
ing the function h(x) i times, where i ∈ {0,..., w − 1}, that
is, h2(x) = h(h (x)) and h 0(x) = x. On input a m bits mes-
sage, process it to the new form (m1, m2, …, mp) in base
w representation, then attach checksum
C =

p

�
i=1

(w − 1−mi) in base w representation is to m,
denote the whole string of m||C as (b1, b2, …, bl), where

l =
⌈

m
logw

⌉

+

⌈

log
(⌈

m
logw

⌉

·(w−1)
)

logw

⌉

.The signature scheme is

described as follows.
Gen On input security parameter 1λ, choose private

key sequence sk = (sk1, sk2, . . . , skl)
$←−(0,1)n*l, n is poly-

nomial in security parameter λ, then compute public
key sequence pk as follows:

Sig On input the message m and private key sequence
sk, compute the signature sequenceσis:

pk = (pk1, . . . , pkl) =
(

hw−1(sk1), . . . , h
w−1(skl)

)

Ver On input the message m, public key sequence
pk, signature sequence σ, the following compution and
comparison are done verify the signature:

A collision resistant hash function should be utilized
here to sign message of arbitrary length.

C.	Security

It has been proven that the Winternitz OTS is
EUCMA if using either a collision resistant, undectable
hash function or a PRF (Dods et al. 2005).

In Dods et al. (2005), the Authors provide security
reductions for graph based OTS schemes, and achieves
the conclusion that any compressed graph based OTS
scheme with strongly compatible signature sets, includ-
ing Winternitz OTS, is secure if the underlying functions
are collision-resistant, one-way and undetectable.

In Buchmann et al. (2011a), it is proven that a variant of
W-OTS is EUCMA when instantiated with PRF. Further-
more, it has been proven that a variant of one-way func-
tion named key onewayness function exists if PRF exists.
Actually, this variant of W-OTS is proven to be EUCMA
directly if the underlying function is key-one-way in
their reduction. The following conclusions about original
Winternitz OTS can be obtained spontaneously that the

σ=(σ1, . . . , σl) =
(

hb1(sk1), . . . , h
bl (skl)

)

(

hw−1−b1 (σ1), . . . , h
w−1−bl (σl)

)

?= (pk1, . . . , pkl)

Fig. 4  W-OTS + scheme

Page 9 of 26Li et al. Cybersecurity (2022) 5:13 	

Winternitz OTS is EUCMA when the used hash function
is one-way. Here, we omit the reduction for concision.

It is not discussed that whether or not the message to
be signed needs to be compressed into a digest in Win-
ternitz OTS in Merkle (1989), we come to the above con-
clusion in the assumption that the message will not be
compressed by a hash function before being signed, and
if on the contrary, no better conclusion than collision
resistance can be drawn.

(4) W-OTS + 

A.	Idea and Scheme

W-OTS + presented in Hülsing (2013) still follows the
construction of WOTS as shown in Fig. 4, the main dif-
ference between them is that W-OTS + uses a new itera-
tion function hi (sk, x) constructed as follows.

For Winternitz OTS scheme Sig = (Gen,
Sign, Ver), a one-way function family F is used:
F :=

{

fk : k × (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 , k is chosen
from {0, 1}n uniformly at random. Definitions and assign-
ment of two parameters w, l are same as that of WOTS.
On input the iteration counter i ∈ {0, …, w − 1}, rand-
omized element r = (r1, …, rj) ∈ {0, 1}n*j where j ≥ i. the
iteration function hi(x, r) is constructed by repeating the
function h(x) i times, hi (x, r) = hi−1 (x, r) ⊕ ri,h 0(x) = x.

W-OTS + is only designed to sign the message of fixed
length, similarly a collision resistant hash function should
be utilized for message of arbitrary length.

B.	 Security

It has been proven that the W-OTS + is EUCMA as
long as the used hash function family is second preimage
resistant and undetectable one-way function family.

The bit security of Winternitz OTS is n-w-1-2log(w),
compared with n-log(w2l + w) of that of W-OTS + . It can
be concluded that as a negative impact on the security
level, w has a linear effect on Winternitz OTS whereas
logarithmic effect on W-OTS + . In consequence, it

is more autonomous in setting security level by using
W-OTS + in implementations.

We describe a variant of W-OTS + in RFC8391 (Hüls-
ing et al. 2018) in "Typical Schemes" section. In order to
randomize each call of the iteration function, a unique
pair of key and bitmask is used, which is generated by a
PRF taking a seed key and a unique address as input at
the cost of two additional PRF calls. For more details see
"Typical Schemes" section.

Performance and security comparison
Here, we compare the performance and security level
of Lampot OTS, Merkle OTS, Winternitz OTS and
OTS + in the average size of signature key, verification
key, signature, the average time cost of key generation
scheme Gen, signature scheme Sig, verification scheme
Ver, and the security level, separately, as shown in Table 1,
where k denotes the bit length of message, n denotes the
input and output bit length of hash/one-way function, w
and l follow the definition in WOTS and W-OTS + . We
measure the average timing in terms of evaluations of
underlying hash/ one-way function, we just concern the
time cost related to the computations of hash/one-way
function, and omit the time cost of initial elements gener-
ation such as generating the private key and randomized
elements, we also ignore the computation cost of XOR
operation, as it can be neglected compared with the oper-
ation cost of hash function. As shown above, in terms of
former two OTS schemes, although the key generation,
signature and verification of are very efficient, the scale
of the signature and corresponding key pair is quite large,
and only limited decrease has been made in Merkle OTS
compared with Lamport OTS in performance. The latter
two OTS schemes reduced the key pair size and signature
size significantly at the cost of additional computation,
they perform similar in size of key pair and signature and
the time cost when ignoring the producing cost of ran-
domized elements and computation cost of XOR opera-
tion. The main difference between Winternitz OTS and
W-OTS + is the influence of parameter w on the security
levels. That is, w impacts the security level of Winternitz

Table 1  Performance and security comparison of OTS schemes

Average size Average timing (evaluation times of
underlying hash function)

Security level

Scheme Signature key Verification key Signature Gen Sig Ver

Lampot OTS 2nk 2nk nk 2 k 0 k n

Merkle OTS (k + ⌊log k⌋ + 1)n (k + ⌊log k⌋ + 1)n
(

k
2
+ ⌊log k⌋ + 1

)

n k + ⌊log k⌋ + 1 0 k
2
+ ⌊log k⌋ + 1 n

Winternitz OTS ln ln ln l(w–1) l(w−1)
2

l(w−1)
2

n–w–1–2log(lw)

WOTS +  ln (l + w–1)n ln l(w–1) l(w−1)
2

l(w−1)
2

n–log(w2l + w)

Page 10 of 26Li et al. Cybersecurity (2022) 5:13

OTS negative linearly while impacts W-OTS + negative
logarithmically in sense of security level, which leads that
w will be limited if we target a specific security level in
WOTS compared with W-OTS + .

FTS
In this section, we introduce several FTS schemes,
including Biba, Hors, Pors.

Idea
FTS, as the name suggests, can be used to sign more than
one message with the same key pair. Although all FTS
schemes uses the single key pair to sign more than one
message in contrast to one of OTS scheme, the security
of the signature decreases with the number of messages
to be signed. Examples for FTS schemes are Biba, Hors,
Pors, Fors, etc. Biba FTS can achieve high verification
efficiency at the cost of signature generation time as well
as the public key scale, it is suggested to use Biba in the
secure broadcast communication protocol to achieve
low communication overload and high robustness to
packet loss. On the downside, this scheme requires time

synchronization between the sender and receiver, and
heavy pre-computation before signature generation.
Hors, Pors, Fors is mainly focus on selecting k elements
which is determined by the message to be signed from a
large set of t, where t >  > k. The security of Hors is based
on the subset-resilient assumption. But actually, Hors
maps some messages to small subsets which are easier
to be covered in a subset resilience attack. Pors solves
this problem in such a way that a pseudorandom num-
ber generator (PRG) is utilized to obtain a pseudorandom
subset, Fors is designed that k elements are selected from
k sets of t elements each, i,e, one in each.

Typical schemes

(1)	Biba

In this section we describe BiBa signature scheme
mentioned in Perrig (2001), which achieves fast verifi-
cation and small signature size, at the cost of signature
generation time as well as the public key scale. We also
describe the main idea of a secure broadcast commu-
nication protocol based on Biba mentioned in Perrig
(2001).

A.	Idea

BiBa exploits k-way (k ≥ 2) collision of a hash func-
tion family to generate the signature. Precisely, the signer
precomputes a large scale of random numbers which are
authenticated by the public keys. In particular, the calcu-
lation from random numbers to public keys is one-way.
Then, use the random numbers to generate BiBa signa-
ture in a way that the signature is the k random elements
among them who collides in the relatively function fam-
ily. The verification can easily and efficient be achieved
by verify the output of the relatively function family on
input the k elements of the signature separately. The veri-
fiable random number possessed by the signer is signifi-
cantly larger than that of the adversary, as a result, signer
can find a signature with overwhelming probability than
adversary.

B.	 Scheme
(a)	 Initial Biba FTS
i.	 Scheme

For Biba FTS scheme Sig = (Gen, Sign,Ver), the follow-
ing hash function h, one-way function family G are used:

On input a message to be signed, the digest of the
message h(m) needs to be computed first. The signature
scheme is described as follows.

Gen On input security parameter 1λ, firstly generate
t random numbers SEALi from (0, 1)n , for i = 1,…, t, t is
polynomial in security parameter λ. Then on input SEALi
for i = 1, …, t, output the public keys sequence as follows:

Sig On input the message m, SEALi i = 1,…, t, choose k
SEALjp by checking

where p = 1,…, k, i ≤ jp ≤ t.
Output the signature as follows:

Ver On input the message m, public key sequence
(pk1, . . . , pkt), signature sequence (σ1, . . . , σk) , the fol-
lowing compution and comparison are done in order to
verify the signature:

F : (0, 1)n×(0, 1)n1 → (0, 1)n h : (0, 1)∗ → (0, 1)n2 G(n2) =
{

Gh : (0, 1)n → [0, n− 1]|h ∈ (0, 1)n2
}

(pk1, . . . , pkt) =
(

FSEAL1(0), . . . , FSEALt (0)
)

Gh(m)

(

SEALj1
)

=Gh(m)

(

SEALj2
)

= · · · = Gh(m)

(

SEALjk
)

,

σ = (σ1, ..., σk)

=
(

SEALj1 , SEALj2 , . . . , SEALjk
)

Page 11 of 26Li et al. Cybersecurity (2022) 5:13 	

	 ii.	 Why is Biba FTS?

