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Abstract

For block ciphers, Bogdanov et al. found that there are some linear approximations satisfying that their biases are
deterministically invariant under key difference. This property is called key difference invariant bias. Based on this
property, Bogdanov et al. proposed a related-key statistical distinguisher and turned it into key-recovery attacks on
LBlock and TWINE-128. In this paper, we propose a new related-key model by combining multidimensional linear
cryptanalysis with key difference invariant bias. The main theoretical advantage is that our new model does not
depend on statistical independence of linear approximations. We demonstrate our cryptanalysis technique by
performing key recovery attacks on LBlock and TWINE-128. By using the relations of the involved round keys to reduce
the number of guessed subkey bits. Moreover, the partial-compression technique is used to reduce the time
complexity. We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts, 278.85

time complexity and 261 bytes of memory requirements. Our attack can recover the master key of TWINE-128 up to 28
rounds with about 261.5 distinct known plaintexts, 2126.15 time complexity and 261 bytes of memory requirements. The
results are the currently best ones on cryptanalysis of LBlock and TWINE-128.
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Introduction
Linear cryptanalysis introduced by Matsui in 1993 has
become one of the most important cryptanalysis method
of block ciphers. After being introduced a quarter of a
century ago, linear cryptanalysis has been extended to var-
ious more evolved statistical attacks, including multiple
linear cryptanalysis (Kaliski and Robshaw 1994) and mul-
tidimensional linear cryptanalysis (Hermelin et al. 2008;
Hermelin et al. 2009; Cho et al. 2008; Blondeau and
Nyberg 2017). Various authors have previously presented
different approaches to exploit multiple linear approxima-
tions to enhance linear cryptanalysis. In multiple linear
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cryptanalysis, a fundamental assumption was that the
approximations are statistically independent. The theo-
retically restrictive assumption of independence of linear
approximations was removed in the multidimensional lin-
ear cryptanalysis on the cost of taking into account a
family of linear approximations which covers a linear
space excluding zero. In Hermelin et al. (2009), presented
the log-likelihood ratio and 2 statistical distinuishers that
can be used to perform key recovery attacks. The aim of a
statistical key-recovery attack is to search the right value
for some bits of the round-key based on a known statis-
tical property of the cipher. This property is expected to
be detected only for the right key candidate, while wrong
key candidates which are far from satisfying the property
can be discarded. To estimate the data complexity of a sta-
tistical attack, the probability distributions of the involved
random variables for the right and wrong keys are ana-
lyzed. These distributions depend on both the data sample
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used to compute it as well as the encryption key and the
key candidate. Selçuk gave a formal probabilistic model in
linear and differential cryptanalysis in Selçuk and Biçak
(2002). The probabilistic model provided efficient formu-
lations that can be used to estimate the success probability
of a given attack or to find the data complexity to achieve
a certain success level.
In Bogdanov et al. (2013), revealed a fundamental prop-

erty of block ciphers: there can exist linear approxima-
tions such that their biases are deterministically invariant
under key difference. This property is called key difference
invariant bias. They proposed a statistical related-key dis-
tinguisher for this property and turned it into key recovery
attacks on LBlock and TWINE-128. Under some basic
independency assumptions, they computed the sample
biases of a set of approximations with this property for two
keys, and constructed an efficiently statistical related-key
distinguisher. In their model, a fundamental assumption
was that the linear approximations are statistically inde-
pendent. But this assumption is hard to verify in practice.
In this paper, we propose a multidimensional related-key
distinguisher for the key difference invariant bias prop-
erty, which can remove the independence assumption on
the linear approximations.
To decrease key set-up time and to reduce the cost

of hardware, the key schedule of lightweight ciphers are
usually simple. As is known to us, the diffusion of the
key schedule plays an important role on the security of
the block cipher, so we should spend more effort on the
key schedules of lightweight block ciphers. Wang et al.
improved multidimensional zero-correlation linear attack
inWang andWu (2014). They have taken the key schedule
into consideration and used the relations that existed in
the involved round keys of key recovery attack to reduce
the number of round keys that need to be guessed. They
carefully chose the order of guessing keys and guessed
each subkey nibble one after another. By using the partial-
compression technique to reduce the time complexity.
In Blondeau and Nyberg (2017), developed distinct-

known-plaintext (DKP) that was first introduced in the
context of multidimensional zero-correlation attacks[11].
The DKP sample can improve the data complexity of mul-
tiple linear attacks, multidimensional linear attacks and
key difference invariant bias attacks.

Our contributions
The contributions of this paper are as follows.

Newmodel with key difference invariant bias
In this paper, we take into account multidimensional
cryptanalysis with key difference invariant bias. The main
motivation of this method is that the dependencies of lin-
ear approximations need not be measured explicity. We
present a multidimensional statistical related-key distin-

guisher for the key difference invariant bias property of
key-alternating block ciphers. Our newmodel has the two
following advantages:

(1). Does not assume statistical independence of linear
approximations, i.e. the assumption about statistical
independence of linear approximations can be
removed.

(2). Consider all linear approximations of linear subspace
with key difference invariant bias property excluding
zero. The new model can increase the freedom of the
model, thus the data complexity is reduced.

We analyze the probability distribution of the new related-
key statistic Q both in the right-key and wrong-key case
and derive the formula of the data complexity for given
attack. In addition, the new statistical model takes into
account whether the data sample is obtained by the usually
known plaintext (KP) sampling or the considered distinct
known plaintext (DKP) sampling.

Key Recovery Attack for LBlock and TWINE-128
By using the new related-key statistic Q, we give the
first key-recovery attack on 25-round LBlock. We put the
16-round 8-dimensional linear approximations with key
difference invariant bias in round 5 to 20. We partially
encrypt the first 4 rounds and partially decrypt the last 5
rounds. The attack is affected by 32 bits of a plaintext, 48
bits of a ciphertext and 76 bits of round keys. Because the
attack involves too many plaintext bits, ciphertext bits and
round key bits, the data complexity and time complexity
are both too huge. In order to reduce the data complex-
ity and the time complexity, we take the key schedule of
LBlock into consideration and obtain the relations that
exist in the involved round keys. Thus the involved round
keys can reduce 17 bits key information that need to be
guessed. We carefully choose the order of guessing key
bits and use partial-compression technique to reduce the
time complexity. Our attack can recover the 80-bit master
key of LBlock with about 260.4 distinct known plaintexts,
278.85 time complexity and 261 bytes of memory require-
ments. Similary, using the same multidimensional linear
approximation, we can give 24-round attack on LBlock
which is better than that in Bogdanov et al. (2013). In
Table 1, we present a comparison of our attack results and
the best known ones.
We apply the new related-key model to perform a

28-round attack on TWINE-128. We put the 17-round
8-dimensional linear approximations with key difference
invariant bias in round 6 to 22. We partially encrypt the
first 5 rounds and partially decrypt the last 6 rounds.
We take the key schedule of TWINE-128 into consider-
ation and obtain the relations that exist in the involved
round keys. By using the partial-compression technique
to reduce the time complexity. Our attack can recover the
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Table 1 Comparison of key-recovery attacks on LBlock

Model Attack rounds Data per key Time Memory Ref.

