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Abstract

With the rapid improvement of quantum computing technology, quantum key distribution(QKD) is a hot technology.
Information reconciliation is a key step of QKD which is useful for correcting key error. Classical message interaction is
necessary in a practical information reconciliation scheme, which makes the efficiency of these protocols decreased.
Therefore, some one-way information reconciliation schemes based on low-density parity-check(LDPC) codes and
polar codes are proposed. Here we propose a concatenated method of IR schemes which can achieve any given error
rate level without the need of interactions. Compared with the one-way IR schems based on LDPC codes and polar
codes, the IR schemes based on the proposed concatenated method can get lower bit error rates after error
correction, which can also reduce the communication delay and system complexity of QKD, improve the final key
generation rate and enhance the practicability of QKD system.
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Introduction
Key distribution protocols are used to enable both
communication parties to share a secure key. Generally
speaking, the unconditionally secure key distribution pro-
tocols (Maurer 1991; Blundo et al. 1992) can be divided
into three phases: advantage distillation (Maurer 1993),
information reconciliation (IR) (Cachin andMaurer 1997)
and privacy amplification (Bennett et al. 1988;Maurer and
Wolf 1997; Liu and van Tilborg 2002). In 1984, Bennett
and Brassard proposed the first quantum key distribution
(QKD) protocol BB84 (Bennett and Brassard 1984), which
is an unconditionally secure key distribution protocols.
The QKD has three phases: quantum signal transmission,
raw key distillation(or advantage distillation), and classi-
cal data post-processing. Data post-processing technology
is one of the core technologies of QKD, which mainly
includes information reconciliation, privacy amplification
and other steps. In QKD protocol, the raw key distributed
through the quantum physical channel needs “data post-
processing” to finally become the unconditionally secure
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key. Among them, information reconciliation is used to
correct key error caused by system noise or eavesdropper,
and is one of the key technologies in QKD.
Bennett and Brassard proposed the first information

coordination protocol BBBSS in 1992 (Bennett et al. 1992).
In this protocol, Alice and Bob divide their key strings
into several sub-strings, and exchange parity information
of sub-strings. The binary search method is used to find
and correct the error bits, which is simple and easy to
operate, but needs frequent interactive communication.
In 1993, Brassard and Salvail (1993) proposed an IR pro-
tocol called Cascade, which can correct two errors in a
block. Though its error correction ability is stronger than
BBBSS, its computation and communication complexity
are bigger. In 1999, Biham et al. (2006) proposed an IR
scheme based on syndrome error correction. After that,
Mayers (2001) proposed an IR scheme based on error
correcting code(ECC). Yang et al. (2002) suggested a key
redistribution scheme for IR. These three IR protocols are
non-interactive ones. In 2003, Buttler et al. (2003) pro-
posed a IR scheme called Winnow. The number of the
error correction rounds of Winnow is fewer than Binary
and Cascade, but the error correction ability is limited.
Several modifications and optimizations to the above pro-
tocol had been proposed (Gong et al. 2009a; 2009b; Yan et
al. 2008; Zhao et al. 2007; Cui et al. 2013; Tomamichel et al.
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2017). In the process of implementation, Cascade-based
protocol requires multiple interactions between the two
sides of communication, and the communication over-
heads will limit the key rate. Winnow-based (Yamamura
and Ishizuka 2001) protocol corrects errors by exchanging
syndrome information, but it still needs a certain number
of interactions.
Then, coding-based IR protocols become the trend

of research. Several IR protocols based on coding were
proposed (Zhao et al. 2008; Martinez-Mateo et al. 2010;
Kiktenko et al. 2017; Li et al. 2019), such as BCH-
based protoocls, LDPC-based protocols and polar-based
protocols. Traisilanun et al. applied BCH code to IR
(Traisilanun et al. 2007), which further reduced the
number of reconciliation interactions, but still could
not achieve the same efficiency as Cascade. Afterwards,
LDPC code and polar code are applied to IR with one-
way communication. In 2004, Pearson first proposed the
LDPC-based error reconciliation algorithm on PC (Pear-
son 2004). In view of the low processing rate of error
code reconciliation algorithm implemented by software
on PC, then IR protocols are realized by hardware based
on LDPC. In 2009, Elkouss proposed one QKD post-
processing scheme using LDPC codes to achieve better
error correction performance (Elkouss et al. 2009). How-
ever, since LDPC code is very sensitive to bit error rate of
quantum channel, it has better performance in a narrow
range with a bit error rate as the center, so the bit error rate
of quantum channel has a wide range in practical applica-
tions (Elkouss et al. 2011). The required checksum matrix
requires high storage resources, and iterative decoding
also leads to high decoding complexity (Jouguet et al.
2014). In 2012, polar codes are used to transmit quantum
information and an efficient decoder is provided for QKD
channels (Renes et al. 2012). In the same year, Jouguet
first used polar code for error code correction in QKD
post-processing (Jouguet and Kunzjacques 2014). Signifi-
cant performance improvements were achieved. Both the
processing rate and the reconciliation efficiency are higher
than IR protocols based on LDPC. In 2014, Nakassis et al.
continued to study the application of polar code in IR
(Nakassis and Mink 2014). In 2015, A delayed error cor-
rection reconciliation protocol was proposed using polar
codes, where the results show that the performance of
the proposed protocol was better than those using LDPC.
And the corrected bit error rate based on polar code is
always smaller than those based on LDPC code, and the
lowest error rate was about 1×10−6 when the initial error
rate is 0.02 (Xiao et al. 2015). In 2019, (Li et al. 2019)
proposes a one-step post-processing algorithm based on
polar codes. When the initial error correction code is
lower than 0.08, the corrected bit error rate can reach
1× 10−7. As the increase of bit error rate of quantum bits
is greater than 0.08, it cannot meet the same reliability.