In Biba FTS, for any message digest, the signer all can
find k-way collisions with high probability to form the sig-
nature of the messages as long as the signer has sufficient
SEALs, which are verifiable as the preimage of the cor-
responding public key of function F; meanwhile, we have
pointed that the SEALs possessed by the signer is signifi-
cantly larger than that of the adversary, signer can find a
signature with overwhelming probability than adversary.
Therefore, the more signatures have been generated, the
more SEALs can be obtained by the adversary simultane-
ously, and the higher probability the adversary is with to
forge a signature successfully. For a k-way collision, the
probability that adversary forges a signature is as follows:

where t is the number of SEALs revealed by previous
signature.

(b)	Broadcast Authentication Protocol Based on Biba

The main idea of the broadcast authentication protocol
based on Biba is to use one-way hash chains to achieve
the fast authentication and replenishment of SEALs. Two
pseudorandom functions (PRF) F, F′ are used here to gen-
erate the SEALs and the corresponding dedicated-keys.

For the dedicated-key sequence {Ki} where1 ≤ i ≤ l,

For the dedicated-key sequence {SEALi,j} where i = 1,
…, t, 1 ≤ j ≤ l,

The label i in the above is considered as the signature
period, which is used from 1 to l in accordance with
signature order. In each time period p, the SEAL1,p, …,
SEALt, p and dedicated-key Kp are active. These k colliding

(

pkj1 , . . . , pkjk
) ?=

(

Fσ1(0), . . . , Fσk (0)
)

Gh(m)(σ1)
?=Gh(m)(σ1)

?= . . .
?=Gh(m)(σk)

P =
Ck
t · (n− 1)t−k

nt−1
,

F : (0, 1)n × (0, 1)n1 → (0, 1)n,

F ′ : (0, 1)n1 × (0, 1)n1 → (0, 1)n1

Kl
$←− {0, 1}n1 , Ki = F ′

Ki+1
(0)(1 ≤ i < l).

SEALi,l
$←− {0, 1}n2 , (1 ≤ i < t)

SEALi,j = FSEALi,j+1

(

Kj+1

)

,
(

i = 1, . . . , t, 1 ≤ j < l
)

elements to generate the signature in Biba schemes are
chosen form SEAL1, p, …, SEALt, p. In order to verify the
signature, the signer publishes Kp, and sends SEALi,p–1
(i = 1, …, t) and Kp–1 over an authenticated channel. The
following compution and comparison are done in order
to achieve the signing verification: firstly, check whether
the SEALs corresponding to the k elements in the signa-
ture are generated correctly by function F on input the
related SEALs of previous period and dedicated-key of
current period; secondly, verify whether k elements in
the signature collide with each other of function G. This
broadcast authentication protocol requires time synchro-
nization between the signer and verifier.

(2)	Hors

A.	Idea

Hors can be considered as a generalization of Lamport
OTS proposed in 2002 (Reyzin and Reyzin 2002), in
which a large number of public keys are precomputed on
input the related private keys of a one-way function. The
essence of Hors is to solve the problem of selecting a
small subset containing k elements from a large set of t
elements pseudo-randomly, t >  > k. The message digest is
interpreted as a label sequence which indicates a specific
subset of the key pairs, and the private keys in this subset
form the signature. In order to sign a few messages using
these key pairs, the underlying hash function H used to
digest the message should be r-subset-resilient, i.e., for
any probabilistic polynomial-time adversary A who can
output (m1, m2,…, mr+1) such that H(mr+1)

r
⊆
i=1

H(mi)

successfully with negligible probability.

B.	 Scheme

For Hors FTS scheme Sig = (Gen, Sign, Ver), the fol-
lowing one-way function f, hash function h are used:

h : (0, 1)∗ → (0, 1)l.
On input a message to be signed, digest the message m

to be h(m) first, then sign h(m) as follows.
Gen On input security parameter 1λ, firstly generate t

n-bit private keys ski uniformly at random, for i = 1,…, t,
t is polynomial in security parameter λ. Then, output the
public keys sequence as follows:

f : (0, 1)n → (0, 1)n

(pk1, . . . , pkt) =
(

f (sk1), . . . , f (skt)
)

Page 12 of 26Li et al. Cybersecurity (2022) 5:13

Sig On input the message m, private keys ski i = 1, …,
t, denote h(m) as (b1, b2, …, bk) in base t representation,
where l = k ∗ log t. Output the signature as follows:

Ver On input the message m, public key sequence
(pk1, . . . , pkt), signature sequence (σ1, . . . , σk) , firstly
digest the message m to be h(m) and denote h(m) as (b1, b2,
…, bk) in base t representation, the following compution
and comparison are done in order to check the signature:

C.	Security

It has been proven that the signatures are r-time
EUCMA if the hash function used to digest the message
is r-subset-resilient and function used to generate the
public keys is one-way.

(3)	Pors

The security of Hors is based on the subset-resilient
assumption (Aumasson and Endignoux 2018). But actu-
ally, Hors maps some messages to small subsets which
are easier to be covered in a subset collision attack.
Pors solves this problem in such a way that a PRG is
utilized to obtain a pseudorandom subset. Concretely,
a hash function family H: {hk : (0, 1)∗ → (0, 1)n|k ∈ K }
and a PRF G: (0, 1)n → (0, 1)∗ is used in Pors. Firstly,
on input a message m into G, choose the first k distinct
output (b1, b2, …, bk) as label sequence which indicates
the specific subset of the key pairs, where each block is
in base t representation, i.e., G(m) = (b1, b2, …, bk).

The key generation is the same as that of Hors, and
the above k indices are used to select k parameters as
the signature value, from the private key which con-
tains t values.

(4)	Fors

A.	Idea

Fors is presented in the SPHINCS + hash-based signa-
ture in 2017 (Bernstein et al. 2017), which is also a suc-
cessor of Hors. As Hors selects k elements all from one
set of t elements, the same indices of the message digests
yield the same elements in the signature; in order to solve
this issue, Fors is designed in such a way that k elements

σ = (σ1, . . . , σk)

=
(

skb1 , skb2 , . . . , skbk
)

(

pkb1 , . . . , pkbk
) ?=

(

f (σ1), . . . , f (σk)
)

are selected from k sets of t elements each, i,e, one for
each; t is set to be power of 2, t >  > k. In this case, only
the same indices with the same position in the message
digest blocks sequence yield the same elements in the sig-
nature. a PRF F: (0, 1)n × (0, 1)32 → (0, 1)n and a tweak-
able hash function H is used in Pors.

Tweakable hash utilizes a public parameter and a
tweakable parameter in addition to the message as input
to a hash function to generate different outputs, in order
to be multi-function multi-target resistant. Several spe-
cific tweakable hash functions are introduced in Bern-
stein et al. (2019), one can choose one among them on
demand, for more details of tweakable hash see (Bern-
stein et al. 2019; Hülsing et al. 2016).

B.	 Scheme

Fors FTS scheme Sig = (Gen, Sig, Ver) is described as
follows.

Gen On input security parameter 1λ, firstly choose n-
bit private keys sk uniformly at random, n is polynomial
in security parameter λ. Then, on input sk, the address of
each private key ADRSi, i = 1, …, kt, output the private
keys sequence as follows:

For each set (skit+1, …, sk(i+1)t), i = 0, …, k-1, use the
tweakable hash function H to build a binary tree with
height of log t, and the roots of k trees consist of the set
of (pk1, . . . , pkk) , which is then input into a tweakable
hash function, generating the final public key pk.

Sig On input the message m, private keys ski i = 1, …,
kt, denote h(m) as (b1, b2, …, bk) in base t representation,
where l = k ∗ log t. Output the signature as follows:

where pathauth,i is the authentication path in the ith tree,
authentication path of the hash tree will be thoroughly
discussed in section.

Ver On input the message m, public key pk, signature σ,
firstly digest the message m to be h(m) and denote h(m)
as (b1, b2, …, bk) in base t representation, the following
compution and comparison are done in order to check
the signature:

Firstly, invoke the tweakable hash function on input
(

skbi+(i−1) t , pathauth,i
)

 to compute PKi, i = 1, …, k. Then,
(pk1, ..., pkk) is input into the tweakable hash function,
generating the final public key pk’.

Finally, compare pk′ ?= pk , if yes, it is a valid signature.

(sk1, . . . , skkt) = (H(sk ,ADRS1), . . . ,H(sk ,ADRSkt))

σ = (σ1, . . . , σk)

=
(

skb1 , pathauth,1, skb2+t , pathauth,2,

. . . , skbk+(k−1)t , pathauth,k

)

Page 13 of 26Li et al. Cybersecurity (2022) 5:13 	

Performance and security comparison
Here, we compare the performance and security level of
Biba, Hors and Pors in the size of signature key, verifica-
tion key and signature, the time cost of key generation
scheme Gen, signature scheme Sig, verification scheme
Ver and the security level, separately, as shown in Table 2.
Without loss of generality, in all schemes t denotes the
number of key pairs (also the number of private keys and
public keys separately), k denotes the component number
in the signature, n denotes the input and output of hash/
one-way function, r denotes the signature times, l and n1
follow the definition in broadcast authentication protocol
based on Biba, q and q’ denote the number of queries to
oracle and hash function separately, Ps denotes the prob-
ability that the signer can find a signature in one trial. We
measure the timing in terms of evaluations of underlying
hash function/one-way function/PRF. We compare the
security level of the above scheme in r-non-adaptive-cho-
sen-message attack model, in which the adversary que-
ries signatures r times on r messages of his choice, and
then he tries to forge a signature on a new message m of
his choice.