RK Differential 22 264.1RKKP 267 N/A (Liu et al. 2012)

Imp.Diff 22 247RKCP 270 N/A (Minier and Naya-Plasencia 2012)

Imp.Diff 23 264.1RKKP 278.3 261.4 (Wen et al. 2014)

Key Diff Inv Bias 24 262.95RKKP 270.67 261 (Bogdanov et al. 2013)

Key Diff Inv Bias 24 262.83RKKP 268.08 261 this paper

Key Diff Inv Bias 24 262.3RKDKP 268.07 261 this paper

Key Diff Inv Bias 25 260.4RKDKP 278.85 261 this paper

SK Integral 20 263.6CP 239.6 235 (Sasaki and Wang 2013a)

Integral 21 261.6CP 254.16 251.58 (Sasaki and Wang 2013b)

Integral 22 261CP 270 263 (Sasaki and Wang 2013b)

Zero-Correlation 22 262DKP 271.27 264 (Soleimany and Nyberg 2014)

Zero-Correlation 22 260DKP 279 264 (Soleimany and Nyberg 2014)

Zero-Correlation 23 262.1KP 276 260 (Wang and Wu 2014)

Imp.Diff 24 259CP 277.5 275 (Wang et al. 2016)

128-bit master key of TWINE-128 with about 261.5 dis-
tinct known plaintexts, 2126.15 time complexity and 261
bytes of memory requirements, with success probabil-
ity 0.85. Similary, using the same multidimensional linear
approximation, we can give 27-round attack on TWINE-
128 which is better than that in Bogdanov et al. (2013).
In addition, we combine all differential paths of the 15
key differences that satisfy the property of invariant bias.
So we propose a combined model and perform the 27-
round attack on TWINE-128 with about 260.44 distinct
known plaintexts, 2119.5 time complexity and 15 261 bytes
of memory requirements. Our attacks are compared to
previous attacks on TWINE-128 in Table 2.

Preliminaries
Linear cryptanalysis with key difference invariant bias
In Bogdanov et al. (2013), analysed the fundamental ques-
tion of how the bias of the entire linear approximation
behaves under a change of key. They revealed a property
for many block ciphers, namely, that the bias of a linear

approximation can be actually invariant with a modi-
fied key. Based on the fact, they proposed a statistical
related-key distinguisher and demonstrated that it can be
used to efficiently distinguish the cipher from an idealized
cipher under some basic independency assumptions. As
an illustration, they applied the cryptanalytic technique of
key difference invariant bias to LBlock and TWINE-128.
In this section, we introduce some definitions and main
results in Bogdanov et al. (2013).
Consider an n-bit block cipher f with a k-bit key. Linear

cryptanalysis is based on a linear approximation deter-
mined by input mask a and output mask b. The bias of the
linear approximation a, b of f is defined by

a, b Prx[ atx btf x 0] 1 2

The value c a, b 2 a, b is called correlation of the lin-
ear approximation a, b . A linear approximation a, b of
an iterative block cipher is called a linear hull. The linear
hull contains all possible sequences of the linear approx-
imations over individual rounds with input mask a and

Table 2 Comparison of key-recovery attacks on TWINE-128

Model Attack rounds Data per key Time Memory Ref.

RK Key Diff Inv Bias 27 262.95RKKP 2119.5 261 (Bogdanov et al. 2013)

Key Diff Inv Bias 27 262.3RKDKP 2119.5 261 this paper

Key Diff Inv Bias 27 260.44RKDKP 2119.5 15 261 this paper

Key Diff Inv Bias 28 261.5RKDKP 2126.15 261 this paper

SK Saturation 23 262.81CP 2106.14 2103 (Suzaki et al. 2012)

Imp.Diff 24 252.21CP 2115.10 2118 (Suzaki et al. 2012)

Meet-in-the-Middle 25 248CP 2122 2125 (Boztas et al. 2013)

Zero-Correlation 25 262.1KP 2122.12 260 (Wang and Wu 2014)
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output mask b. These sequences are called linear trails
which we denote by . Given a linear hull a, b , a linear
trail is the concatenation of an input mask a 0 before
the first round, an output mask b r after the last round,
and r 1 intermediate masks i between rounds i 1 and i:

0, 1, ..., r .

Thus, each linear trail consists of r 1 n-bit masks. The
bias of the linear trail is defined as the scaled product
of the individual biases i 1, i over each round,

2r 1
r

i 1
i 1, i .

Key alternating block ciphers form a special but impor-
tant subset of modern block ciphers. Its definition is as
follows.

Definition 1 ((Daemen and Rijmen 2002)). Let each
round i, 1 i r, of a block cipher have its own n-bit
subkey ki. This block cipher is key alternating, if the key
material in round i is introduced by XORing the subkey ki
to the state at the end of the round. Additionally, the subkey
k0 is XORed with the plaintext before the first round.
The r round subkeys K0, K1, . . . , Kr , build the expanded

key K (of length n r 1 bits) which is derived from the
master key using a key-schedule algorithm . FromDae-
men and Rijmen (2002), for a key-alternating block cipher,
the bias a, b of the linear hull a, b is

a, b
: 0 a, r b

1 d K ,

where d is a key-independent constant .
In an n-bit key-alternating block cipher, let be key

schedule, K and K be the expanded keys corresponding
to two master keys and , K and K
satisfying K K , where the difference describes a
connection between K and K . Let and are two biases
under two keys and , with , then

: 0 a, r b
1 d K ,

: 0 a, r b
1 d K .

When does the equality hold? The equality holds if
d K d K , that is, 0. In the following,
we give a short summary of the contributions in Bogdanov
et al. (2013).
Theorem 1 ((Bogdanov et al. 2013), Key difference invari-
ant bias for key-alternating ciphers). Let a, b be a non-
trivial linear approximation of a key-alternating block
cipher. Its biases for expanded key K and for expanded
key K with K K have exactly equal values ,
if 0 for each linear characteristic of the linear hull
a, b with 0.

Given a linear approximation a, b , we denote by j, j
1, ..., n r 1 the j-th bit of linear characteristics . If bit
positions j such that j 0 for all with 0. We
call such positions zero positions. Otherwise, a position is
called a nonzero. Next we give a more explicit sufficient
condition for keeping 0.
Corollary 1. [(Bogdanov et al. 2013), Condition 1, Suf-
ficient condition for key difference invariant bias] For a
fixed non-trivial linear approximation a, b of a key-
alternating block cipher, the relation between a pair of
the user-supplied keys and is such that the expanded
key difference K K chooses an arbitrary num-
ber of zero positions and no nonzero positions in the linear
characteristics of the linear approximation, with 0.
For random block ciphers and block sizes n 5, the

bias of a linear approximation follows a normal distribu-
tion with mean 0 and variance 2 n 2 from Daemen and
Rijmen (2007), that is, 0, 2 n 2 . Then, the prob-
ability for biases with two different keys to be equal is
Pr 1

2 2
3 n
2 .

GivenN plaintext-ciphertext pairs and linear approxi-
mations under a pair of expanded keys K ,K , K K ,
satisfies the condition 1 for key difference invariant bias.

For each of these linear approximations we allocate coun-
ters Si and Si, i 1, ..., , which account for the number of
times that these linear approximations are satisfied under
K and K for each of theN known-plaintexts. The statistic
s is as follows:

s
i 1

Si
N

1
2

Si
N

1
2

2
.

Assume the counters Si and Si, i 1, ..., , are all inde-
pendent, s approximately follows normal distribution with
mean 2N and variance 2N2 for the right key, that is,

s
2N

,
2N2 .

Similarly, s approximately follows normal distribution for
the wrong key as follows:

s
2N 2n 1 , 2N2 22n 1 N2n

.

In the two above cases, we have seen that the statis-
tic s follows two different normal distributions. When
testing the key candidates, the cryptanalysts face with
the task of statistical hypothesis. Consider two normal
distributions 0, 2

0 and 1, 2
1 . Without loss of

generality, assume that 0 1. A sample t is drawn
from either 0, 2

0 or 1, 2
1 . The hypothesis test

is performed to determine which distribution the sample
comes from. Compare the value t with some threshold
value , if t , the test returns t 0, 2

0 ; if t ,
the test returns t 1, 2

1 . There are two types error
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of probabilities. The type I error is the probability of the
sample t comes from 1, 2

1 when t actually comes
from 0, 2

0 . The type II error is the probability of the
sample t comes from 0, 2

0 when t actually comes
from 1, 2

1 . The two errors are denoted by 0 and 1
as follows.