The above protocols based on the BBBSS, Cascade, and
Winnow are all multi-rounds interactive protocols. They
adopt interactive communication to achieve an acceptable
error rate level. However, the interactive communica-
tion causes extra time consuming and the communi-
cation overhead of multiple interactions limits the key
rate. On the other hand, many non-interactive IR proto-
cols, such as those early presented in (Biham et al. 2006;
Mayers 2001; Yang et al. 2002), cannot achieve the prac-
tically acceptable low error rate. Additionally, there are
some limitations about LDPC-based and plar-based non-
interactive IR schemes. The LDPC-based schemes need to
anticipate the bit error rate and construct better coding
algorithms which are not at the cost of coding delays. In
addition, the corrected bit error rate of LDPC-based and
polar-based schemes is around 1 × 10−7, when the initial
bit error rate is lower than 0.08. In this paper, our goal is
to achieve a lower error rate after correcting erros while
meet the requirement of one-way communication.
Our contributions. In order to achieve a more reli-

able error rate after error correction without increasing
complexity caused by frequent interactions, we propose a
concatenated method of IR schemes which requires only
one time one-way communication to achieve any given
error rate level. The details are as follows.

• We rigorously demonstrate the selection criteria of
the error correcting code and error correcting rounds
when executing concatenated IR schemes under the
premise of the given error rate. Based on the initial
channel error rate, we can choose the appropriate
concatenating depth and error correction code to
achieve the ultimate actual communication
acceptance error rate.

• Based on the proposed concatenated method, we
present the reconstruction of three QKD
post-processing schemes. In particular, we improve
the key redistribution scheme based on the
concatenated method of IR scheme. The improved
scheme can realize authentication, privacy
amplification and IR simultaneously. Additionally, we
also utilize the concatenated method to reconstruct
and improve the other two original schemes -
Biham’s scheme and Mayer’s scheme. According to
the demonstrated criteria, we can choose the
appropriate error correction code and concatenated
depth of the reconstructed schemes so that they can
achieve any given error rate level.

The IR schemes based on the proposed concatenated
method have the following advantages:

1. Since the IR schemes designed based on this method
are non-interactive and achieve the more reliable
error rate level, they may reduce the post-processing
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delay and system complexity of QKD, and improve
the final key generation rate and enhance the
practicability of QKD system.

2. The proposed concatenated method of IR schemes
can achieve a more reliable error rate after error
correction in practical QKD channel. Currently, the
initial bit error rate of QKD system on the optical
fiber with a communication distance of 120 km is
usually less than 0.1 (Takemoto et al. 2015). After
correcting errors, the corrected bit error rates of the
reconstructed schemes all are below 1 × 10−9 while
satisfy the practical initial error rate threshold [0,0.1].
On the premise of that the initial error rate is below
0.08, the final error rate of LDPC-based and polar-
based schemes is below 1× 10−7,while the final error
rate of our schemes is 1 × 10−9. Additionally, when
the initial error rate is higher than 0.08, the final
error rate of LDPC-based and polar-based schemes
cannot achieve the level below 1 × 10−7, while the
final error rate of our schemes is still below 1 × 10−9.

Our organizations.The techniques used in the con-
struction of concatenated IR schemes are introduced in
“Preliminaries” section. Some selection criteria of the
error correction code in the concatenated method under
a certain error rate of the channel is given in “Some selec-
tion criteria of concatenated IR schemes” section. The
reconstructions of three QKD post-processing schemes
based on the concatenated IR method are given in
“The construction of concatenated IR schemes” section.
Some discussions and the conclusion are given in
“Discussions” and “Conclusion” sections, respectively.

Preliminaries
In this section, we review some basic concepts that are
necessary for understanding the proposed construction of
one-way IR schemes based on the concatenating proce-
dure, including non-interactive IR schemes, wire link per-
mutation, cyclic redundancy code(CRC)-based message
authentication code(MAC) and hamming code.

Non-interactive IR schemes
To prevent additional time consumption and communica-
tion overheads in interactive communications, we present
the one-way IR schemes. There are three kinds of non-
interactive IR schemes. The first one is the syndrome IR
scheme (Biham et al. 2006). In this scheme, Alice sends
syndromes to do error correction. Bob uses the equation
sA ⊕ sB = H(KA ⊕ KB) to correct his raw key KB to
Alice’s raw key KA. The second one is the IR scheme of
Mayers (2001). In this scheme, Alice encodes a local ran-
dom string x to get the codeword c, and uses her raw key
KA to do one time pad with it to get c ⊕ KA. Then she
sends it to Bob. Bob adds his raw key KB to it to get the

(c ⊕ KA) ⊕ KB = c ⊕ e, and decodes it to get the code-
word c. Then he adds it to the receiving c ⊕ KA to get KA.
The third one is the key redistribution scheme (Yang et al.
2002). The basic idea of this scheme is: Alice first encodes
a local random bit string with an error correcting code,
then she uses her raw key to do one time pad with the
codeword and transmits it to Bob. Bob adds his raw key
to the received bit string and decodes the error correcting
code to get Alice’s local random bit string, then takes it as
the secret key between them. The whole protocol can be
summarized as follows.

1. Alice generates a random bit string x.
2. Alice uses a generator matrix g to encode x and gets

the code word c, where g is a globe public parameter.
3. Alice uses the raw key Ka to do bitwise XOR

operation with the code string c to get Ka ⊕ c. Then
she transmits it to Bob.