As shown above, all these schemes can be used to sign
t messages with the same key pair and achieve high veri-
fication efficiency at the cost of signature generation time
as well as the public key scale. As an improvement of
Hors, Pors can achieve a higher security level.

Tree‑based public key authentication
We have pointed out the main drawback of both OTS
and FTS schemes is that one key pair can only be used
to sign one or a few messages. In a signature scheme, we
authenticate the message based on the integrity of public
key. As a result, to authenticate public key on a large scale
has become a vital issue in the research of hash-based
signature.

The tree-based public key authentication is a classical
way to solve the public key management issue. Further-
more, as the key pair has to be changed into a fresh one
after each signature generation, a natural way is to utilize
the state management to keep record of the state and syn-
chronization between signer and verifier, otherwise there
may exists reduplicate use of the signature key, such that
the adversary can forge a valid signature easily. There-
fore, state management plays an essential role in many
scenarios of the application of hash-based signature, but
it also limits it less practical. Stateless hash-based signa-
ture settles state management at the cost of significantly
higher signature size compared with the stateful ones in
the analogous security level.

In this section, we focus on different constructions
and security analysis about hash-tree based public
key authentication of hash-based signature, classify
hash-based signature into limited number and stateful
schemes, unlimited number and stateful schemes and
unlimited number and stateless schemes, the goal is to
present, classify and discuss different solutions for tree-
based public key authentication.

Different ideas

(1)	Limited number or (cryptographic) unlimited num-
ber

A.	Down-top or top-down

Tree-based authentication scheme efficiently using the
hash tree to authenticate public keys is wildly adopted
to solve the problem of key management. To sign a mes-
sage, after the OTS is generated, the following param-
eters, including the message, the OTS and its index, the

Table 2  Performance and security comparison of FTS schemes

Size Timing (evaluations of hash
function)

Security level

Scheme Signature key Verification key Signature Gen Sig Ver

Biba tn tn kn t (t + 1)/Ps 2k + 1 (kr − 1) log n− log Ckrk

− (kr − k) log(n− 1)

Hors tn tn kn t 1/Ps k + 1 k(log t − log k − log r)

Pors tn tn kn t 1/Ps k + 1 k(log t − log k − log r)

Fors ktn n (k + logt)n kt 1/Ps klogt + k−1

− log







(1+ q)
�

γ

((1− (1− 1
t
)
γ
)k

�

q′
γ

�

(1− 1
2h
)q′−γ 1

2hγ
)







Page 14 of 26Li et al. Cybersecurity (2022) 5:13

one-time public key, along with an authentication path
generated by the tree-based authentication scheme, have
to be applied to verifier. Verifier authenticates the signa-
ture in two steps. Firstly, verify the OTS by the first four
parameters of the signature; Secondly, authenticate the
one-time public key along with the authentication path
to construct the tree from leaf nodes to root, or from
the root to bottom, which comes into two main differ-
ent approaches to authenticate public keys in large scale,
depending on signing limited number or cryptographic
unlimited number of messages.

In terms of authentication down-top, the root, i.e.,
the overall public key, which can be used to verify all
of the public key as leaf nodes, should be constructed
form the leaf nodes in the bottom layer to the top. In
terms of authentication top-down, along this direction
one can establish the trust relationship, as well as the
tree with unlimited number leaf nodes, each node in
the tree can be constructed independent in contrast to
the down-to the tree with unlimited number leaf nodes,
each node in the tree can be constructed independent
in contrast to the down-top approach that the interior
nodes need to be constructed by its children nodes, the
private key corresponding to the node on the higher
layer which has already been authenticated is used to
sign the node on one layer lower, the building-up of all
these signatures in the authentication path is based on
the authenticated root, along top-down direction one
can establish the trust relationship.

Specifically, in the case of down-top authentication,
we set all the public keys to be leaf nodes of a binary
hash tree, these nodes above the lowest layer are cal-
culated from the output of hash function on input
the two closest nodes, called children nodes one level
lower. For a binary tree whose height we denote as h,
actually, it has 2h leaf nodes and h + 1 layers, which are
ranged from 0 to h from bottom up. All of the nodes
are denoted as Ni,j, where i = 0, …, h, denotes the height
of the node counted from bottom to top in the tree,
j = 0, …, 2i – 1, denotes the horizontal index counted
from left to right. To authenticate the ith public key,
an inner node sequence is used as the authentication

path which consist of the sibling nodes on the path
from N0,i to root Nh,0. As shown in Fig. 5, to authen-
ticate N0,4, the corresponding authentication path is
N0,5 → N1,3 → N2,0 → N3,0 in order, along with the mes-
sage, the OTS and its index have to be applied to verify
the signature in the verification phase. In many cases
the one-time public key can be calculated from the
message and the OTS, and needs not to be transmit-
ted to the verifier as a consequence. The nodes in the
authentication path should be used in order, with N0,i
as the initial one, to generate the root node, the signa-
ture is valid as long as the root node generated by the
verifier equals the authenticated one.

In the case of top-down authentication, firstly, one
generates OTS key pairs randomly or pseudorandomly,
here we will not discuss how to generate these key
pairs, which depends on the specific application sce-
nario; then, construct the authentication path in the
opposite directions compared with the above approach,
i.e., from root node to leaf node, the private key related
to the parent node is used to sign its child node in
the top-down order. As shown in Fig. 5, to authen-
ticate N0,4, the corresponding authentication path is
N3,0 → N2,1 → N1,2 → N0,4 in order. Specifically, N3,0 is
the overall public key of the whole system whose integ-
rity has already been authenticated, i.e., the private key
corresponding to N3,0 is used to sign the node N2,1, and
so on, till N0,4, the building-up of all these signatures
in the authentication path is based on the authenticated
N3,0. This approach is similar to the case of hierarchi-
cal public key infrastructure (PKI), where public key
of root CA is signed by a trusted authority, and cor-
responding public key certificate of root CA has been
distributed to all other entities in this PKI system, and
can be verified when necessary. Take three layers PKI
for example, the root CA is on the highest layer will the
end entities in on the lowest layer. The intermediate CA
certificate is issued by Root CA, i.e., the public key of
the intermediate certificate is signed by the Root CA’s
private key. The intermediate certificate then issues cer-
tificates to end entities. Authentication is done from
top to bottom.

For the two tree authentication approaches mentioned
above, it is a natural way to construct the authentica-
tion tree by the first approach as long as the number the
signatures is acceptable, and there no other computing
expense except signing the original message and generat-
ing the related authentication path in the tree. Neverthe-
less, the key generation cost goes up exponentially with
the number of layers in the tree in this approach. Com-
pared with the first approach, the number of signatures
generated by the tree is no longer fixed in the second one,
and it exponentially reduces the computing and storing Fig. 5  Tree authentication

Page 15 of 26Li et al. Cybersecurity (2022) 5:13 	

cost to generate the authentication path at the expense of
linearly increasing signatures with the quantity of the lay-
ers, which are generated by the private key correspond-
ing to the node on the higher layer. In consequence, the
top-down authentication is a more flexible way to sign
unlimited number of messages.

B.	 Hyper-tree

For a larger scale hash-based signature signing enough
messages, it is common to use the hyper-tree trees which
combines both of the two approaches above, such as
GMSS, XMSSMT and HSS which are the hyper-tree vari-
ants of Merkle hash-based signature, LMS and XMSS
separately; SPHINCS with many of its variants such as
SPHINCS + , Gravity SPHINCS, etc., allowing to make a
tradeoff between the signature size and time by the num-
ber of layers.

A whole tree of height h is constructed by d layers sub-
trees of height (h + 1)/d-1, where h, d ∈ N, d|h + 1. The
whole tree can be used to sign 2h messages while single
sub-tree to sign a group of 2(h+1)/d public keys or mes-
sages in the hash-based signature, these sub-trees will be
used consecutively and only one sub-tree on each layer
needs to be computed.

By using the multi-layer sub-trees, firstly, the key
generation time reduces from O(2h) to O(2h+1/d) at
the cost of additional (d–1) signatures. The computa-
tion scale reduces approximately exponentially with
increase of the number of layers, as a consequence,
can meet the requirement of signing enough message
in the resource-limited environment; secondly, using
a single tree to generate a large scale of signature keys
will inevitably lead to a variety of problems in key stor-
ing and distributing. When the signature key is copied
for distributing to other application module, there is
risk of reuse. By using the multi-layer sub-trees, one
can using a single sub-tree to generate the one-time
key pairs for one specific usage, by doing this, the above
problems are easily solved.

(2)	Stateful or stateless

The hash-based signature schemes commonly used
in practice are stateful due to the underlying OTS/FTS,
the signature key needs to be renewed when exceed-
ing its service time, namely, the signing times it can
be used to sign the messages, thus it is necessary to
update the internal key state over time, otherwise, it
is feasible for the forger to generate a new signature
without recovering the signature key. Although it is a
natural way to use this stateful approach to construct a
hash-based signature scheme, it is not in line with the

standard definition of digital definition, in which there
is no requirement about the key state management;
moreover, state management may be difficult to imple-
ment in a cryptosystem with limited functions. In con-
sequence, how to design stateless hash-based signature
has become a raised concern.

In the design of the stateless hash-based schemes, to
select a signature key pseudorandomly when signing
a message, to sign as many messages as possible on the
same system scale, to design a tree in a much larger scale
and to efficiently generate each sub-tree are all the key
issues needed to be fulfilled in the stateless schemes. See
“Typical schemes” section for detailed analysis.

Typical schemes

(1)	Limited number and stateful schemes

As analyzed above, to build authentication path from
bottom top and update the signature key after exceed-
ing its service time, is the most fundamental way to
construct hash-based signature.

A.	Merkle tree

Merkle tree is proposed by Merkle in 1979 (Merkle
1989), which is the original tree authentication scheme
following the approach of signing limited number of
messages mentioned above. A hash function H:{0,
1}2n → {0, 1}n is utilized to construct the nodes in it. A
Merkle tree is a binary tree with 2 h leaves on the bot-
tom layer, whose height we denote as h. for interior
nodes we denote the two nearest nodes on the first
lower layer as its children nodes, the interior nodes val-
ues are set in such a way that it is the output of the hash
function H on input their children node values, i.e.,

where i = 1, …, h, j = 0, …, 2i – 1.
The interior nodes are computed from left to right,

from bottom to top sustainedly, and we denote the node
on h + 1th layer as Root.