0 Pr t t 0, 2
0 ,

1 Pr t t 1, 2
1 .

The decision threshold is 0 0q1 0 1
1q1 1 , where q1 1 and q1 0 are the quantiles of the

standard normal distribution 0, 1 .
Corollary 2 ((Bogdanov et al. 2013), Data Complexity of
Distinguisher). Using the s distributions for the right and
wrong key, we obtain the following equation that deter-
mines the amount of data needed by the distinguisher
s:

N
2n 0.5

q1 1 2
q1 0 q1 1 .

where 0 is the probability to reject the right key, whereas
1 is the probability to accept a wrong key.
The statistical cryptanalysis attack also depends on

the way to obtain the data sample. In known plain-
text (KP) attack, the plaintext-ciphertext pair (P, C) is
done with replacement. If the plaintext-ciphertext pairs
are sampled randomly without replacement, the attack
is called distinct-known-plaintext (DKP) attack. Suppose
N plaintext-ciphertext pairs are sampled randomly, let
us denote by Z the random variable corresponding to
the number of plaintext-ciphertext pairs that satisfy lin-
ear approximation equation. In the cases of KP and DKP
sampling, the variable Z follows a binomial and hyperge-
ometric distributions, respectively. The two distributions
have the same expectationNp, but variance is BNp 1 p ,
where p is the probability that the linear approximation
holds, the constant B is defined by

B
1, for KP
2n N
2n 1 , for DKP.

Multidimensional approximation of boolean functions
In this section, we introduce two lemmas of multidimen-
sional linear cryptanalysis (Hermelin et al. 2008) that will
be needed in next section.
Let f : Vn Vl be a vector Boolean function, and

binary vectors vi Vl and ui Vn, i 1, 2, ...,m, be lin-
ear masks such that the paired masks ui, vi are linearly
independent. Define functions gi by

gi : vi f ui

and assume gi have correlations ci, i 1, ...,m. We will call
these correlations base-correlations, and the correspond-
ing linear approximations of f the base-approximations.

We want to find the probability distribution of the m-
dimensional linear approximation

g : Vf U

where V v1, ..., vm , U u1, ...,um and g
g1, ..., gm . Let the probability distribution of g be p
p0, ..., pM ,M 2m 1. Assume that we have the cor-
relations c a of all the linear mappings a g of g, We
will call the correlations c a the combined correlations
of f and the corresponding approximations the combined
approximations.
Definition 2. The capacity between two probability dis-
tributions p and q is defined by

C p, q
2m 1

0

p q 2

q
.

Let us consider m-dimensional linear attack whose m
base approximations construct an m-dimensional vecto-
rial boolean function f . Let p p0, ..., p2m 1 denote
the probability distribution of f , and is the discrete
uniform distribution, the capacity of the m-dimensional
linear approximations as below:

C p,
2m 1

0

p 2 m 2

2 m .

For simplicity, let C p denotes the capacity of the prob-
ability distribution of m-dimensional linear approxima-
tions.
Lemma 1. [(Hermelin et al. 2008)] Let g : Fn

2 Fm
2 be a

Boolean function with probability distribution p and one-
dimensional correlations c a of a g. Then

p 2 m

a Fm2

1 a c a ,

c a
Fm2

1 a p , Fm
2 , a Fm

2 .

Lemma 2. [(Hermelin et al. 2008)] Let g : Fn
2 Fm

2 be the
Boolean function with probability distribution p. Then the
capacity C p of p such that

C p 2m
Fm2

p 2 m 2

a 0
a Fm2

c a 2.

Note 1. If a random variable X has the 2 distribution
with l degrees of freedom, then X approximately follows
normal distribution with mean l and variance 2l when l is
sufficiently large, that is, X l, 2l .

Note 2. Suppose X is d-dimensional normal random vec-
tor with mean vector and covariance , X d , ,
then X T 1 X follows a 2 distribution with
r degrees of freedom, r rank .
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We will need the above results in next section where we
study how multidimensional linear statistic is applied in
key difference invariant bias linear cryptanalysis.

Improved statistical distinguisher with key
difference invariant bias
In this section, we firstly consider multidimensional lin-
ear attacks with key difference invariant bias and present a
new statistic Q. Then we analyse the probability distribu-
tion of statistic Q for the right/wrong key guess, and give
the data complexity of an attack to achieve a certain suc-
cess level under KP and DKP cases, respectively. Finally,
the key recovery attack procedure which uses our new
model is described.

A new statistical distinguisher
We analyse the relation between correlations and prob-
ability distributions of multidimensional linear approxi-
mation under two distinct round keys. Suppose a block
cipher f : Fn

2 Fn
2 , we consider m-dimension linear

cryptanalysis of f . Assume the base-approximations ofm-
dimensional linear approximation is g g1, ..., gm . Let
us denote by c a and c a the correlations of a g under
master keys and , respectively, and denote by p and
p the probability distributions of g under master keys
and , respectively. We can obtain the next lemma.
Lemma 3.

a 0
a Fm2

c a c a 2 2m
Fm2

p 2 m p 2 m 2
.

Proof According to Lemma 2, we have:

2m
Fm2

p 2 m 2

a 0
a Fm2

c a 2,

2m
Fm2

p 2 m 2

a 0
a Fm2

c a 2.

So it suffices to show that

a 0
a Fm2

c a c a 2m
Fm2

p 2 m p 2 m . (1)

Using Lemma 1, we have:

p 2 m

a Fm2

1 a c a , p 2 m

b Fm2

1 b c b .

Substituting p and p in (1) as follows:

2m
Fm2

p 2 m p 2 m

2 m

Fm2 a Fm2

1 a c a 1
b Fm2

1 b c b 1

2 m

Fm2 a,b Fm2

1 a b c a c b
a Fm2

1 a c a

b Fm2

1 b c b 1 .

Because

Fm2

1 a 2m, for a 0,
0, for a 0.

therefore,

2 m

Fm2 a Fm2

1 a c a 2 m

a Fm2 Fm2

1 a c a 1.

Similarly,

2 m

Fm2 b Fm2

1 b c b 1,

2 m

Fm2 a,b Fm2

1 a b c a c b
a b,

a,b Fm2

c a c b

a 0
a Fm2

c a c a 1.

Thus, the Eq. (1) holds, the Lemma 3 as desired.

Thus we can present a new statistic based on the key dif-
ference invariant bias property by using anm-dimensional
linear approximation for an n-bit block cipher. Suppose
the data sample is randomly selected, the sample size isN.
V and V , 0, ..., 2m 1, denote the number of
occurrences of value of the observed data distribution
formaster keys and with theN plaintexts.We propose
a new statistic Q:

Q 2m
2m 1

0

V
N

2 m V
N

2 m
2
.

As we aim to perform a key recovery attack with this sta-
tiatic Q, we will derive the distribution of Q for the right
key guess and for the wrong key guess.
In the case of right key guess, we obtain the following

result.
Proposition 1. [Distribution of Statistic Q for the Right
Key] Consider an m-dimensional linear approximation for
a block cipher under a pair of expanding keys K ,K con-
nected by conforming to condition 1. Let N is the number
of KP or DKP pairs, V and V are the frequency
of value of the observed data distribution for K and
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K , respectively, and m is high enough. Then the following
approximate distribution holds for sufficiently large N and
m:

Q
2Bl
N

,
8B2l
N2

where l 2m 1, B
1, for KP
2n N
2n 1 , for DKP

.