4. Bob does the same operation to the received string
with Kb and gets (c ⊕ Ka) ⊕ Kb = c ⊕ e. He uses
checking matrix h and c ⊕ e to calculate the
syndrome s. Using s, he gets the error vector e and
the codeword c. Then he gets the random bit string x
by decoding c, and takes it as the secret key between
them.

If the generator matrix is kept secret, the key redistribu-
tion protocol may generate a secure final key. It can also
realize group oriented key distribution, personal identi-
fication, and message authentication for non-broadcast
channel via key-controlled error-correcting code. Thus
the key redistribution protocol may realize the IR and the
privacy amplification in one step.

Wire link permutation
In an IR protocol, it is necessary to do a random bit-
permutation between any two successive error correction
rounds. The permutation used in an IR protocol should
be as uniform as possible, that means the bits in a block
should be dispersed uniformly into different blocks after
a permutation. Wire link permutation(WLP) is also called
bit-permutation (Shi and Lee 2000). This digital circuit
technology is simple and fast without the help of gate
circuits, which is applied to the proposed concatenated
schemes. There are many different WLPs. A proper WLP
is shown in Fig. 1.
After the permutation, W the first bit of the first block

(a11, a12, . . . , a1n) is put in the first position in the new
round; The first bit of the second block (a21, a22, . . . , a2n)
is put in the second position in the new round, etc.; Go on
like this until the last block (am1, am2, . . . , amn): the first
bit am1 is put in themth position in the new round, etc..
The WLP should be done between each pair of succes-

sive error correction rounds. The ith permutationWi is as
follows,
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Fig. 1 The wire link permutationW applied in the proposed concatenated schemes
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m1 a(i)
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mn

⎤
⎥⎥⎥⎦ . (2)

It can be seen that every row is a codeword before the
permutation, and every column is a codeword after the
permutation. Since the W (i) changes the rows to the
columns, it is just a transpose operation of the matrix A(i).
Thus,W (1) = · · · = W (i) = · · · � W , andW−1 = W .

Cyclic redundancy code(CRC)-basedmessage
authentication code(MAC)
CRC-based MAC (Krawczyk 1994a, b) designed for
stream ciphers is a scheme with information-theoretic
security based on CRC. LFSR can be used to realize rapid
polynomial division in a CRC authentication scheme. This
kind of authentication schemes can authenticate large
amount of messages by consuming a few bits of the key.
It is used to authenticate the classical channel of QKD in
the proposed schemes. The CRC based the authentication
scheme is as follows.
Denote the n bits message to be authenticated as M.

Make M = Mn−1 . . .M1M0 and the polynomial M(x) =∑n−1
i=0 Mixi associated. Denote the CRC hash function as

h, and the MAC value as aut. The output of h is an m bit
string.

1. Alice and Bob secretly preshare a binary irreducible
polynomial p(x) of degree m, and a m-bit random
string K as their one time pad key.

2. Alice calculates h(M) = coef (M(x) · xm mod p(x)).
3. Alice gets the m-bit aut of M by calculating

h(M) ⊕ K .
4. Alice sends aut and M to Bob
5. Bob uses the receivedM′ to calculate a aut′′, and

checks whether it is equal to the aut′ he received.

The successful attack probability is n+m
2m−1 (Krawczyk

1994b) for any n andm > 1.

Hamming code
Hamming code is a linear debugging code in the field of
telecommunications, which inserts validation codes into
the transmitted message stream. When the data bit error
occurs, the validation bit detects and corrects a single bit
error. [ n, n − k, 3]Hamming code over F2 with n = 2k − 1
has a special structure (Hamming 1950) and is a fast error
correction algorithm. Considering of the fast decoding
algorithm of Hamming code, we choose it as the error-
correcting code to be concatenated in our concatenated
IR scheme.
For a code word of [ n, n−k, 3]Hamming code, let a serial

number from 1 to n denote the position of each bit. The
codes include the validation bitsand the information bits.
The validation bits are inserted into 2lth(0 ≤ l < k) posi-
tions. The information bits take up the left positions. Its
generating matrix is obtained by exchanging the 2lth col-
umn with the corresponding systematic code’s (n − l)th
column, respectively. The decoding method is multiply-
ing the receiving bit-string with the parity check matrix to
get the syndrome s = (s1, . . . , sk), then the binary number
(s1 . . . sk)2 indicates just the position of an error bit in the
code word.

Some selection criteria of concatenated IR schemes
In order to solve the problem of high communication
delay and system complexity caused by frequent interac-
tions while to achieve actual acceptable error key rate, it
is necessary to choose the selection criteria of the error
correcting rounds and error correcting code under the
premise of the given error rate required for actual commu-
nication. In this section, we rigorously demonstrate some
selection criteria for choosing the number of round and
the error correcting code under a given error rate of the
channel.

Definition 1 (Lint 1999) Let C denote a linear code of
length n and let Ai denote the number of codewords of
weight i, then the weight enumerator of C is

A(z, n) :=
n∑

i=0
Aizi. (3)
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The sequence (Ai)
n
i=0 is called the weight distribution of C.

If C is linear and �c ∈ C, then the number of codewords at
distance i from �c equals Ai.

For binary Hamming code of length n, the weight enu-
merator is

A(z, n) =
n∑

i=0
Aizi = 1

n + 1
(1 + z)n + n

n + 1
(1 + z)

n−1
2 (1 − z)

n+1
2 .