A hash-based signature consisting of OTS and Mer-
kle tree works in the following way. Firstly, a Merkle
tree is constructed whose leaf on the lowest layer is the
one-time public key (or its digest). The Root is authen-
ticated by public key authentication technology such
as digital certificate. The Root is the overall public key
which will be used to authenticate all the signatures
constructed by the one-time key related to the leaf in
the Merkle tree.

Ni, j = H
(

Ni−1,2j||Ni−1,2j+1

)

Page 16 of 26Li et al. Cybersecurity (2022) 5:13

To sign a message, the one-time private key is used to
generate the one-time signature. Then, the following data
related to the signature, including the message, the one-
time signature and its index, the public key, along with
authentication path by the tree authentication scheme,
have to be applied to verifier. Before the verification,
the authentication of the Root, such as the root’s digital
certificate, has to been sent to verifier in advance. The
verifier authenticates the Root first, then verifies the one-
time signature, finally validates the one-time public key
using the authentication path sequentially from bottom
up to calculate the tree root, and compare the calculated
root with Root, if they are equal, the signature is valid.

Treehash algorithm has been presented to compute the
root of the Merkle tree with lower storage requirement.
The basic idea is to use a stack along with the push and
pop operations to store the value of nodes when neces-
sary. The treehash algorithm is also used in the BDS algo-
rithm as a subroutine. For more details see (Buchmann
et al. 2008).

B.	 XMSS

XMSS, short for eXtended Merkle Signature Scheme
proposed in 2011 (Buchmann et al. 2011b), can be con-
sidered as an improved version of SPR-MSS and achieves
forward secure and EUCMA if the underlying hash func-
tion family is second preimage resistant.

a)	 Idea

The original version of XMSS uses WOTS as its under-
lying OTS scheme (which is changed to W-OTS + in
the later version), and an XOR tree as its authentica-
tion scheme. First, in order to achieve forward secure,
XMSS makes the following changes to the underlying
OTS scheme: using a forward-secure PRG to generate
the signature key sequence instead of generating them
randomly. It has been proven by Krawczyk (2000) that
an unforgeable forward-secure signature scheme can
be constructed by combining a forward-secure PRG to
generate the signature keys and an unforgeable signa-
ture scheme to generate the signature. In this way, XMSS
achieves forward secure analogously. Second, in the pub-
lic key authentication phrase, XMSS uses the XOR tree
authentication proposed by Bellare and Rogaway, to con-
struct unforgeable hash-based signature scheme, in order
to relax the security assumption of the underlying hash
function to second preimage resistance instead of colli-
sion resistance. In this way, the signature size is reduced
in the analogical security level. Compared with SPR-
MSS which use Lamport OTS as its underlying OTS in
its reduction to compute its security level, the usage of

WOTS in XMSS reduces the signature size by more than
75% in the analogical security level.

(b)	Scheme

As we have discussed about WOTS scheme in "Typical
schemes’ section, here, we just introduce the one-time
key generation scheme and tree authentication scheme of
XMSS.

i.	 One-Time Key Generation

A PRF F(n) = 
{

fk : (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 is used
in XMSS to iteratively generate the state in each Winter-
nitz OTS started from a random initial state SEED. Pre-
cisely, to generate each Winternitz OTS signature key,
beginning with the initial state SEED, XMSS uses the
state Statei−1 of the i-1th Winternitz OTS to produce a
new state Statei and a new SEEDOTSi of the ith Winternitz
OTS, and then use SEEDOTSi to generate the one-time
private key sequence ski, i.e.,

where i = 1, …, l.
The public key pki are computed in the same way as

that of WOTS on input the corresponding ski.
The one-time key pair generation above using the itera-

tive PRG to achieve the key-evolving has already been
proven to be the forward-secure PRG (Krawczyk 2000).

	 ii.	 Tree authentication

Two type of authentication tree, L-tree and XMSS-tree,
are used in the XMSS tree authentication scheme. The
former is to construct each leaf node of the XMSS tree
on input the one-time public key, whereas the latter is
to reduce the authentication of all these one-time public
keys to a single root of XMSS-tree.

Both the two kinds of trees use the following algo-
rithm to construct the whole tree: A keyed hash function
Hht(n) =

{

hk : (0, 1)4n → (0, 1)n|k ∈ (0, 1)n
}

 is utilized
to construct the nodes on the tree. Similar to that in the
Merkle tree, the two nearest nodes on the first lower
layer in the tree are defined as the children nodes of the
interior nodes. For a tree whose height we denote as h,
the bitmasks bl,j ||br,j are chosen uniformly at random
from {0, 1}2n*h, k is chosen uniformly at random from {0,
1}n. All of the nodes are denoted by Ni,j, where i denotes
the height of the node counted from bottom to top in the
tree, j denotes the horizontal serial index counted from
left to right, both i and j are counted from 0. The interior
nodes values are calculated as:

State0=SEED

Statei||SEEDOTSi = fStatei−1(0)||fStatei−1(1)

skOTSi = fSEEDOTSi
(0)|| · · · ||fSEEDOTSi

(l − 1).

Page 17 of 26Li et al. Cybersecurity (2022) 5:13 	

Ni, j = Hht

(

Ni−1,2j||Ni−1,2j+1 ⊕ bl,j||br,j
)

,where i = 1, …,
h, j = 0, …, 2i–1.

The interior nodes are computed from left to right,
from bottom to top sustainedly.

The main differences between L-tree and XMSS-tree
are as follows. Firstly, the number of leaf nodes of XMSS-
tree must be set to the power of 2, but it is not neces-
sary for L-tree, which leads that the last node in some
layers of L-tree may have no sliding node. In this case,
this last node will be raised to the lowest higher layer
in which it has the sibling node in the L-tree. Secondly,
the leaf nodes of each L-tree are the public keys from the
underlying OTS scheme, whereas the leaf nodes of each
XMSS-tree are the root nodes of each L-tree.

The verification is done similarly as in the Merle-tree
hash-based signature. The message, OTS, the state, the
authentication path along with the public key of the
XMSS-tree has to been sent from the signer to verifier.
The verifier authenticates the message by verifying OTS
first, then validates the one-time public key by using the
nodes in the authentication path sequentially from bot-
tom up to calculate the tree root, and compare it with the
received one, the signature is valid if they are equal.

	iii.	 Security

By using a forward-secure PRF F(n), a second preimage
resistant hash function family Hht as well as W-OTS +,
XMSS achieves forward secure and EUCMA.

B’ a Variant of XMSS in RFC 8391

In RFC 8391 (Hülsing et al. 2018), a variant of XMSS
was proposed using variants of W-OTS + and tree
authentication scheme, the EUCMA of this variant can
be deduced from multi-function multi-target second pre-
image resistance of the underlying function.

(a)	Idea

Multi-function multi-target notions of preimage,
second preimage resistance and eTCR, which have
been proven to have identical or similar security as the
standard notions of that in single-function single-target
notions (Hülsing et al. 2016). However, initial XMSS
along with its tree and multi-tree variant, like XMSSMT
and SPHINCS, are referred to single-function multi-tar-
get notions, where an attacker obtains d target images
or preimages together with a random function from the
hash function family, he attacks successfully if he can
just find one preimage or second preimage for d targets
with non-negligible probability. It has been proven that
for single-function multi-target attack, the complexities
are reduced by d and

√
d in classical and quantum attacks

respectively. By using independent keys and bitmasks to

randomize each call of the PRF and the hash function in
the OTS and the hash tree, the EUCMA of XMSS can be
deduced from multi-function multi-target second preim-
age resistance of the underlying function.

(b)	 Scheme
i.	 A Variant of W-OTS + 

In this section, we introduce the address generation
scheme, iteration function, Key generation, signature and
verification schemes used in this variant of W-OTS+.

•	 An Address Generation Scheme

In order to randomize each call of either the PRF or
the hash function, a unique pair of key and bitmask is
used, which is generated by a PRF taking a seed key and a
unique address as input. We describe the address genera-
tion scheme in detail as follows.

For different usages in OTS, L-tree, and multi-tree, the
addresses are generated in different way. Generally, the
address begins with the layer address and tree address,
which separately describe the height of a tree and the
position in a layer, to indicate the position of a specific
tree in multi-tree and are set to zero in the case of a sin-
gle tree as in OTS and L-tree. The third parameter called
type is used to distinguish the different usages of this
address, which is set to different values to indicate the
OTS address, L-tree address, sub-tree address respec-
tively. For a OTS address, the next three words are OTS
address, chain address and hash address which describe
the position of the OTS in the tree, the chain address
and the index of the hash call in the chain. For an L-tree
address, the next three words are the L-tree address,
tree height and the tree index which describe the index
of the corresponding leaf calculated with this L-tree, the
height of the node for the next computation and the posi-
tion of the node at this height in the L-tree. For a multi-
tree address, the next three words are zero padding, tree
height and the tree index, the latter two describe the
height of the node for the next computation and the posi-
tion of the node at this height in the multi-tree. For the
three types of addresses, the last parameter called key-
AndMask indicates the different usage of the address,
which is set to different values for generating the key, the
most significant bytes and the least significant bytes of
bitmask.

•	 Iteration Function

Compared with the initial W-OTS + , this variant
randomizes each call of the iteration function family
H(n) =

{

hk : (0, 1)n × (0, 1)n → (0, 1)n|k ∈ (0, 1)n
}

 by

Page 18 of 26Li et al. Cybersecurity (2022) 5:13

a PRF G(n) =
{

gSEED : (0, 1)n → (0, 1)n|SEED ∈ (0, 1)n
}

on input a seed key and the corresponding address to
generate a key of H and a bitmask with whom the inter-
mediate value will XOR with. Definition of parameters w
is same as in W-OTS + . On input a value x ∈ {0, 1}n, an
iteration counter i ∈ {0, …, w − 1}, a public seed key SEED,
an address ADRSkey,i or ADRSmask,i with index indicating
its usage in the ith iteration, the new iteration function
hi(x) with G works as follows.