Proof We first consider KP case. Form-dimensional lin-
ear attack, let l 2m 1, N is the number of random
KP pairs, V and V , 0, ..., 2m 1, denote the
number of occurrences of value of the observed data
distribution for master keys and . The random vector
V 0 , ...,V l T follows a multinomial distribution with
parameter N and p , where p p0 , ..., pl
with l

0 p 1. The variance of V i is Npi 1
pi N2 m 1 2 m . The covariance of V i and
V j is Cov V i ,V j Npi pj N2 2m. The
counters V and V suggest empirical probability
p V

N and p V
N respectively. Let p k

p0 , ..., pl 1
T , p p0 , ..., pl 1

T , for
sufficiently largeN, the random vector p approximately
follows l-dimensional normal distribution with mean vec-
tor p p0 , ..., pl 1

T and covariance matrix
N 12 m Il 2 mE , where Il is an identity matrix, E

is a l l matrix with all entries are equal one, that is,

p l p , .

Similarly, p l p , .
The expanded keys K and K satisfying

K K , satisfies the condition 1 for key differ-
ence invariant bias, so p p . Then, p p

l 0, 2 . From Note 2, we know

p p T 2 1 p p 2 l .

Because 1 N2m Il E , therefore,

p p T 2 1 p p

N2m 1
l 1

0
p p 2

l 1

0
p p

2

N2m 1
l 1

0
p p 2 1 pl 1 pl

2

N2m 1
l

0
p p 2 N

2
Q.

Thus we obtainQ 2
N

2 l . Using the Note 1, the follow-
ing approximate distribution holds for sufficiently large N
andm:

Q
2l
N
,
8l
N2 .

In the case of DKP sample, the random vector
V 0 , ...,V l T follows a multivariate hypergeometric
distribution. The variance of V i is 2n N

2n 1 Npi 1
pi 2n N

2n 1 N2 m 1 2 m . The covariance of V i
and V j is

Cov V i ,V j
2n N
2n 1

Npi pj
2n N
2n 1

N2 2m.

The following steps of the proof are similar to those in the
KP case.

In the case of wrong key guess, we base upon the
hypothesis that for a wrong key, i.e., the cipher is a permu-
tation drawn at random. Suppose the m-dimensional lin-
ear approximation with the probability distribution p k ,

0, ..., 2m 1, independent and identical distribution to
a normal distribution 2 m, 2 . According to Lemma
1, for a 0,

ca k
Fm2

1 a p k 2 m 2 m

Fm2

1 a p k 2 m

we have ca k 0, 2m 2 . In Daemen and Rijmen
(2007), Daemen and Rijmen show that the correlation dis-
tribution of an ideal cipher is normal with mean zero
and variance 2 n, i.e., ca k 0, 2 n . So we obtain
2m 2 2 n, p k 2 m, 2 m n . Then we have the
following proposition for the distribution of Q.
Proposition 2. [Distribution of Statistic Q for the Wrong
Key] Consider an m-dimensional linear approximation for
two randomly drawn permutations. Let N is the number
of KP or DKP pairs, V and V are the frequency of
value of the observed data distribution for two permuta-
tions, respectively, andm is high enough. Then the following
approximate distribution holds for sufficiently large N and
n:

Q
2B
N

2 n 1 l,
2B
N

2 n 1
2

2l

where l 2m 1, B
1, for KP
2n N
2n 1 , for DKP

.

The proof of proposition 2 is similar to proposition 1.
In the two above cases, we have seen that the statis-

tic Q will follow two different normal distributions. Using
statistical hypothesis, we obtain the following data com-
plexity under KP and DKP data sample, respectively.

NKP 2n 0.5 q1 0 q1 1

l 2 q1 1

; (2)

NDKP 2n 0.5 q1 0 q1 1

l 2 q1 0

. (3)
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where 0 is the probability to reject the right key, 1 is the
probability to accept a wrong key.

Procedure of key recovery attack
We describe the key recovery attack procedure which uses
the statistic Q. The attack procedure is as follows:
Step1: For all related-key differential paths a, b with
a difference on the master-key that sat-
isfy key difference invariant bias condition. We collect
N plaintext-ciphertext pairs (P, C) under the keys and

.
Step2: Partially encrypt rtop rounds and partially decrypt
rbot rounds, obtain partial state values x and x covered by
the input/output masks of a, b under and , respec-
tively. Compute the number of times N[ x] and N[ x ] that
partial state values occur.
Step3: For all state values of x and x , we compute the
value and allocate counters V and V and set their
initial values to zero. If the value occurs, then add N[ x]
and N[ x ] to V and V , respectively. Compute

Q Q 2m
2m 1

0

V
N

2 m V
N

2 m
2
.

Step4: IfQ , then the guessed subkey is a possible right
subkey candidate.
Step5: Do exhaustive search for all right subkey candi-
dates.

Attack on LBlock
In this section, we will evaluate the security of LBlock
against multidimensional linear attack with key difference
invariant bias by using the new statistic Q.

A brief description of LBlock
Encryption Algorithm. The general structure of LBlock
is a variant of Feistel Network. The number of iterative
rounds is 32. The round function of LBlock includes three
basic functions: AddRoundKey, confusion function S and
diffusion function P. The confusion function S consists of
eight 4 4 S-boxes in parallel. The diffusion function P
is defined as a permutation of eight 4-bit nibbles (see Wu
and Zhang (2011)).

Key Schedule Algorithm. The key schedule of LBlock is
rather simple. The 80-bit master key is stored in a key
register, denoted by k79k78...k1k0. At round i, the left-
most 32 bits of current contents of register are output as
the round key Ki, i.e., Ki k79k78...k48. The key schedule
of LBlock can be shown as follows:
1. K1 [ 79, 78, ..., 48];
2. For i 2 to 32,

(a) 29
(b) [ 79, 78, 77, 76] S9 [ 79, 78, 77, 76] ,

[ 75, 74, 73, 72] S8 [ 75, 74, 73, 72] ;
(c) [ 50, 49, 48, 47, 46] [ 50, 49, 48, 47, 46] [ i]2;
(d) Ki [ 79, 78, ..., 48].

Multidimensional linear approximations with key
difference invariant bias for LBlock
Let K and K be the expanded keys corresponding to two
master keys and , K and K for key
schedule , such that K K . Firstly, we introduce
the notations that need to be used.

i : j denotes an integer range from i to j;
: the difference of master key and ;

14:17 denotes a 4-bit nibble of , the bit position is j
14 : 17;
k14:17 denotes a 4-bit nibble of , the bit position is j
14 : 17;
k14:17 denotes a 4-bit nibble of , the bit position is j
14 : 17;
k18:21 denotes a 4-bit nibble of , the bit position is j
18 : 21
k18:21 denotes a 4-bit nibble of , the bit position is j
18 : 21 ;
S x S x 0, S x 1, S x 2, S x 3 , S8 k14:17
S8 k17, k16, k15, k14 ;
S k14:17 S k14:17 S k14:17 , and analogously, the

other difference notation can be similarly represented;
r , 5 r 20 : input mask value for the S-boxes in

round r;
Kr , 5 r 20 : the subkey difference in round r;
Ki
r , 5 r 20 : the i-th nibble of subkey difference

in round r, the 0-th nibble is the leftmost nibble;

In masks, ‘0 , ‘1 and ‘ denote zero, nonzero and arbi-
trary mask for a nibble, respectively; In differences, ‘0 , ‘1
and ‘ denote zero, nonzero and arbitrary difference for a
nibble, respectively.
In Bogdanov et al. (2013), Bogdanov et al. found