(4)

From Eq. (4), compare the polynomial coefficients of the
two sides of Eq. (4), we get that A1 = A2 = An−2 =
An−1 = 0, and all other coefficients are non-zero integers.
For example, for the code [ 7, 4, 3] ,n = 7, we get A(z, 7) =
1+ 7z3 + 7z4 + z7. For the code [ 15, 11, 3] , n = 15, we get
A(z, 15) = 1 + 35z3 + 105z4 + 168z5 + 280z6 + 435z7 +
z15 + 35z12 + 105z11 + 168z10 + 280z19 + 435z8.
According to Eq. (4), we calculate the weight distribu-

tion (Ai)
n
i=0 of Hamming code of length n.

A(z, n) = 1
n + 1

(1 + z)n + n
n + 1

(1 + z)
n−1
2 (1 − z)

n+1
2

= 1
n + 1

n∑
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Ck
nz

k+ n
n + 1

(1 − z)

n−1
2∑

i=0
Ci

n−1
2

(−1)iz2i
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n + 1

n∑
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nz

k + n
n + 1

n−1
2∑
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(−1)iCi

n−1
2
z2i

+(−1)i+1Ci
n−1
2
z2i+1

]

= 1
n + 1

n∑
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nz

k + n
n + 1

n∑
k=0

(−1)�
k
2 	C
 k

2 �
n−1
2
zk

=
n∑

k=0

(
1

n + 1
Ck
n + n

n + 1
(−1)�

k
2 	C
 k

2 �
n−1
2

)
zk (5)

Comparing the coefficients with A(z, n) = ∑n
k=0 Akzk ,

we get

Ak = 1
n + 1

Ck
n + n

n + 1
(−1)�

k
2 	C
 k

2 �
n−1
2
.

Definition 2 (Lint 1999) Let C ⊆ Qn denote a code with
M words. We define

Ai := M−1|{(�x, �y)|�x ∈ C, �y ∈ C, d(�x, �y) = i}|. (6)

The sequence (Ai)
n
i=0 is the distance distribution or inner

distribution of C.

If C is linear, the distance distribution is weight distri-
bution. Thus, for Hamming code, the weight distance and
the distance distribution are the same. With the weight
distribution of Hamming code calculated in Eq. (3), we
get that its distance distribution is (Ak)

n
k=0, here Ak =

1
n+1C

k
n + n

n+1 (−1)� k
2 	C
 k

2 �
n−1
2
, k = 0, 1, · · · , n. This means,

for any Hamming code �c of length n, the number of the
codewords at distance i from �c is Ai, i = 0, 1, · · · , n.
Assuming that a Hamming code with a length of n is

used and that the bit error probability is p(p ∈ [0,100%]),
then the expected number of errors per block before
decoding is np.

Remark 1 We regard the bit error in the channel as a
single event. Because the adversary can artificially eaves-
drop to change the error rate in the channel. He can not get
a stable channel. And in each transmission channel the bit
error rate may change. Under this premise, the probability
p of bit error rate belongs to [0,100%]. The specific example
is as follows: when hamming code is used to correct error,
for the check bit of 7 bits, the correct case is that all 7 bits
are 0, while the 7 bits that are actually transmitted through
the channel are all 1. We consider the error rate in this case
to be 100%.

(1) If oneerroroccurs, the number of errors corrected is 0.
(2) If k, (2 ≤ k ≤ n−1) errors occur, there are two cases

when error correction is performed:

• The k errors turn one code word into another
codeword. In this situation, we cannot use
error-correcting code to correct any bit of errors.
There are still k errors after error correction. For any
Hamming codeword �c of length n, the number of the
code words at distance k from �c is Ak . Thus, the
probability of this case is Akpk(1 − p)n−k . Namely,
there are still k errors after correcting the error, and
the probability is Akpk(1 − p)n−k .

• The k errors do not turn the code into another code.
In this case, the error correction can only correct one
error to reduce the number of errors to k − 1.
However, it may also lead to a new error that
increases the number of errors to k + 1. Namely, we
obtain a new code word at distance k − 1 from the
code word �c or a new code word at distance k + 1
from code word �c. For any codeword �c, the number of
codewords with a distance of k− 1 from �c is Ak−1 and
the number of codewords with a distance of k + 1
from �c is Ak+1. So, after correcting the errors, we can
get one of Ak−1 +Ak+1 codewords. It is assumed that
each codeword has the same probability in error
correction. After correcting the errors, the probability
of reducing the number of errors to k−1 is Ak−1

Ak−1+Ak+1
,

and the probability of increasing the number of
errors to k + 1 is Ak+1

Ak−1+Ak+1
. The probability that the

k error does not convert the codeword �c to another
codeword is

(
Ck
n − Ak

)
pk(1 − p)n−k , since Ak is the

number of the codewords at distance k from �c.
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Therefore, the probability that k errors cannot turn a
codeword to another codeword and the number of
errors is reduced to k − 1 is(
Ck
n − Ak

) Ak−1
Ak−1+Ak+1

pk(1 − p)n−k . The probability
that k errors cannot turn a codeword to another
codeword and the number of errors is increased to
k − 1 is

(
Ck
n − Ak

) Ak+1
Ak−1+Ak+1

pk(1 − p)n−k .
(3) If n errors occur, 1 is the number of the codewords

at distance n with �c, namely An = 1. The length of the
codeword is n, so if all the n bits are wrong, then the case
is only Cn

n = 1. Thus n errors can only turn a codeword
to another codeword. Namely, there are still n errors after
correcting the error. And the probability is pn.
Let the bit error probability denote p1 after correcting

errors. Therefore, after error correction, the mathematical
expectation of the error in each block is

np1 =
n−1∑
k=2

[
kAkpk(1 − p)n−k + (k − 1)

(
Ck
n − Ak

)

Ak−1
Ak−1 + Ak+1

pk(1 − p)n−k + (k + 1)
(
Ck
n − Ak

)

Ak+1
Ak−1 + Ak+1

pk(1 − p)n−k
]

+ npn

=
n−1∑
k=2

[
kAk+

(
Ck
n−Ak

) (k−1)Ak−1+(k + 1)Ak+1
Ak−1 + Ak+1

]

pk(1 − p)n−k + nAnpn

=
n∑

k=0

[
kAk +

(
Ck
n − Ak

) (
k + Ak+1 − Ak−1

Ak−1 + Ak+1

)]

pk(1 − p)n−k . (7)

Here, denoteA−1 = 0,An+1 = 0.WhenAk+1 = Ak−1 =
0, denote Ak+1−Ak−1

Ak−1+Ak+1
= 0.