The iteration function iterated as needed times returns
the output of any length of this chain, i.e., iterating from
the initial state or any intermediate state any rounds as
needed.

The above is an instance of tweakable hash. For more
discuss of tweakable hash see "Typical schemes" section.

•	 Key Generation, Signature and Verification

The private keys are either chosen uniformly at ran-
dom or generated pseudorandomly. Similar as in the ini-
tial W-OTS + , the public keys are generated by iterating
the private key w–1 times, while signature and verifica-
tion are generated by iterating either the private key or
the signature certain times determined by the message to
be signed, with only difference of the above new iteration
function used.

G
(

SEED,ADRSkey,i
)

= ki

G
(

SEED,ADRSmask ,i

)

= Maski

h0(x, seed) = x

hi(x, seed) = h
(

ki, h
i−1(x, seed)⊕Maski)

)

	 ii.	 A Variant of XMSS Tree Authentication

The variant of XMSS in 8391 uses the above
W-OTS + variant as its OTS scheme, before inputting
into the W-OTS + variant, the message of arbitrary
length is compressed by a hash function
Hdgt : (0, 1)n × (0, 1)n × (0, 1)n × (0, 1)∗ → (0, 1)n to n-
bit message digest; after OTS scheme, a specific tree
authentication scheme with the PRF G(n) required in
the above W-OTS + and a hash function
H ′

ht
(n) =

{

h′
ht, k

: (0, 1)n × (0, 1)2n → (0, 1)n|k ∈ (0, 1)n
}

will be used to compute a authentication path, as shown
in Fig. 6. Finally, the private key is renewed to prepare
for the next signature. We describe the message digest
scheme and the tree authentication scheme in detail.

•	 Message Digest

Choose private key skdgt uniformly at random from {0,
1}n; on input skdgt, public SEED, public key PKroot, mes-
sage m, index of the signature IDX,

Calculate

The generation of PKroot is described in the following
tree authentication scheme.

•	 Tree Authentication

In the variant of XMSS in 8391 (Hülsing et al. 2018),
as shown in Fig. 6, each subroutine Hht used to the

Rand = Hrdm

(

skdgt , IDX
)

;
Mdgt = Hdgt(Rand||PKroot ||IDX ,m).

Fig. 6  variant of XMSS in 8391

Page 19 of 26Li et al. Cybersecurity (2022) 5:13 	

XMSS tree is randomized by using a PRG on input a
seed key and the corresponding address to generate a
key of Hht’ and two bitmasks with whom the intermedi-
ate values will XOR with in Hht’.

The variant of XMSS still uses L-tree and XMSS-tree
of similar structure in constructing authentication tree,
but with the distinct tree function Hht’ as follows.

The bitmasks Maski and function key ki of H’ht are
generated by function G(n) of public SEED and corre-
sponding address. The interior node value Ni, j of the
hash tree is calculated by function Hht’ as:

where Ni-1,2j and Ni-1,2j+1 are two nearest nodes on the
first lower layer in the tree, i = 0, …, h, j = 0, …, 2i-1.

The nodes on the bottom layer of the L-tree are each
component of one public key, whereas those of XMSS-
tree are the root nodes of each L-tree. The interior nodes
are computed from left to right, from bottom to top sus-
tainedly, and the root of XMSS-tree is PKroot.

The authentication path of a public key node N0,i con-
sists of the sibling nodes on the path from N0,i to root
Nh,0.

•	 Security

In contrast to the original XMSS, in which once the key
is randomly chosen, the function will be fixed until the
whole tree is constructed, and all the bitmasks in the tree
are chosen uniformly at random as well, tree authentica-
tion scheme in this variant by using independent keys
and bitmasks to randomize each call in the OTS and the
hash tree, can achieve multi-function multi-target resist-
ance in the related security assumption of hash function.

It is obvious to see that if the signature is EUCMA, the
adversary cannot find a second preimage (Rand’, m’) of
(Rand, m) under Hdgt in message digest phase, otherwise,
the adversary can output a forge a signature by simply
replace (Rand, m) with (Rand’, m’) in a valid signature, it
is a more stringent security assumption than eTCR​.

The literature (Aumasson and Endignoux 2018) gives
the security reduction of XMSS-T. The difference between
XMSS-T and the variant of XMSS are: first, two secret keys
must be generated pseudorandomly by function Hprf; sec-
ond, PKroot is not part of the input parameters in the mes-
sage digest function Hdgt’; therefore, Hdgt’only needs to be
(post-quantum) eTCR secure in XMSS-T. XMSS-T is post-
quantum EUCMA under the following assumptions: the
hash function family H(n) in the variant of W-OTS + and
H’ht (n) in tree authentication scheme are post-quantum

G
(

SEED,ADRSkey,i
)

= ki

G
(

SEED,ADRSmask ,i

)

= Maski

Ni, j = h′ht
(

ki,Ni−1,2j||Ni−1,2j+1 ⊕Maski
)

multi-function multi-target second pre-image resistant,
where F has at least two preimages; Hrdm and Hprf are PRF;
G(n) needs to be programmed as quantum random oracle,
the message digest function Hdgt’ to be post-quantum eTCR
secure.

C.	LMS
(a)	 Scheme

The LMS scheme was proposed in 1995 as a USA pat-
ent by Leighton and Micali (1995), and recently was pub-
lished as RFC8554 by IETF (McGrew et al. 2019). The LMS
scheme also can be considered as an improved version
Merkle scheme, and can achieve stronger security by using
different prefix in its iteration function. The main differ-
ence between LMS and Merkle scheme lies in the iteration
function from the perspective of designing structure. Here,
we mainly introduce the iteration function of the version in
RFC8554.

LMS randomizes each call of the iteration function
h : (0, 1)n ∗ (0, 1)n → (0, 1)n by an additional prefix as
part of the input. Precisely, when using the iteration func-
tion h in the OTS of LMS, on input a value x ∈ {0, 1}n, itera-
tion counter i ∈ {0, …, w − 1}, PRIFIXi which is related to
sub-tree address, the position of the OTS in the sub-tree,
the chain address and the index of the hash call in the
chain, etc. The iteration function hi(x) works as follows.

When using it in the tree authentication generation, the
parameter PRIFIXi is related to node number and some
fixed values, Ni-1,2j and Ni-1,2j+1 denote the values of two
children nodes. The iteration function H’ht(x) is changed
into:

where i = 0, …, h, j = 0, …, 2i–1.
For more recommended parameters see (Cooper et al.

2019).

(b)	Security

As we can see from above, different prefixes are used in
each iteration function, as a result, the following attack
will be prevented: the adversary tries some random
inputs of H or or H’ht or the hash function used to gener-
ate the one-time public key by digesting the concatena-
tion of each single public key component, to check if the
related outputs match the outputs of these functions, in
some sense this kind of attack is essentially equivalent

h0(x) = x

hi(x) = h
(

PRIFIXi||hi−1(x)
)

hht(x) = h′ht
(

PRIFIXi||Ni−1,2j||Ni−1,2j+1

)

Page 20 of 26Li et al. Cybersecurity (2022) 5:13

to multi-function multi-target attack proposed in Hüls-
ing et al. (2016). The iteration functions of OTS and hash
tree both need to be second preimage resistant. The lit-
erature (Eaton 2017) gives the security reduction of LMS
in quantum random oracle model.

Security analysis of LMS is given in the random ora-
cle model; in addition, the hash compression function is
also needed to be a random oracle, which is less convinc-
ing compared with that of initial XMSS analyzed in the
standard model (in the variant of XMSS in RFC8391, PRF
G(n) used to generate the bitmask and key for each call
of hash function, needs to be programmed as random
oracle).

In terms of implementation performance, the prefix
values in LMS are just related to position and some fixed
values that can be prepared in the initialization phase,
compared with some parameters of the iteration in the
XMSS dependent on the output of the previous round,
LMS is faster than XMSS in the signature generation.
Meanwhile, LMS is more flexible and adaptable, one can
implement initialization and signature generation on sep-
arated devices.

(2)	Unlimited Number and Stateful

As the name suggests, unlimited number and stateful
hash-based signature can sign cryptographic unlimited
number of messages, meanwhile, the signature key must
be renewed after exceeding its service time. One can use
the limited number and stateful hash-based signature
schemes as the sub-tree to construct the correspond-
ing hyper-tree schemes to sign enough messages. Most
of the limited number and stateful hash-based signature

schemes have their own unlimited number and stateful
versions, such as the GMSS, XMSSMT and HSS which are
the multi-tree variants of Merkle tree scheme, XMSS and
LMS separately, which we will introduce in this section.

Generally, by using its limited number and stateful ver-
sion as the sub-tree, the unlimited number and stateful
scheme builds a whole tree of height h by d layers sub-
trees of height (h + 1)/d–1, where h, d ∈ N, d|h + 1, as
shown in Fig. 7. As a stateful scheme, one can make full
use of all the one-time/few-time signature keys with the
key state management algorithm, as a consequence, k*2 h
signatures can be made by the whole tree while only a
single sub-tree of height (h + 1)/d–1 needs to be com-
puted per layer signing one message, where k is the times
one key pair used in signature.

To sign a message, authentication path inner a sub-tree
follows down-top approach, and the root node of the sub-
tree is calculated from the bottom node to the top; while
authentications between sub-trees follows top-down
approach, the leaf nodes of the higher sub-tree is used to
authenticate the root of the sub-tree one layer lower. Con-
cretely, each sub-tree is constructed independently; the leaf
nodes of each sub-tree are the public keys, nodes of the
subtree above the lowest layer are calculated by the tree
hash on input the two children nodes. In this way, we have
established all the nodes of the whole tree. The root of the
top sub-tree is the overall public key; it is based on its integ-
rity that the leaf nodes of sub-tree on the higher layer can
be used to authenticate the signature of the root of the sub-
tree one layer below consecutively. Key state management
chooses the signature key to sign the message directly,
whose related public key is one leaf node of the bottom
sub-tree. The signature can be presented as follows:

The following data related to the signature σ have to be
applied to verifier, including the message m, the OTS/FTS
σm and its index i, along with the following data per layer
containing signature σj of the root of the sub-tree on layer j
generated using a signature key of the sub-tree on layer j–1,
and the authentication path Authj used to construct the
root of sub-tree on layer j from the bottom up to verify or
construct the one-time/few-time public key on the bottom
of this sub-tree traversed by the whole authentication path,
where j = 1,…d–1.