16-round linear approximations that satisfy key differ-
ence invariant bias property. But they didn’t identify
the master key difference such that condition 1. In this
section, we find the master key difference that satisfy
invariant bias for 16-round 8-dimensional linear approx-
imations. The 16 rounds 8-dimensional linear approx-
imations with 4-bit input and 4-bit output. We put
the 16 rounds 8-dimensional linear approximation in
round 5 to 20. The input mask of the 5-th round is
0000 00000000000 and the output mask of the 20-th
round is 000000000 000000 , , 0. Next, we deter-
mine the master key difference that satisfy condition 1.
For all cases of input mask r , 5 r 20, if the rela-

tions r Kr 0 hold, then, the sufficient condition
for key difference invariant bias is fulfilled according to
the condition 1 in corollary 1. Now we determine all the
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related-key differential paths, that is, we find the spectific
master key difference that satisfy the sufficient condition
of invariant bias.
We get all the input mask r , 5 r 20 from (Bog-

danov et al. 2013). Because 12 11 11, 13 1
1 1 1, 11 1101111, let K12 00000000, K13
00000000, Ki

11 0, i 0, 1, 2, 4, 5, 6, 7. According to the
key schedule of LBlock, round keys K12,K13,Ki

11 are func-
tions of master key kj, j 0 : 79 , j 14, 15, 16, 17. So the
master key difference satisfy 14:17 0000, j 0, j
0 : 79 , j 14, 15, 16, 17. Next, we determine the value of
14:17.
According to the propagation property of the lin-

ear mask, the 14-round and 16-round input masks are
obtained (see Bogdanov et al. (2013)), 14 101111
1, 16 11000001. In order for the equations r Kr 0
hold, let j

r K j
r 0, j 0, 1, ..., 7. On the basis of key

schedule, the key K2
14, K7

16 are functions of the master
key k14:17, so we just need the next equation holds.

K2
14 0

K7
16 0 (4)

Equation (4) can be turned to

S9 S8 k14:17 3 , k13, k12, k11 0000

S8 S9 k18:21 3 , S8 k14:17 0 , S8 k14:17 1 S8 k14:17 2 00

(5)

For every value of k14:17 and S9 k18:21 3, we can obtain
only single nonzero difference 14:17 by solving the Eq. (5)
(see in Table 3). So we get all the key difference that satisfy
the condition 1 in Corollary 1.

Table 3 Master key difference satisfy invariant bias condition 1

k14:17 S9 k18:21 3
14:17 k14:17 S9 k18:21 3

14:17

0000 0 1100 0010 1 0100

0111 0 1100 1001 1 0100

1011 0 1100 1101 1 0100

1100 0 1100 0110 1 0100

0000 1 0111 0010 0 1111

0011 0 0111 1001 0 1111

1111 1 0111 1101 0 1111

0100 0 0111 0110 0 1111

0111 1 0111 0101 0 1011

1000 1 0111 1010 1 1011

1011 1 0111 1110 0 1011

1100 1 0111 0001 1 1011

0100 1 1010 0001 0 1001

1110 1 1010 1000 0 1001

0011 1 0110 1010 0 0101

0101 1 0110 1111 0 0101

Key recovery for 25-Round LBlock
In order to attack 25-round LBlock, we follow the multidi-
mensional linear cryptanalysis with key difference invari-
ant bias property. The attack utilizes the 16-round key
difference invariant bias linear approximations described
in the above section from round 5 to 20. We append 4
rounds at the top of the distinguisher and add 5 rounds
at the bottom of the distinguisher. After collecting suffi-
cient plaintext-ciphertext pairs, we guess corresponding
subkeys for the first four rounds and the last five rounds
and compute the statistic Q of the linear approximations.
Next, we decide if the guessed key is right or not. Finally,
we exhaustively search all right subkey candidates. If we
directly guess the subkeys bits involved in the key recov-
ery process, then the time complexity will be greater than
exhaustive search. Therefore, in order to reduce the time
complexity, we express the two target values of attack by
using the related round keys and plaintexts or ciphertexts,
then, we use the partial-compression technique to reduce
the time complexity significantly. The attack process is
shown as the following Fig. 1.
Let X0 denote the 64 bits plaintext, Xj

r denote the 4-bit
nibble of the r-th ciphertext, the 0-th nibble is the left-
most nibble. As shown in Fig. 2, the nibble X4

4 is affected
by 32 bits of plaintext X0 and 28 bits of round keys and the
expression can be shown:

X4
4 X0

0 S X14
0 S X5

0 K5
1 K4

2 S X9
0 S X6

0

K6
1 S X1

0 S X8
0 S X4

0 K4
1 K6

2 K7
3

K5
4

Similarly, the nibble X9
20 is affected by 48 bits of ciphertext

X25 and 48 bits of round keys and the expression can be
shown:
X9
20 X3

25 S X10
25 K2

25 S X13
25 S X5

25 S X15
25

K7
25 K7

24 K7
23 S X10

25 S X6
25 S X12

25

K4
25 K0

24 S X1
25 S X11

25 K3
25 S X8

25

S X7
25 S X14

25 K6
25 K1

24 K2
23 K5

22

K6
21

After analyzing the key schedule of LBlock, we find the
following relations in the round keys:
K0
24 K7

23[ 1 : 3]; K0
24,K

1
24,K

6
1 K5

4 [ 0, 2, 3]; K
7
25

K2
23[ 0 : 1];

K3
25 K5

22[ 0 : 2]; K4
25 K5

22[ 3]; K2
23,K6

25,K7
25 K7

3 only
has two possible values; K6

2 K7
24 has 23 possible values;

k14:17, S9 k18:21 3 K2
25 has 23 possible values. Accord-

ing to these relations, the involved 76 bits round keys can
reduce 17 bits information of subkeys, then we just need
guess 59 bits subkey in the key recovery attack.
Assuming that N distinct known plaintext-ciphertext

pairs are sampled, the partial encryption and decryption
using the partial-compression technique are proceeded as
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Fig. 1 The diagram of key-recovery attack on LBlock

Fig. 2 Attack on 25-round LBlock
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in Table 4. Under master key and , the subkey nib-
bles that have to be guessed in the second column. The
Step 2’s time complexity that is measured in S-box access
in the third column. The “Obtained States” are saved dur-
ing the encryption and decryption process in the fourth
colum. Let xi and xi 1 i 14 denote the possible
obtained states under the master key and , respec-
tively, the counterNi [xi] andNi xi will record howmany
plaintext-ciphertext pairs can produce the corresponding
intermediate state xi and xi, respectively. The counter size
for xi and xi is shown in the last column.
To be more clear, we explain some steps in Table 4 in

detail.
Step 1. In the process of attack, the target values X4

4 X9
20

are affected by 32 bits of plaintext and 48 bits of cipher-
text. They are represented by

x0 X0
0 X14

0 X5
0 X9

0 X6
0 X1

0 X8
0 X4

0 X3
25 X

10
25

X13
25 X5

25 X
15
25 X6

25 X
12
25 X1

25 X
11
25 X8

25 X
7
25 X

14
25 .

We guess 18 bits subkeys K7
25 K3

25 K6
25 K1

24 K2
23[ 2 : 3] for

the master key and respectively. The following two
equtions are true for LBlock.

X7
23 X5

25 S X15
25 K7

25 ,
X5
21 X1

25 S X11
25 K3

25 S X8
25 S X7

25 S X14
25 K6

25 K1
24 K2

23 .