From the above equation, we can get

np1 =
n∑

k=0

[(
Ck
n−Ak

)Ak+1 − Ak−1
Ak−1+Ak+1

+kCk
n

]
pk(1−p)n−k (8)

=
n∑

k=0

(
Ck
n − Ak

) Ak+1 − Ak−1
Ak−1 + Ak+1

pk(1 − p)n−k+np. (9)

Thus, p1 < p equals the following equation
n∑

k=0

(
Ck
n − Ak

) Ak+1 − Ak−1
Ak−1 + Ak+1

pk(1 − p)n−k < 0. (10)

We present the derivation of Eq. (10) in Appendix A.
For the Hamming code of length n = 7, we have

7p1 = 63p2 − 182p3 + 210p4 − 84p5. (11)

We can simplify Eq. (11) to get the following:

p1 = 9p2 − 26p3 + 30p4 − 12p5. (12)

From p1 < p, we get

0 < p <
1
6
(3 − √

3), or
1
2

< p <
1
6
(3 + √

3). (13)

This means we can use error-correcting code to reduce
the error rate if and only if the bit error probability p
satisfies 0 < p < 1

6 (3 − √
3) or 1

2 < p < 1
6 (3 + √

3).
The Fig. 2 shows that the error rate after error-

correction p1 varies with the inial error rate p when
n = 7. According to Fig. 2, there are five points of
intersection between the curve and X-axis. They are
0, 16 (3 − √

3), 12 ,
1
6 (3 + √

3), 1. If the p is in the interval

Fig. 2 The error rate after error-correction p1 varies with the inial error rate p when n = 7
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[
1
6 (3 − √

3), 12
]
,
[
1
6 (3 + √

3), 1
]
, p1 > p after error cor-

rection. In this situation we cannot correct the errors. In
practical QKD protocol, the channel’s initial bit error rate
threshold is [ 0, 0.1]. The interval of p where we can use
this code is [ 0, 16 (3 − √

3)].
The error rate after error-correction p1 varying with the

inial error rate p when n = 15 is as Fig. 3.The analysis of
available intervals where we can use this code is the same
as above.
Comparing Fig. 3 with Fig. 2, the effective interval of

Hamming code [ 15, 11, 3] is less than that of Hamming
code [ 7, 4, 3]. Under the premise that the initial bit error
rate threshold of the practical QKD channel is [ 0, 0.1],
both of them satisfy the actual situation. So, we can select
the appropriate error correction code.

Lemma 1 Let C denote the [ n, n − k, 3] Hamming code
over F2, where n = 2k − 1. Suppose the upper bound of the
average number of errors within per block after one error
correction round with C is χ , then

χ = 1 + np − 2pn − (1 − p + 2np)(1 − p)n−1, (14)

where p is the bit error rate of the channel.

This lemma is proved in Appendix B in detail.

Lemma 2 (See the proof of lemma 2 in Appendix C.)

χ < n(n − 1)p2
[
1 + 1

2
(1 − p)n−2

]
. (15)

Theorem 1 (See the proof of Theorem 1 in
Appendix D.) When C is used as the error correct-
ing code, if bit error rate p satisfies the condition

p < 1
(n−1)[1+ 1

2 (1−p)n−2] , then the concatenated error
correction scheme can achieve any given error rate level.

Corollary 1 (See the proof of Corollary 1 in Appendix E.)
If bit error rate p < pth = 2

3(n−1) , the concatenated error
correction scheme can reduce the error rate to any given
level.

Tables 1 and 2 show the concatenating results based on
Eq. (10), which are useful for choosing the proper error
correcting code and the concatenating depth l. Parameter
η is the information rate of the concatenated IR algorithm.
α is the final error rate of the concatenated IR algorithm.
It is required that after l rounds error correction the final
error rate α should be below 1 × 10−9. According to
this criterion, the required error correction round l and
the final left bit rate are determined. The results based
on Hamming code [ 15, 11, 3] and [ 7, 4, 3] are given in
Tables 1 and 2, respectively.
Through the above series of demonstrations, based on

the channel error rate p, we can choose the appropri-
ate concatenating depth l and error correction code to
achieve the ultimate actual communication acceptance
error rate α. Specifically, according to the initial bit error
rate of the pactical channel([0,0.1]), the final bit error rate
is reduced to 1 × 10−9 after l round error correction.