What need to be mentioned here is, in many cases, the
one-time/few-time public key traversed by the authen-
tication path on the bottom of each sub-tree can be
deduced by the corresponding one-time/FTS of the root
of the sub-tree below, as a consequence, it need not to
be contained in the signature σ, we just use each OTS/
FTS to construct the corresponding public key along the

σ =
(

i, σm, Authd−1, σd−2,Authd−2, . . . , σ0,Auth0
)

Fig. 7  structure of unlimited number and stateful hash-based
signature

Page 21 of 26Li et al. Cybersecurity (2022) 5:13 	

authentication path until the root of the sub-tree on the
top layer, and compare it with the overall public key. The
signature is valid if the comparison returns equal; other-
wise, it is rejected. If in some exceptional cases the inte-
rior one-time/few-time public keys mentioned above
cannot be deduced in this way, we still need to contain
them in the signature σ, which turns to be:

σ =
(

i, σm, Authd−1, Pkd−1, σd−2, Pkd−2, Authd−2, ..., σ0,Pk0, Auth0
)   ,

where Pki is the interior public keys per layer, i = 1, …, d.
The verification can be done similarly as the above

schemes.

A.	GMSS and XMSSMT

Structural comparison of GMSS and XMSSMT is shown
in Table 3.

(a)	GMSS

GMSS is a variant of the Merkle signature presented in
2007 (Buchmann et al. 2007), which allows signing cryp-
tographically unlimited number of messages by using
hyper-tree. It can be seen as an improved version of
CMSS proposed in 2006 which just consists of two lay-
ers of trees (Buchmann et al. 2006). To sign a message,
GMSS uses a hash function to generate its digest, Win-
ternitz OTS as its OTS scheme to sign the message digest
and the root of each single sub-tree expect the top one,
Merkle tree to build the interior authentication path in a
single tree. For a sub-tree, the leaf nodes of each Merkle
tree are the hash values of concatenation of public keys
from the Winternitz OTS one-time signature scheme,
whereas the leaf nodes of each XMSS-tree are the root
nodes of each L-tree.

Similar to the construction of XMSS, a PRF F is used
in GMSS to iteratively generate the state and key pairs in
each Winternitz OTS started from a random initial state
SEED. Precisely, GMSS uses the state Statei−1 of the i–
1th Winternitz OTS as the index to choose a fixed func-
tion fStatei−1 from the PRF, then uses fStatei−1 to produce a
new state Statei and a new SEEDOTSi of the ith Winternitz
OTS, and at last uses SEEDOTSi to generate the one-time
private key sequence ski of the ith Winternitz OTS. The

public key pki are computed in the same way as that of
WOTS on input the corresponding ski. It has been men-
tioned above that, the one-time key pair generation in the
above way has already been proven to be forward-secure
PRG if the underlying F is a secure PRF.

Remark 

1.	 Sub-tree in different layers may have different
heights.

2.	 Different Sub-tree may use different Winternitz
parameters.

•	 Security Comments

No exact security reduction has been given in Buch-
mann et al. (2007). As GMSS uses hash function to gen-
erate message digest and the leaf nodes of each Merkle
tree, security obviously cannot be better than the colli-
sion resistance of the underlying hash function. The argu-
ment is similar to the above schemes and it is straight
forward to obtain the following conclusion that GMSS
achieves EUCMA if F is a PRF, the underlying message
digest function is collision resistant, and the hash tree
function is one-way. The proof is omitted for the sake of
brevity.

Furthermore, the GMSS key generation approach fits
the construction to generate the forward-secure signa-
ture proposed in Cooper et al. (2019). In consequence,
we can extend the security of GMSS as follows: if GMSS
is an unforgeable signature scheme and the function F
used to generate the one-time keys is a secure PRF, then
the GMSS is an unforgeable forward-secure signature
scheme.

(b)	 XMSSMT

i.	 Construction

•	 Basic Construction

XMSSMT, an abbreviation for XMSS with Multi-Tree,
is the hyper-tree vision of XMSS which allows signing
cryptographically unlimited number of messages pur-
posed in Bernstein et al. (2015). It uses XMSS to build
the interior authentication path in a sub-tree, and Win-
ternitz OTS to sign the root of the sub-tree by the signa-
ture key corresponding to the leaf node on the one layer
higher.

Table 3  Structural comparison of GMSS and XMSSMT

Scheme Component

Underlying single tree Signatures of the root of
each single tree

GMSS WOTS + Merkle tree WOTS

XMSSMT XMSS WOTS(W-OTS + in RFC8391)

Page 22 of 26Li et al. Cybersecurity (2022) 5:13

•	 Using BDS Algorithm

Particularly, XMSSMT applies the BDS algorithm to
make a trade-off between the signature generation time
and the storage cost, which can decrease runtime in the
worst case by incomplete calculation of the authenti-
cation path at the cost of some additional storage. By
doing this, the signature generation time in the worst
case reduces from 2 h − 1 to (h − k)/2 computations of
leaf and TreeHash, where h denotes the tree height and
k is the BDS parameter.

•	 Optimal Parameters Selection

Moreover, optimal parameters for XMSSMT, including
the BDS parameters, Winternitz parameters, the number
of layers, the tree height and the security level, have been
provided by linear optimization, to meet different appli-
cation requirements towards the key size, key generation
time, signature time, signature size, etc. For more details
about parameter selection see (Hülsing et al. 2013).

	 ii.	 Security

The security of XMSSMT can be deduced from that
of Winternitz OTS and XMSS directly. we omit it for
concision.

B.	 HSS
(a)	 Construction

HSS, an abbreviation for Hierarchical Signature Sys-
tem, is the hyper-tree version of LMS which allows sign-
ing cryptographically unlimited number of messages.
In its construction, it uses LMS both to build the inte-
rior authentication path in a sub-tree, and the signature
between the sub-tree. For more details about parameter
selection see (McGrew et al. 2019).

(b)	Security

The EUCMA of HSS is based on the EUCMA of LMS,
i.e., if the adversary can forgery a valid signature for HSS
with negligible probability, implies he can also forgery a
valid signature for the LMS with negligible probability.
The iteration functions of OTS and hash tree both need
to be second preimage resistant as in the LMS.

(3)	Unlimited Number and Stateless

Stateless hash-based signature schemes don’t need
key state management to update the signature key any
more, i.e., the signature key is chosen pseudorandomly

when signing a message. In the consequence, it col-
lides with the probability of k−1/2 based on the birthday
attack if the OTS schemes are used to sign messages,
where k is the signature keys space, i.e., p2 signature
keys are needed if signing p messages. Therefore, the
scale of the whole tree is much larger than that of the
same number of messages to be signed in the stateful
schemes. Several key issues should be concerned in the
design unlimited number and stateless hash-based sig-
nature schemes.

Firstly, an efficient algorithm should be used to select
the key from the space of all the signature keys randomly
or pseudorandomly instead of selecting sequentially by
the key state management; in practice, most stateless
hash-based signature schemes take the message to be
signed as one input of the PRG algorithm to select the
key pseudorandomly.

Secondly, hyper-tree is still the most common approach
to construct unlimited number and stateless schemes. A
whole tree in a much larger scale needs to be constructed
to avoid the key collision in which one key is used twice
to sign two messages. As we analyzed in previous section,
by using the hyper-tree in hash-based signatures, only
one sub-tree needs to be computed on each layer, the key
generation time reduces exponentially just at the cost of
linear increase of the number of signatures between sub-
trees. Therefore, hyper-tree is still an extraordinary appli-
cable way in designing unlimited number and stateless
schemes, which is similar to the unlimited number and
stateful schemes.

Finally, the specific implementation should be effi-
cient enough to make this scheme practical. Several
approaches could be used to reduce the storage and com-
putation cost. For instance, at the bottom of the whole
tree, FTS schemes are used to sign the messages instead
of signing them by OTSs; in terms of generating the sub-
tree in each layer, PRG is used to generate its leaf nodes
efficiently with a short seed, instead of producing them
randomly, etc.

Similarly, the signature consists of the index of the pri-
vate key being used, FTS of the message, as well as the
signatures and corresponding authentication path of the
root public key on each layer.

A.	SPHINCS

SPHINCS schemes purposed in 2015 is the first prac-
tical stateless hash-based signature with practical per-
formance (Bernstein et al. 2015); moreover, its security
is given in the standard model instead of the random
oracle.

Page 23 of 26Li et al. Cybersecurity (2022) 5:13 	

(a)	Idea

SPHINCS can be viewed as the combination of pseu-
dorandom signature key chosen algorithm, Horst FTS,
and XMSSMT. The whole structure can be viewed as a
hyper-tree of height h with d layers of sub-tree of height
(h + 1)/d-1, PRG and PRF are used to generate the pri-
vate keys and select them pseudorandomly to sign the
message. XMSSMT is used to sign the root nodes of the
sub-tree, Horst is used on the bottom layer to sign the
message directly.

(b)	Construction

In this section, we introduce the construction of
SPHINCS by explaining how it solves the several key
issues in the stateless hash-based signature.

Firstly, to solve the matter of selecting the signature key
(pseudo-)randomly, SPHINCS uses a hash function H:
{0, 1}2n → {0, 1}n and a PRF F:{0, 1}n × {0, 1}* → {0, 1}2n to
generate the index IDX of Horst signature key on input
the message m as follows.

Choose two private key skrand, skSEED uniformly at ran-
domly from {0, 1}n;

Calculate

where prefixa, b (x) denotes the bit sub-string of x from
the ath bit to bth bit counted from left to right Starting
with 1; IDX and prefix1, n (Rand) are parts of the final
signature.

Secondly, SPHINCS uses XMSSMT as its hyper-tree
scheme, i.e., the root of each sub-tree is signed by the
W-OTS + key pairs of the trees one layer higher, each
sub-tree is constructed using XMSS excepting the
sub-tree on the bottom layer whose leaf nodes used to
authenticate the signature of message are generated by
Horst FTS.