So we can update the expression of X9
20:

X9
20 X3

25 S X10
25 K2

25 S X3
25 S X7

23 K7
24 K7

23

S X10
25 S X6

25 S X12
25 K4

25 K0
24

S X5
21 K5

22 K6
21 .

The 80-bit x0 and x0 can be reduced to 60-bit x1 and x1
after guessing the 18 bits round keys. We allocate two 60-
bit counters N1[ x1] and N1[ x1] for the master key and
, respectively, and initialize them to zero. We then guess

18-bit keys and partially decrypt N ciphertexts to com-
pute x1 and x1 undermaster key and , respectively, and
increment the corresponding counters.
Step 2. We first allocate 56-bit counter N2 [x2] and

N2 x2 for the master key and , respectively, and
initialize them to zero. We then guess 4-bit K4

1 for the
master key and , respectively, and partially encrypt
x1 and x1 to compute x2 and x2, respectively, and incre-
ment the corresponding counters. As the equation X6

1

Table 4 Partial encryption and decryption on 25-round LBlock

Step Guess Time Obtained States Size

1 K625, K
7
25 N 218 10 x1 x1 X00 X140 X50 X90 X60 X10 X80 X40 260 2

K223[ 2 : 3] X325 X1025 X1325 X723 X625 X1225 X521

K124, K
3
25

2 K41 260 218 4 2 x2 x2 X00 X140 X50 X90 X60 X10 X61 256 2

X325 X1025 X1325 X723 X625 X1225 X521

3 K62 256 222 4 2 x3 x3 X00 X140 X50 X90 X60 X72 X325 252 2

X1025 X1325 X723 X625 X1225 X521

4 K724 252 226 3 2 x4 x4 X00 X140 X50 X90 X60 X72 X325 248 2

23 possible values X1025 X722 X625 X1225 X521

5 K61 248 229 4 2 x5 x5 X00 X140 X50 X71 X72 X325 X1025 244 2

X722 X625 X1225 X521

6 K73 244 233 1 2 x6 x6 X00 X140 X50 X53 X325 X1025 X722 240 2

2 possible values X625 X1225 X521

7 K425 240 234 4 2 x7 x7 X00 X140 X50 X53 X325 X1025 X722 236 2

X023 X
5
21

8 K024 K522 236 238 4 4 x8 x8 X00 X140 X50 X53 X325 X1025 X722 232 2

X620

9 K225 232 242 3 2 x9 x9 X00 X140 X50 X53 X523 X722 X620 228 2

23 possible values

10 K723[ 0] 228 245 1 2 x10 x10 X00 X140 X50 X53 X721 X
6
20 224 2

11 K51 224 246 4 2 x11 x11 X00 X41 X53 X721 X620 220 2

12 K42 220 250 4 2 x12 x12 X143 X53 X721 X
6
20 216 2

13 K54 [ 1] 216 254 1 2 x13 x13 X44 X721 X620 212 2

14 K621 212 255 4 2 x14 x14 X44 X920 28 2
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X8
0 S X4

0 K4
1 holds, the expression of X4

4 is update as:

X4
4 X0

0 S X14
0 S X5

0 K5
1 K4

2 S X9
0

S X6
0 K6

1 S X1
0 S X6

1 K6
2 K7

3 K5
4

.

Because the following steps are similar to the above two
steps, we do not explain in details. Besides, we note that
the numbers of guessed keys in step 8 of Table 4 is 4 bits.
However, the numbers of known keys are 8 bits, that is
because the key in the “( )” can be obtained by using the
relations of round keys. To recover the secret key, the fol-
lowing steps are performed:
1. Allocate two counters V [ ] and V [ ] for 8-bit
X4
4 X9

20 .
2. For 28 values of x14 and x14:
(a) Evaluate all 8 basis masks on x14 and x14 and get ;
(b) Update the countersV andV byV V
N14[ x14] and V V N14[ x14].
3. For each guessing key, compute

Q 2m
2m 1

0

V
N

2 m V
N

2 m
2

4. If Q , then the guessed subkey values are possible
right subkey candidates.
5. Do exhaustive search for all right candidates.
After processding of attack procedure from step 1 to 5,

if we can not succeed, this means that the value of the
right key does not belong to the values corresponding to
the related-key differential path tested. We can then use
another related-key differential path to proceed the above
attack. All possible values of the master key bits k14:17
and S9 k18:21 3 are covered by the related-key differential
paths, so we could always find the right key where in the
worst case, all the related-key differential paths have to
be tested. For example, we choose master key difference
14:17 0111, then k14:17 and S9 k18:21 3 have 8 possi-
ble values. We need to guess one by one and determine
which one is the right key. The average number of guesses
is 1

8 1 2 3 4 5 6 7 8 4.5. Similarly, when
14:17 1100, 0100, 1111 or 1011 the average number of
guesses is 2.5; when 14:17 1010, 0110, 1001 or 0101, the
average number of guesses is 1.5. The key difference 14:17
has 9 possible values, its probability distribution of 14:17
is as follows (see Table 3).
14:17 1100, 0111, 1010, 0110, 0100, 1111, 1011, 1001, 0101

p
4
32

,
8
32

,
2
32

,
2
32

,
4
32

,
4
32

,
4
32

,
2
32

,
2
32

According to the above discussion, then,the total aver-
age number of guesses is 4.5 8

32 2.5 4 4
32 1.5 2 4

32
88
32 .

Complexity Now we evaluate the time complexity of
the key recovery on 25-round LBlock. By setting 0
2 2.7, 1 0.5, we have q1 0 1.02 and q1 1 0.

Since n 64 and l 255, then according to Eq. (3), the
data complexity NDKP 260.4. Now we evaluate the time
complexity of the key recovery on 25-round LBlock. We
start by evaluating the complexity of step 1 to step 14 in
the process of partial computation(see Table 4), the time
complexity is T1 N 219 5 2 283 2 282 2 279
280 278 3 275 2 272 284.89 S-box access, which
is about T T1

1
8

1
25 277.25 25-round LBlock encryp-

tions. Under each related-key differential path,the values
k14:17 and S9 k18:21 3 are known, so the time complexity
of Step 5 of key recovery attack is about 275 1 274
times of 25-round encryption. Therefore, the total time
complexity is about 274 277.25 277.39 25-round LBlock
encryptions. Since the given value k14:17 and S9 k18:21 3

may not be the right key, the average number of guesses
to the value of k14:17 and S9 k18:21 3 is

88
32

, so the expected
time complexity of our attack on 25-round LBlock is about
277.39 88

32 278.85 25-round encryptions. The memory
requirements are about 261 bytes.

Key recovery for 24-Round LBlock
Similarly, we can perform key recover attack on 24-round
LBlock by using the same linear approximations from
round 5 to 20. We append 4 rounds at the top of the
distinguisher and add 4 rounds at the bottom of the
distinguisher.
We express the two target values of attack by using

the related round keys and plaintexts or ciphertexts, then
use the partial-compression technique to reduce the time
complexity significantly (see Table 5). The nibble X4

4 is
affected by 32 bits of plaintextX0 and 28 bits of round keys
and the expression can be shown:

X4
4 X0

0 S X14
0 S X5

0 K5
1 K4

2 S X9
0 S X6

0

K6
1 S X1

0 S X8
0 S X4

0 K4
1 K6

2 K7
3

K5
4

Similarly, the nibble X9
20 is affected by 32 bits of ciphertext

X24 and 28 bits of round keys and the expression can be
shown:

X9
20 X13

24 S X5
24 S X15

24 K7
24 K7

23 S X2
24

S X8
24 K0

24 S X11
24 S X0

24 S X9
24 K1

24

K2
23 K6

21

After analyzing the key schedule of LBlock, we find the
following relations in the round keys: K0

24 K7
23[ 1 :

3] ;K0
24,K1

24,K6
1 K5

4 [ 0, 2, 3] .
Assuming that N distinct known plaintexts are used,

the partial encryption and decryption using the partial-
compression technique are proceeded as in Table 5. The
process can be referred to 25-round attack on LBlock.
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Table 5 Partial encryption and decryption on 24-round LBlock