The construction of concatenated IR schemes
In “Introduction” section, we have discussed that the nec-
essary interactive communication makes the efficiency
of these protocols decreased. The original schemes of
Biham et al. (2006), Mayers (2001) and key redistribution
(Yang et al. 2002) employ only one-round error correction,

Fig. 3 The error rate after error-correction p1 varies with the inial error rate p when n = 15
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Table 1 Concatenated IR based on [ 15, 11, 3] code

p 0.01 0.02 0.04 0.05 0.06 0.07 0.08

l 4 5 6 7 8 9 11

η 0.289 0.212 0.156 0.114 0.084 0.061 0.024

α 3.58×10−13 2.59×10−15 1.77×10−12 2.72×10−14 8.86×10−15 2.35×10−11 2.04×10−11

p represents the channel error rate. l represents the needed error correction rounds. α represents the final error rate. η represents the left bit rate

which cannot reduce the error rate to an acceptable level
in practical system. In order to realize both one time one-
way communication and an acceptable error rate level
simultaneously, we present the specific reconstructions of
three QKD post-processing schemes (Biham et al. 2006;
Mayers 2001; Yang et al. 2002), which requires only one
time one-way communication. Based on the selection cri-
teria given in “Some selection criteria of concatenated IR
schemes” section, we can choose the appropriate choices
of error correction code and concatenated depth of the
reconstruction schemes, so that they can achieve a more
reliable error rate required by the actual QKD communi-
cation.
I. The reconstruction of Biham’s syndrome error cor-

rection protocol
Firstly we consider the reconstruction of Biham’s syn-

drome error correction protocol. The protocol is as fol-
lows.

1. Alice divides the raw key string into 15-bit length
blocks and then performs the permutation W on it.
Alice calculates the syndromes s(j)Ai , and discards the
check bits of each block, here i is the serial number
of the block, and j is the serial number of the round.
Alice repeats above operations from j = 1 to j = l, to
get the syndromes s(1)Ai , . . . , s

(l)
Ai , i = 1, · · · , n, where l

is the predetermined number of the correction
rounds. The Alice’s final bit-string is the common
random string to be privacy amplified.

2. Alice takes the syndromes s(1)Ai , s
(2)
Ai , . . . , s

(l)
Ai

(i = 1, · · · , n) as her message to be sent. She uses
CRC authentication algorithm to calculate the MAC
of the message and sends the MAC and the message
to Bob.

3. After receiving the sequence s(1)Ai , s
(2)
Ai , . . . , s

(l)
Ai , Bob

uses the CRC authentication algorithm and the one
time pad key K to check whether the message comes

from Alice and has not been changed. If the
authentication is passed, Bob uses the wire link
permutation W to transform his raw key and
calculates the syndrome s(1)Bi of every block. Then he
calculates the ith syndrome s(1)i = s(1)Ai ⊕ s(1)Bi , and
does error correction to the ith block, i = 1, · · · , n.
After the error correction of the first round he
discards all the check bits. Bob repeats above
operation to get the syndromes s(j)i , i = 1, · · · , n and
performs error correction from j = 1 to j = l. Finally
he gets Alice’s key after l rounds error correction.

Analysis result.Currently a typical error rate for a QKD
IR protocol to deal with is less than 10%. Suppose the ini-
tial error rate is 3%. According to the criteria in “Some
selection criteria of concatenated IR schemes” section, we
get the upper bound of the final error rate and the final bit
rate after each error correction round, as shown in Table 3.
According to Theorem 1, we can choose [15, 11, 3] Ham-
ming code as the basic code, whose error correction ability
is 6.7%. The concatenating depth l in the protocol is deter-
mined by a given final error rate. Table 3 shows that when
the concatenating depth l is 5, we can get an error rate
under 1.0 × 10−9 with a left bit rate 0.212.
II. The reconstruction of key redistribution protocol
The original key redistribution protocol is also used

[15, 11, 3] Hamming code to executing error correction.
The specific reconstruction is as follows.

1. Alice randomly generates a string r(1)A , which is
divided into blocks in length 11,
r(1)A =

(
r(1)1 , · · · , r(1)n1

)
. The [15, 11, 3] Hamming

code is also used to encode each block. Then Alice
obtains c(1) =

(
c(1)1 , · · · , c(1)n1

)
, and rearranges c(1)

with WLPW. It is divided into blocks in length 11
again, r(2)A =

(
r(2)1 , · · · , r(2)n2

)
. After repeated l -round

operations, she obtains the codeword string

Table 2 Concatenated IR based on [ 7, 4, 3] code

p 0.05 0.07 0.09 0.10 0.12 0.13 0.14

l 5 5 6 6 7 7 8

η 0.061 0.061 0.035 0.035 0.020 0.011 0.011

α 5.22×10−14 5.93×10−10 1.20×10−12 1.74×10−10 1.66×10−12 6.96×10−10 1.04×10−13

p represents the channel error rate. l represents the needed error correction rounds. α represents the final error rate. η represents the left bit rate



Yang et al. Cybersecurity            (2019) 2:16 Page 9 of 13

Table 3 The upper bound of error rate based on Lemma 1 and the left bit rate after each error correction round

Round 1 2 3 4 5 6

Error Rate 1.53×10−2 4.40×10−3 3.93×10−4 3.23×10−6 2.20×10−10 5.92×10−17

Left Rate 0.733 0.538 0.394 0.289 0.212 0.156

Suppose channel error rate is 3%. The chosen code is Hamming code [ 15, 11, 3]. The data in this table are the upper bound of error rate and left bit rate after i rounds error
correction, 1 ≤ i ≤ 6.

c(l) =
(
c(l)1 , · · · , c(l)nl

)
. In the last round, there is no

need to execut permutation. The above process can
be written as Cl

[
Pl−1

[
Cl−1 · · ·

[
C2

[
P1

[
C1

(
r(1)A

)]]]

· · ·
]]

= c(l), where Pi is the ith round wire link
permutation W, Ci is the ith round encoding with
[ 15, 11, 3] code.