Finally, two main approaches are used in SPHINCS to
achieve more efficient and practical. On one hand, the
FTS scheme Hors is used instead of OTSs to sign the mes-
sages. Moreover, in order to reduce the public key size
of Hors and the combined signature size, an improved
scheme Horst, which is the abbreviation for Hors with
tree, is used in SPHINCS for further compressing public
key. Concretely, a single primary tree is used to compress
t components in one Horst public key to one Horst root.
As a result, a Horst signature consists of k signature keys
and the related authentication paths, one for each. Horst
reduces the public key size by increasing authentication

Rand = F(skrand ,m);
Mdgt = Hdgt

(

prefix1, n(Rand),m
)

;
IDX = prefixn+1,n+h(Rand).

paths in the signature. Particularly, an optimization
technique is used in generating Horst authentication
path to make the combined size of signature and pub-
lic key minimum. On the other hand, SPHINCS uses an
address algorithm, to allocate a unique address ADRS
for each node in the whole tree which is set to different
values to indicate OTS address, Horst address, L-tree
address, and sub-tree address respectively. Then the PRF
F is used to generate the seed of private key on input of
the ADRS address in Hors or W-OTS + and private key
skSEED, then PRG G will be used to generate the Horst or
W-OTS + private key sequence KHorst or W-OTS+,1, KHorst

or W-OTS+,2, …, KHorst or W-OTS+, t where n is polynomial in
security parameter, i.e.,

(c)	Security

SPHINCS is EUCMA under the following condition:
the iteration function used in W-OTS + is second preim-
age resistant and undetectable one-way, the hash function
used to generate authentication path is second preimage
resistant, PRG and PRF used are secure pseudorandom
and the underlying function to generate the Horst sig-
nature is subset-resilient. Furthermore, SPHINCS-256
achieves 128-bit security against quantum attack.

(d)	Performance

SPHINCS-256 instantiated with BLAKE-256,
BLAKE-512, CHACHA etc., generating a signature of
a short message takes around 51 M cycles on a single
core while hashing throughput is 1.6 cycles per byte,
and can generate 200 signatures per second on a 4-core
3.5 GHz Intel CPU, with size of 41 KB, public keys size
of 1 KB and private key size of 1 KB, which makes it
practical in application.

B.	 SPHINCS + 

SPHINCS + is an improved version of SHINCS
and purposed in 2017 (Aumasson and Endignoux
2017, 2018; Bernstein et al. 2017, 2019), the follow-
ing improvements have been made compared with
SHINCS: firstly, Hors is replaced by Fors, which has
been introduced in "Typical schemes" section. Fors is

SeedHorst or W−OTS+ = F(ADRS, skSEED);
G(SeedHorst or OTS)

=
(

KHorst or W−OTS+,1,

KHorst or W−OTS+,2, . . . ,

KHorst or W−OTS+,t

)

Page 24 of 26Li et al. Cybersecurity (2022) 5:13

designed in such a way that k elements are selected from
k sets instead one, to solve the weak message problem
in which the same indices of the message digests yield
the same elements in the signature; secondly, tweakable
hash is utilized to achieve multi-fucntion multi-target
attack resistant, different bitmask and function key are
applied to each evaluation of the underlying hash func-
tion; finally, all the components in one W-OTS + pub-
lic key are compressed by one call of tweakable
hash instead of L-tree. Though these improvements,
SPHINCS + reduces the signature size dramatically, and
becomes one of the eight candidate algorithms in the
third round PQC standardization process.

Alike SPHINCS, SPHINCS + can be considered as the
combination of pseudorandom signature key chosen
algorithm, XMSSMT of the version in RFC8391, along
with Fors FTS. Similarly, the whole structure also can be
viewed as a hyper-tree with d layers of sub-tree, XMSSMT
is used to sign the immediate nodes in the hyper-tree,
excepting that Fors is used on the bottom layer to sign
the messages directly. PRG and PRF are used to generate
the private keys and select them pseudorandomly to sign
the message. Specially, tweakable hash functions men-
tioned in “Typical schemes” section are used in many
components of SPHINCS +, such as the iteration func-
tions, the public keys compression, etc., to make each
call of the hash function is independent with each other,
so as to prevent the multi-function multi-target attack.

We also introduce the construction of SPHINCS + by
explaining how it solves the key issues in the stateless
hash-based signature; moreover, the main improvement
of SPHINCS + compared with SPHINCS will be included
in this section as well.

Firstly, in order to achieve stateless, SPHINCS + uses
a hash function H and a PRF F to generate the message
digest and the index Idx of the Fors signature key on
input the message m and a pair of public parameters PK.
seed and PK.root which separately denote the public seed
and overall root:

Choose private key skrand (pseudo-)randomly;
Calculate Rand = F (skrand, R, m) and make it public;
where R is set to zero by default, and also can be gener-

ated (pseudo-)randomly.

Compared with the index selection algorithm of
Horst in SPHINCS, which uses private key as part of
input and cannot be verified, the adversary can attack
SPHINCS by evaluating index randomly, computing
the related message digest, and then checking if the
private keys of Horst used to sign this message have
already been revealed in previous signatures; and if yes,
the adversary forges the signature successfully. It will
not happen in SPHINCS + as all the input parameters
used to generate the index are public and can be veri-
fied. Therefore, it is not needed to contain the index in
signature of SPHINCS + anymore.

Secondly, for the hyper-tree, SPHINCS + also uses
XMSSMT as its hyper-tree scheme, excepting the sub-tree
on the bottom layer are generated using Fors FTS.

Finally, several approaches are adopted by
SPHINCS + to reduce the signature size, and to make the
whole scheme more efficient and practical.

On the first place, the Fors is used in SPHINCS + instead
of Hors. For Hors which is the most principal component
of Horst, its underlying subset-resilience problem has been
proven to be insecure against adaptive attacks; further-
more, Hors pseudorandomly selects k elements from the
set of t elements, and the distribution of the selected k ele-
ments should be as uniform as possible, but in fact, some
weak messages will map the digest into a smaller space,
which makes it easier to be attacked. Fors, the abbrevia-
tion of forest of random subsets, selects k elements from
t sets rather than one, and compress each set using a sub-
tree; finally, uses a tweakle hash function to compress the k
toot nodes to construct an overall public key for one Fors
instance.

Digest||Idx = H(Rand, PK .seed, PK .root, m).

Table 4  Required security required security of underlying function in hash tree and pseudorandom key selection

Scheme Merkle tree XMSS XMSS in RFC 8391 LMS GMSS XMSSMT HSS SPHINCS SPHINCS + 

Required security of underlying
function in hash tree and pseu-
dorandom key selection

CR SPR PRF of G(n);
multi-function
multi-target SPR
of H

SPR CR SPR SPR PRF of F;
Subset-
resilience of
Hdgt;
SPR of H

PQ-MM-SPR of
H and tweakable
hash;
PQ-PRF of F;
PQ-target subset
resilience of Hdgt

Model Standard Standard RO RO Standard Standard RO Standard RO

Page 25 of 26Li et al. Cybersecurity (2022) 5:13 	

Security comparison
In this section, we analyze and compare the security
assumptions of underlying function of hash tree and reduc-
tion model required in these specific hash-based signature
schemes, the relevant conclusions are shown in Table 4.

For all the hash-based signature schemes mentioned
above, we do not consider the security assumptions of
underlying function required in key generation. In terms
of stateful signature schemes, we only discuss the security
assumptions of underlying functions used in construct-
ing hash tree. In terms of the stateless signature scheme,
we consider not only that in constructing hash tree, but
security assumptions of the underlying function related to
pseudorandom key selection. H in the table above denotes
the underlying function used to generate parent node in
hash tree, other representations are defined in the spe-
cific schemes. Among the above conclusions, CR, SPR,
PQ, MM, RO denote collision resistant, second preimage
resistant, post-quantum, multi-function and multi-target,
random oracle, separately. The security of CR, SPR, PRF
decreases in turn, MM-SPR has the same security level
with standard SPR against classical and quantum attacks.

In practice, we expect to design the hash-based signa-
ture scheme with the security assumption of underling
function as weak as possible. Only consider the required
security of underlying function in hash tree, under the
same security level, the output length of the above SPR-
based signature algorithm is halved compared with CR-
based one. In addition, the proof given in standard model
is more convincing than that of RO.

Conclusion
In this paper, firstly, we discuss the research progress in the
component hash-based signature, i.e., OTS and FTS, then
classify the tree-based public key authentication schemes
of hash-based signature into limited number and state-
ful schemes, unlimited number and stateful schemes and
unlimited number and stateless schemes, to analyze the
overall design idea of different categories of hash-based
signatures, as well as the construction, security reduction
and performance of specific schemes. Due to the bet-
ter performance of stateful hash-based schemes, they are
more widely accepted and become standards in practice,
such as the XMSS and XMSSMT are specified by IETF in
RFC8391, whereas LMS in RFC8554. However, in the
standardization of post standard quantum cryptography
algorithms, stateless hash-based signature, which is more
in line with the core of digital signature primitive, has
attracted more interest in both research and application.
The research of the stateful and stateless hash-based signa-
ture parallel needs to be carried out parallelly and cannot
be replaced with each other. The specification of stateful
schemes is more conducive to its application in industry;

however, in scenarios that do not support key manage-
ment, stateless schemes is the necessary choice.

Acknowledgements
Not applicable.

Authors’ contributions
The first author completed the main work of the paper and drafted the
manuscript. The second and third authors participated in problem discussions
and improvements of the manuscript. All authors read and approved the final
manuscript.

Funding
This work is supported by National Natural Science Foundation of China (No.
61972391).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Information Security, Institute of Information Engi-
neering, CAS, No. 89 Minzhuang Road, Haidian District, Beijing 100093, China.
2 School of Cyber Security, University of Chinese Academy of Sciences, No. 19
Yuquan Road, Shijingshan District, Beijing 100049, China. 3 School of Computer
Science, Liaocheng University, No. 1, Hunan Road, Dongchangfu District,
Liaocheng City 252000, China.