Step Guess Time Obtained States Size

1 K724 N 24 2 X00 X140 X50 X90 X60 X10 X80 X40 X1324 260 2

X722 X224 X824 X1124 X024 X
9
24

2 K024 260 28 2 X00 X140 X50 X90 X60 X10 X80 X40 X1324 256 2

X722 X422 X1124 X024 X924

3 K723[ 0] 256 28 1 2 X00 X140 X50 X90 X60 X10 X80 X40 X721 252 2

X422 X1124 X024 X
9
24

4 K41 252 29 4 2 X00 X140 X50 X90 X60 X10 X10 X61 X721 X422 248 2

X1124 X024 X924

5 K62 248 213 4 2 X00 X140 X50 X90 X60 X72 X721 X422 X1124 244 2

X024 X
9
24

6 K61 244 217 4 2 X00 X140 X50 X71 X72 X721 X422 X1124 240 2

X024 X
9
24

7 K51 240 221 4 2 X00 X41 X71 X72 X721 X422 X1124 X024 X924 236 2

8 K42 236 225 4 2 X143 X71 X72 X721 X422 X1124 X024 X
9
24 232 2

9 K73 232 229 4 2 X143 X53 X721 X422 X1124 X024 X924 228 2

10 K124, K
5
4 [ 1] 228 233 5 4 X44 X721 X422 X1124 X222 220 2

11 K223 220 238 4 2 X44 X721 X422 X
5
21 216 2

12 K522 216 242 4 2 X44 X721 X620 212 2

13 K621 212 246 4 2 X44 X920 28 2

Complexity By setting 0 2 2.7, 1 2 8.5, then
according to Eq. (2), the data complexity is NKP

262.83, the time complexity is about 268.08 24-round LBlock
encryptions and the memory requirements are about 261
bytes.
In the DKP case, we set 0 2 2.7, 1 2 8.5, then

according to Eq. (3), the data complexity is NDKP

262.3, the time complexity is about 268.07 24-round LBlock
encryptions and the memory requirements are about 261
bytes. Figure 3 depicts different possible data time trade-
offs with 0 2 2.7.

Attack on TWINE-128
In this section, we will evaluate the security of TWINE-
128 against multidimensional linear attack with key differ-
ence invariant bias by using the new distinguisher Q.

A brief description of TWINE
TWINE is a 64-bit lightweight block cipher with 80 or
128-bit key. It was proposed by Suzaki et al in 2012. The
structure of TWINE is a modified Type-2 generalized
Feistel network. Its round function consists of AddRound-
key, 4-bit S-boxes and a diffusion layer. This round func-
tion is iterated for 36 times for both TWINE-80 and
TWINE-128, where the diffusion layer of the last round is
omitted.
The key schedule of TWINE is quite simple. S-boxes,

XOR operations and a series of constants are used in the

key schedule. Due to the page limit, see the specific key
schedule algorithms in Suzaki et al. (2012).

Key recovery for 28-round TWINE-128
We consider 17-round (from round 6 to round 22) lin-
ear approximations with key difference invariant bias
for TWINE-128 that have been identified in Bogdanov
et al. (2013). The input mask of the 6-th round is
000000000000 000 and the output mask of the 22-th
round is 0000000 00000000 , , 0. LetK andK be
the expanded keys corresponding to two themaster keys
and , K and K for key schedule , such
that K K . Let us denote by the differ-
ence of masker keys and . Let Kr and r denote the
subkey difference and input mask value for the S-boxes in
round r, respectively. To make the relations

r Kr 0, 6 r 22 (6)

hold, it suffices to let 20:23 0000, j 0, j 0, 1, ..., 79
and j 20, 21, 22, 23.
Thus sufficient condition for key difference invariant bias
is satisfied. There are 15 possible nonzero values 20:23
that satisfy the Eq. (6). We can choose any nonzero 20:23,
and j 0, j 0, 1, ..., 79 and j 20, 21, 22, 23, to
obtain the differential path which covers all the possible
key values and is sufficient to recovery the right key value.
We utilize the 17-round distinguisher to attack 28

rounds of TWINE-128. The initial five rounds from 1 to
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Fig. 3 Data-time tradeoff for the attack on 24-round LBlock

round 5 are added before the distinguisher and the finial
six rounds from 23 to round 28 are appended after the dis-
tinguisher. Similary, we express the two target values and
then guess the keys one nibble after another to reduce the
time complexity of partial computation. The nibble X12

5 is
affected by 48 bits of plaintextX0 and 48 bits of round keys
and the expression can be shown as:

X12
5 X11

0 S X10
0 K5

1 S X2
0 S X1

0 S X0
0 K0

1

K0
2 K0

3 S X10
0 S X7

0 S X6
0 K3

1 K4
2

S X15
0 S X14

0 K7
1 S X8

0 S X5
0 S X4

0

K2
1 K6

2 K5
3 K1

4 K2
5

(7)

Similarly, the nibble X7
22 is affected by 60 bits of ciphertext

X28 and 76 bits of round keys:

X7
22 X3

28 S X10
28 S X15

28 K6
28 K4

27 S X2
28

S X9
28 K5

28 S X1
28 S X6

28 S X13
28 K4

28

K5
27 K7

26 K6
25 S X10

28 S X15
28 K6

28

S X7
28 S X0

28 S X5
28 K0

28 K1
27 K3

26

S X15
28 S X8

28 S X3
28 K3

28 K2
27

S X14
28 S X11

28 K7
28 S X13

28 S X4
28

S X1
28 K1

28 K3
27 K2

26 K0
25 K1

24

K3
23

The following relations exist in the related round keys:

K3
1 K1

4 ,K5
28 K1

24.

Thus, we just need guess 116 bits subkeys in the attack.
Assuming that N distinct known plaintexts are used,

the partial encryption and decryption using the partial-
compression technique are proceeded as in Table 6.

Complexity We set 0 2 2.7, 1 2 3, so we have
q1 0 1.02 and q1 1 1.15. Since n 64 and
l 255, then according to Eq. (3), the data complexity
NDKP 261.5. Nowwe evaluate the time complexity of the
key recovery on 28-round TWINE-128. We start by eval-
uating the complexity of step 1 to step 14 in the process
of partial-compression (see Table 6), the time complexity
is T1 N 265 17 12 2129 2130 2133.09 S-box
access, which is about T T1

1
8

1
28 2125.28 28-round

TEINE-128 encryptions. Note that the time complexity of
Step 3, 4 is negligible. The time complexity of Step 5 of key
recovery attack is about 2128 1 2125 times of 25-round
encryption. Therefore, the total time complexity is about
2125 2125.28 2126.15 28-round TWINE encryptions.
The memory requirements are about 261 bytes.