2. Alice uses her raw key KA to execute XOR operation
bit by bit on the codeword string to get KA ⊕ c(l). She
computes the corresponding MAC based on the
CRC authentication algorithm. Then Alice transmits
the string and the corresponding MAC to Bob.

3. Bob verifies whether the string has been tempered
with based on the CRC authentication algorithm. If
the authentication is successful, Bob uses his raw key
KB to execute XOR operation bit by bit on the
received codeword string to obtain(
KA ⊕ c(l)

) ⊕ KB = c(l) ⊕ e. Bob can decode it with
the inverse WLPW−1 = W . After repeated
operations round by round, Bob obtains r(1)B .

Analysis result. Similarly, supposing that the initial
error rate is 3%. According to the criteria in “Some selec-
tion criteria of concatenated IR schemes” section, we get
the upper bound of the final error rate and the final bit rate
after each error correction round, as shown in Table 3. It
shows that the concatenating depth l is also 5 according
to Table 3. It can also achieve that the final error rate is
under 1.0× 10−9. Additionally, the improved key redistri-
bution scheme based on the concatenated method of IR
scheme can realize authentication, privacy amplification
and IR simultaneously.
III. The reconstruction of Mayer’s ECC-based IR

protocol
Mayer’s ECC-based IR protocol is similar to the recon-

struction of key redistribution protocol. The first three
steps of reconstruction of Mayer’s ECC-based IR proto-
col and that protocol are the same. Additionally it needs
to be implemented one more step. The reconstruction of
Mayer’s ECC-based IR protocol is as follows.

1-3. The same as that of the key redistribution protocol.
4. Bob uses the r(1)B to do concatenated encoding just as

Alice has done to get

c′(l) = Cl
[
Pl−1

[
Cl−1 · · ·

[
C2

[
P1

[
C1

(
r(1)B

)]]]
· · ·

]]
,

and gets the K ′
A by calculating (KA ⊕ c(l)) ⊕ c′(l).

Analysis result. Assuming that the initial error rate
is 3%, the final error rate after correcting errors is also
below 1.0 × 10−9 and the concatenating depth l is
also 5. In addition, through the reconstruction of the
above schemes, we can analyze that the key redistri-
bution protocol is more suitable than the ECC based
IR protocols for being reconstructed into a concate-
nated form. The step 4 shows that the concatenated
ECC-based IR protocol needs to do an extra concate-
nated encoding. In step 3, Bob uses his raw key KB to
do xor bit by bit with the received sequence and gets(
KA ⊕ c(l)

) ⊕ KB = c(l) ⊕ e. He gets gradually all the vec-
tors e(l), e(l−1) . . . , e(1), c(l)B , c(l−1)

B , . . . , c(1)B , and r(1)B in the
end. His purpose is getting KA, so he should get e and then
get c′(l), because he can get KA by adding it to the receiv-
ing string KA ⊕ c(l). However, using e(l), e(l−1) . . . , e(1) to
reconstruct e is too complicated to be finished generally.
Thus he has to do the step 4 to get the c′(l), and then to get
the K ′

A.
Table 3 is based on Lemma 1, which shows the upper

bound of error rates and the left bit rates after each error
correction round when the initial error rate is 3%. Cur-
rently a typical error rate for a QKD IR protocol to deal
with is less than 10%. We can select the error correc-
tion code according to the practical channel error rate.
It depends on the actual cases. Additionally, we can also
come to a specific conclusion to select accurate concate-
nating depth based on the different initial error rates and
error correction codes according to Lemma 1, and can
reduce the final bit error rate to a more relaible level.

Discussions
Concatenated IR scheme can reduce the error rate to any
given level if and only if every error correction round
makes the error rate lower. Thus, if the error rate of the
channel satisfies Eq. (10), after a few error correction
round, we can arrive at an error rate less than the given
value. We choose the complete Hamming code [ 2k −
1, 2k−1−1−k, 3] to do this because of their rapid decoding
algorithm. The result shows that the error rate decreases
exponentially with the concatenated depth.
Error rate estimation via public channel is another basic

step of QKD. It is usually an interactive process. We can
leave it out by using concatenating IR scheme. For a given
error rate of the raw key, after the first round syndrome
calculating, the rate of non-zero syndromes should be less
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than a threshold. e.g., if the given error rate is p, the
non-zero rate of syndromes of the first error correction
round is less than (1 − p)n. If the rate is beyond this
threshold, Bob simply notifies Alice to give up this packet.
Otherwise, Bob continues his process. In QKD, after
the base sifting step, the classical data post-processing,
together with error estimation using our method, can be
constructed into a single protocol with almost one-way
classical communication.
There are at least three interactions in a BB84 QKD pro-

tocol. The first one is quantum signal transmission from
Alice to Bob. The second one is measurement informa-
tion transmission from Bob to Alice: Bob informing Alice
the positions of qubits received and the bases of his mea-
surement. The third one is a classical packet from Alice
to Bob: a bit string representing the positions of raw key
bits she selected, and a sequence of syndromes, Alice puts
them in a packet and sends it to Bob. Then Bob does the
error rate check and the post-processing described above.
If Bob finds the non-zero rate of syndrome is bigger than
(1−p)n, he has to do the fourth interaction to informAlice
abandoning that packet.
The concatenated IR method cannot reduce the infor-

mation leakage rate. Because the adversary cannot predict
the positions of his eavesdropped bits in the raw key,
the eavesdropped bits are uniformly located in both the
information digits and the check digits of the raw key’s
codewords. After each error correction round, the left
bit string is permuted by wire link permutation. Thus
the left leaking bits will be uniformly distributed in both
the information digits and the check digits of the next
round’s blocks. Supposing that the eavesdropping rate of
the adversary is η. After abandoning the check bits in
each error correction round, the length of the block is
decreased from n bits to k bits. After l rounds error cor-
rection, there are ( kn )lηn bits information leakage left.
Thus, after l rounds reconciliation, the final informa-
tion leakage rate is still η, and the parameters of privacy
amplification remain the same.