Received: 19 November 2021 Accepted: 15 February 2022

References
Aumasson JP, Endignoux G (2017) Gravity SPHINCS, A submission to the NIST

standardization project on post-quantum cryptography. https://​github.​
com/​gravi​ty-​postq​uantum/​gravi​ty-​sphin​cs. Accessed 09 Jan 2018

Aumasson JP, Endignoux G (2018) Improving stateless hash-based signatures. In:
Cryptographers’ track at the RSA conference. Springer, Cham, pp 219–242

Bellare M, Miner SK (1999) A forward-secure digital signature scheme. In:
Annual international cryptology conference. Springer, Berlin, pp 431–448

Bennett CH (1992) Quantum cryptography using any two nonorthogonal
states. Phys Rev Lett 68(21):3121

Bennett CH, Bessette F, Brassard G et al (1992) Experimental quantum cryptog-
raphy. J Cryptol 5(1):3–28

Bergadano F, Cavagnino D, Crispo B (2002) Individual authentication in multi-
party communications. Comput Secur 21(8):719–735

Berman P, Karpinski M, Nekrich Y (2007) Optimal trade-off for Merkle tree
traversal. Theoret Comput Sci 372(1):26–36

Bernstein DJ (2009) Introduction to post-quantum cryptography//Post-quan-
tum cryptography. Springer, Berlin, pp 1–14

Bernstein DJ, Hopwood D, Hülsing A et al (2015) Sphincs: practical stateless
hash-based signatures. In: Annual international conference on the theory
and applications of cryptographic techniques. Springer, pp 368–397

Bernstein DJ, Dobraunig C, Eichlseder M et al (2017) SPHINCS+, A submis-
sion to the NIST standardization project on post-quantum cryptogra-
phy. https://​sphin​cs.​org/. Accessed 09 Jan 2018

Bernstein DJ, Hülsing A, Kölbl S et al (2019) The SPHINCS+ signature frame-
work. In: Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pp 2129–2146

Black J, Rogaway P, Shrimpton T (2002) Black-box analysis of the block-
cipher-based hash-function constructions from PGV. In: Advances in
cryptology—CRYPTO 2002, California, USA

https://github.com/gravity-postquantum/gravity-sphincs
https://github.com/gravity-postquantum/gravity-sphincs
https://sphincs.org/

Page 26 of 26Li et al. Cybersecurity (2022) 5:13

Bleichenbacher D, Maurer UM (1994) Directed acyclic graphs, one-way
functions and digital signatures. In: Advances in cryptology—CRYPTO
’94, volume 839 of lecture notes in computer science, pp 75–82

Brassard G, Lütkenhaus N, Mor T et al (2000) Limitations on practical quan-
tum cryptography. Phys Rev Lett 85(6):1330

Buchmann J, García LCC, Dahmen E et al (2006) CMSS—an improved Merkle
signature scheme. In: International conference on cryptology in India.
Springer, pp 349–363

Buchmann J, Dahmen E, Klintsevich E et al (2007) Merkle signatures with
virtually unlimited signature capacity. In: International conference on
applied cryptography and network security. Springer, Berlin, pp 31–45

Buchmann J, Dahmen E, Schneider M (2008) Merkle tree traversal revisited.
In: International workshop on post-quantum cryptography. Springer,
Berlin, pp 63–78

Buchmann J, Dahmen E, Ereth S et al (2011a) On the security of the Win-
ternitz one-time signature scheme. In: International conference on
cryptology in Africa. Springer, Berlin, pp 363–378

Buchmann J, Dahmen E, Hülsing A (2011b) Xmss-a practical forward secure
signature scheme based on minimal security assumptions. In: Interna-
tional workshop on post-quantum cryptography. Springer, pp 117–129

Buldas A, Laanoja R, Truu A (2017) A server-assisted hash-based signature scheme.
In: Nordic conference on secure IT systems. Springer, Cham, pp 3–17

Buldas A, Laanoja R, Truu A (2018) A blockchain-assisted hash-based sig-
nature scheme. In: Nordic conference on secure IT systems. Springer,
Cham, pp. 138–153

Cooper D, Apon D, Dang Q, et al (2019) Recommendation for stateful hash-
based signature schemes. draft NIST Special Publication 800–208. NIST.
SP, pp 800–208

Coppersmith D, Jakobsson M (2002) Almost optimal hash sequence tra-
versal. In: International conference on financial cryptography. Springer,
Berlin, pp 102–119

Coron JS, Dodis Y, Malinaud C et al (2005) Merkle-Damgård revisited: how to
construct a hash function. In: Annual international cryptology confer-
ence. Springer, Berlin, pp 430–448

Damgård I (1989) A design principle for hash functions. In: Crypto ’89. LNCS
No. 435, pp 416–427

Dods C, Smart NP, Stam M (2005) Hash based digital signature schemes. In:
IMA international conference on cryptography and coding. Springer,
Berlin, pp 96–115

Eaton E (2017) Leighton-Micali hash-based signatures in the quantum
random-oracle model. In: International conference on selected areas in
cryptography. Springer, Cham, pp 263–280

Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev
Lett 67(6):661

ElGamal T (1985) A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans Inf Theory 31(4):469–472

Even S, Goldreich O, Micali S (1996) On-line/off-line digital signatures. In:
1996 International association for cryptologic research

Gisin N, Ribordy G, Tittel W et al (2002) Quantum cryptography. Rev Mod
Phys 74(1):145

Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J Comput
17(2):281–308

Gröblacher S, Jennewein T, Vaziri A et al (2006) Experimental quantum
cryptography with qutrits. New J Phys 8(5):75

Halevi S, Krawczyk H (2006) Strengthening digital signatures via randomized
hashing. In: CRYPTO 06

Hülsing A (2013) W-OTS+–shorter signatures for hash-based signature
schemes. In: International conference on cryptology in Africa. Springer,
Berlin, pp 173–188

Hülsing A, Rausch L, Buchmann J (2013) Optimal parameters for XMSSMT. In:
International conference on availability, reliability, and security. Springer,
pp 194–208

Hülsing A, Rijneveld J, Song F (2016) Mitigating multi-target attacks in hash-
based signatures. In: Public-key cryptography–PKC 2016. Springer,
Berlin, pp 387–416

Hülsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A (2018) RFC8391-XMSS:
eXtended hash-based signatures. RFC 8391, RFC Editor

Jakobsson M (2002) Fractal hash sequence representation and traversal. In: Pro-
ceedings IEEE international symposium on information theory. IEEE, p 437

Jakobsson M, Leighton T, Micali S et al (2003) Fractal Merkle tree represen-
tation and traversal. In: Cryptographers’ track at the RSA conference.
Springer, Berlin, pp 314–326

Kampanakis P, Fluhrer SR (2017) Lms vs xmss: a comparison of the stateful hash-
based signature proposed standards. IACR Cryptology ePrint Archive

Katz J (2016) Analysis of a proposed hash-based signature standard. In: International
conference on research in security standardisation. Springer, pp 261–273

Knecht M, Meier W, Nicola CU (2014) A space-and time-efficient Implementa-
tion of the Merkle Tree Traversal Algorithm. arXiv:​1409.​4081

Krawczyk H (2000) Simple forward-secure signatures from any signature
scheme. In: Proceedings of the 7th ACM conference on computer and
communications security, pp 108–115

Lamport L (1979) Constructing digital signatures from a one-way function.
Technical Report CSL-98, SRI International Palo Alto

Leighton FT, Micali A (1995) Large provably fast and secure digital signature
schemes based on secure hash functions. US Patent 5,432,852

McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali hash-based signatures.
RFC 8554, IRTF

Menezes AJ, Van Oorschot PC, Vanstone SA (2018) Handbook of applied cryp-
tography. CRC Press, Boca Raton

Merkle RC (1979a) Secrecy, authentication, and public key systems. Stanford
University, Stanford

Merkle RC (1979b) Secrecy, “Authentication and public key systems”. Ph.D.
Thesis, Stanford

Merkle RC (1989) A certified digital signature. In: Conference on the theory
and application of cryptology. Springer, New York, pp 218–238

Naor D, Shenhav A, Wool A (2005) One-time signatures revisited: Have they
become practical? IACR Cryptol. ePrint Arch

Naor D, Shenhav A, Wool A (2006) One-time signatures revisited: practical fast
signatures using fractal merkle tree traversal. In: 2006 IEEE 24th conven-
tion of electrical and electronics engineers in Israel. IEEE, pp 255–259

Perrig A (2001) The BiBa one-time signature and broadcast authentication
protocol. In: Proceedings of the 8th ACM conference on computer and
communications security, pp 28–37

Perrig A, Canetti R, Song D et al (2001) Efficient and secure source authentica-
tion for multicast. In: Network and distributed system security sympo-
sium, NDSS, vol 1, pp 35–46

Perrig A, Canetti R, Tygar JD et al (2002) The TESLA broadcast authentication
protocol. RSA Cryptobytes 5(2):2–13

Preneel B, Govaerts R, Vandewalle J (1993) Hash functions based on block
ciphers: a synthetic approach. In: Advances in cryptology—CRYPTO ’93.
Santa Barbara, California, USA

Reyzin L, Reyzin N (2002) Better than BiBa: short one-time signatures with fast
signing and verifying. In: Australasian conference on information security
and privacy. Springer, pp 144–153

Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signa-
tures and public-key cryptosystems. Commun ACM 21(2):120–126

Rogaway P, Shrimpton T (2004) Cryptographic hash-function basics: defini-
tions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In: International workshop
on fast software encryption. Springer, Berlin, pp 371–388

Sella Y (2003) On the computation-storage trade-offs of hash chain traversal.
In: International conference on financial cryptography. Springer, Berlin,
pp 270–285

Shor PW (1999) Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Rev 41(2):303–332

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1409.4081

	Hash-based signature revisited
	Abstract
	Introduction
	Related work
	Security notions
	Hash-based signature
	OTS
	Idea
	Typical Schemes
	Performance and security comparison

	FTS
	Idea
	Typical schemes
	Performance and security comparison

	Tree-based public key authentication
	Different ideas
	Typical schemes

	Security comparison

	Conclusion
	Acknowledgements
	References