Key recovery for 27-round TWINE-128
We use the 17-round 8-dimension linear approximations
with key difference invariant bias to give an attack on 27-
round TWINE-128. By putting the 17-round 8-dimension
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Table 6 Partial encryption and decryption on 28-round TWINE-128

Step Guess Time Obtained States Size

1 K528, K
3
28, K

2
27 N 264 2 17 y1 y1 X110 X100 X20 X10 X00 X70 260 2

K728, K
1
28, K

3
27 X60 X150 X140 X80 X50 X40 X1025 X1525

K226, K
0
25, K

0
28 X323

K127, K
6
28, K

3
26

K124 , K427

K528 , K527, K
7
26

2 K21 260 264 4 2 y2 y2 X110 X100 X20 X10 X00 X70 256 2

X60 X150 X140 X80 X121 X1025 X1525 X323

3 K62 256 268 4 2 y3 y3 X110 X100 X20 X10 X00 X70 252 2

X60 X150 X140 X102 X1025 X1525 X323

4 K71 252 272 4 2 y4 y4 X110 X100 X20 X10 X00 X70 248 2

X60 X141 X102 X1025 X1525 X323

5 K53 248 276 4 2 y5 y5 X110 X100 X20 X10 X00 X70 244 2

X60 X23 X1025 X1525 X323

6 K31 244 280 4 2 y6 y6 X110 X100 X20 X10 X00 X81 240 2

X23 X1025 X1525 X323

7 K42 K14 240 284 4 4 y7 y7 X110 X100 X20 X10 X00 X44 236 2

X1025 X1525 X323

8 K51 236 288 4 2 y8 y8 X21 X20 X10 X00 X44 X1025 232 2

X1525 X323

9 K01 232 292 4 2 y9 y9 X21 X20 X01 X44 X1025 X1525 228 2

X323

10 K02 228 296 4 2 y10 y10 X21 X02 X44 X1025 X1525 X323 224 2

11 K03 224 2100 4 2 y11 y11 X54 X44 X1025 X1525 X323 220 2

12 K25 220 2104 4 2 y12 y12 X125 X1025 X1525 X323 216 2

13 K625 216 2108 4 2 y13 y13 X125 X823 X323 212 2

14 K323 212 2112 4 2 y14 y14 X125 X722 28 2

linear approximations in round 6 to 22, we can perform
key recovery attack on 27-round TWINE-128. Similary,
we can express the two target values X12

5 and X7
22, the val-

ues X12
5 is the same as (7), the nibble X7

22 can be shown
as:
X7
22 X6

27 S X13
27 K4

27 S X11
27 S X2

27 S X9
27

K5
27 K7

26 K6
25 S X13

27 S X4
27 S X1

27

K1
27 K3

26 S X12
27 S X7

27 K2
27 S X15

27

S X8
27 S X3

27 K3
27 K2

26 K0
25 K1

24

K3
23

The nibble X12
5 is affected by 48 bits of plaintext X0 and

48 bits of round keys, the nibble X7
22 is affected by 48 bits

of ciphertext X27 and 48 bits of round keys. The following
relations exist in the related round keys:

K3
1 K1

4 .

Assuming that N distinct known plaintexts are used,
the partial encryption and decryption using the partial-
compression technique are proceeded as in Table 7.

Complexity We set 0 2 2.7, 1 2 8.5, accord-
ing to Eq. (3), the data complexity NDKP 262.3. The
time complexity of partial computation about is 2107.27
S-box access, which is about 2107.27 1

8
1
27 299.52 27-

round TEINE-128 encryptions. The number of remain-
ing key candidates is about 2128 1 2119.5 times of
27-round encryption. Thus, the total time complexity is
about 299.52 2119.5 2119.5 27-round TWINE encryp-
tions. Meanwhile, the memory requirements are about
261 bytes. Figure 4 depicts different possible data time
trade-offs with 0 2 2.7.

Combined Model. In order to reduced the data com-
plexity of attacks, we can perform 27-round key recovery
attack which use all differential paths of 15 key difference
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Table 7 Partial encryption and decryption on 27-round TWINE-128

Step Guess Time Obtained States Size

1 K31 , K
5
1 , K

4
2 N 24 9 2 10 X21 X02 X44 X627 X1327 X1127 X227 X927 260 2

K71 , K
2
1 , K

6
2 X427 X127 X1227 X727 X1527 X827 X327

K53 , K
1
4

K01 , K
0
2

2 K03 260 236 4 2 X54 X44 X627 X1327 X1127 X227 X927 X427 256 2

X127 X1227 X727 X1527 X827 X
3
27

3 K25 256 240 4 2 X125 X627 X1327 X1127 X227 X927 X427 X127 252 2

X1227 X727 X1527 X827 X327

4 K527 252 244 4 2 X125 X627 X1327 X1127 X1126 X427 X127 X1227 248 2

X727 X1527 X827 X
3
27

5 K726 248 248 4 2 X125 X627 X1327 X1525 X427 X127 X1227 X727 244 2

X1527 X827 X327

6 K327 244 252 4 2 X125 X627 X1327 X1525 X427 X127 X1227 X727 240 2

X1527 X726

7 K226 240 256 4 2 X125 X627 X1327 X1525 X425 X127 X1227 X727 236 2

X525

8 K227 236 260 4 2 X125 X627 X1327 X1525 X427 X127 X526 X
5
25 232 2

9 K127 232 264 4 2 X125 X627 X1327 X1525 X326 X526 X525 228 2

10 K025 228 268 4 2 X125 X627 X1327 X1525 X326 X
1
24 224 2

11 K427 224 272 4 2 X125 X926 X1327 X1525 X326 X
1
24 224 2

12 K326 224 276 4 2 X125 X926 X1525 X725 X124 220 2

13 K625 220 280 4 2 X125 X823 X725 X
1
24 216 2

14 K124 216 284 4 2 X125 X823 X323 212 2

15 K323 212 288 4 2 X125 X722 28 2

that satisfy condition of key difference invariant bias
together. Let i , 1 i 15 denote the i-th master
key difference that satisfy condition of key difference
invariant bias. Vi and Vi , 0, ..., 2m 1 denote
the number of occurrences of value of the observed
data distribution for master keys and such that

i with the N texts. Let Q i be the i-th
i 1, ..., 15 statistic under master key difference i , then

Q i 2m
2m 1

0

Vi
N

2 m Vi
N

2 m
2
.

Define statistic T 15
i 1Q i , then, for the right key

guess,T approximately follows the normal distribution for
sufficiently large N and n:

T 15
2B
N

l, 15
2B
N

2
2l .

Similary, for the wrong key guess, we have:

T 15
2B
N

2 n 1 l, 15
2B
N

2 n 1
2

2l

Then, under the KP and DKP cases, the amount of data
needed by the distinguisher T are

NKP 2n 0.5 q1 0 q1 1

15l 2 q1 1

,

NDKP 2n 0.5 q1 0 q1 1

15l 2 q1 0

(8)

Complexity By setting 0 2 2.7, 1 2 8.5, accord-
ing to Eq. (8), the data complexityNDKP 260.44, the total
time complexity is about 2119.5 27-round TWINE encryp-
tions, and the memory requirements are about 15 261
bytes.

Conclution
In this paper, we propose a new statistical related-key
distinguisher under the scenario of key difference invari-
ant bias for multidimensional linear cryptanalysis. Com-
pared with the model in Bogdanov et al. (2013), our
new model has the following two main advantages: One
is that the assumption about statistical independence of
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Fig. 4 Data-time tradeoff for the attack on 27-round TWINE-128

linear approximations can be removed, and the other is
that our model considers all linear approximations of lin-
ear subspace with key difference invariant bias property
excluding zero, so our new model can increase the free-
dom. Moreover partial-compression technique is used to
reduce the time complexity. We carefully choose the order
of guessing keys and guess each subkey nibble one after
another. Besides, we take the key schedule into consider-
ation and use the relations in the related round keys to
reduce the number of round keys that need to be guessed.
In order to illustrate the new attackmodel, we evaluate the
security of LBlock and TWINE-128 block ciphers against
our cryptanalysis technique. For LBlock cipher, based on
16-round key difference invariant bias distinguisher, we
present a 25-round key recovery attack. For TWINE-
128 cipher, we apply 17-round key difference invariant
bias distinguisher to 28-round key recovery attack. We
attack more rounds than the best previous cryptanaly-
sis. While previous attack can break 24-round LBlock and
27-round TWINE-128, our attack break the same num-
ber of rounds that use the less time complexity and data
complexity.
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