Conclusion
In this paper, we propose a concatenated method of IR
schemes which can achieve any given error rate level
without the need of interactions. Under the premise of
the given error rate level, we present the selection cri-
teria of the concatenating depths and error correcting
code. Additionally, we can choose the appropriate choices
of error correction code and concatenated depth for the
reconstruction scheme. We improve three QKD post-
processing schemes based on the concatenated method of
IR scheme. The reconstructed schemes designed based on
this idea can achieve an error rate below 1×10−9 after cor-
recting erros whilemeet the requirement of one-way com-
munication, thus may achieve the pratical error rate level,

reduce the post-processing delay and system complexity
of QKD. Compared with the one-way IR schems based on
LDPC codes and polar codes, the IR schemes based on
the proposed concatenatedmethod can get lower bit error
rates after error correction.

Appendix
A The derivation of Eq. (10)
In this section we present the derivation of Eq. (10), which
is as follows.

Ck
n − Ak = Ck

n − 1
n + 1

Ck
n − n

n + 1
(−1)�

k
2 	C
 k

2 �
n−1
2

= n
n + 1

(
Ck
n − (−1)�

k
2 	C
 k

2 �
n−1
2

)
. (16)

Ak+1 − Ak−1
Ak−1 + Ak+1

=
1

n+1C
k+1
n + n

n+1 (−1)� k+1
2 	C
 k+1
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n−1
2

− 1
n+1C

k−1
n − n

n+1 (−1)� k−1
2 	C
 k−1
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n−1
2

1
n+1C

k+1
n + n
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2 	C
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n−1
2

+ 1
n+1C

k−1
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n+1 (−1)� k−1
2 	C
 k−1

2 �
n−1
2

=
Ck+1
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n + n(−1)� k+1
2 	

(
C
 k+1

2 �
n−1
2

+ C
 k−1
2 �

n−1
2

)

Ck+1
n + Ck−1

n + n(−1)� k+1
2 	

(
C
 k+1

2 �
n−1
2

− C
 k−1
2 �

n−1
2

)

= A + B
C + D

,

(17)

Here,

A = (n−1)!
(

1
(k+1)! (n−k−1)!

− 1
(k − 1)! (n − k + 1)!

)

= Ck+1
n−1

n2 + n − 4k
(n − k − 1)(n − k)(n − k + 1)

, (18)

B = (−1)�
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2
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1
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2
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Thus,

Ak+1 − Ak−1
Ak−1 + Ak+1

=
Ck+1
n − Ck−1

n + n(−1)� k+1
2 	C
 k+1

2 �
n+1
2

Ck+1
n + Ck−1

n + n(−1)� k+1
2 	C
 k+1

2 �
n+1
2

(
1 − 4

n+1
 k+1
2 �

) ,

(22)

Here,

Ck+1
n + Ck−1

n = Ck+1
n+1

n2 + n − 2nk + 2k2

n2 + 2n + 1 − k
, (23)

Ck+1
n − Ck−1

n

= n!
(k + 1)! (n − k − 1)!

− n!
(k − 1)! (n − k + 1)!

= n!
(k + 1)! (n − k + 1)!

[ (n − k + 1)(n − k) − (k + 1)k]

= Ck+1
n+1

n − 2k
n − k + 1

. (24)

B The proof of Lemma 1
Proof 1 In “Some selection criteria of concatenated IR

schemes” section, Lemma 1 is presented. Here, we prove it
in detail.Hamming code can correct one-bit error without
failure. When there are more errors, the correction process
may add 1 bit error. Here we consider the upper bound of
the average number of errors, thus we assume the num-
ber of errors will increase by 1 after error correcting. When
there are n bits errors, the number of errors will be reduced
by 1 after error correction. Then

χ =
n−1∑
k=2

(1 + k)Ck
np

k(1 − p)n−k + (n − 1)Cn
np

n

=
n∑

k=2
(1 + k)Ck

np
k(1 − p)n−k − 2pn

=
n∑

k=0
(1 + k)Ck

np
k(1 − p)n−k − 2pn − (1 − p)n − 2np(1 − p)n−1.

(25)

By the identity
∑n

k=0 kCk
npk(1 − p)n−k = np, we have

χ = 1 + np − 2pn − (1 − p)n−1(1 − p + 2np). (26)

�
Now let us consider the upper bound of χ .

C The proof of Lemma 2
Proof 2 In “Some selection criteria of concatenated IR

schemes” section, Lemma 2 is also presented. Here, we
prove it in detail. From the Eq. (26), we have

χ <

n−1∑
k=2

(1 + k)Ck
np

k(1 − p)n−k

=
n∑

k=3
(1 + k)Ck

np
k(1 − p)n−k + 3C2

np
2(1 − p)n−2.

(27)

By the inequality (Lint 1999) (1+ k)Ck
n ≤ n(n− 1)Ck−2

n−2
(k ≥ 3), it holds that

n∑
k=3

(1 + k)Ck
npk(1 − p)n−k ≤ n(n − 1)

n∑
k=3

Ck−2
n−2p

k(1 − p)n−k

= n(n − 1)p2
n∑

k=3
Ck−2
n−2p

k−2(1 − p)n−k

= n(n − 1)p2
n−2∑
k=1

Ck
n−2p

k(1 − p)n−2−k

= n(n − 1)p2
[
1 − (1 − p)n−2] .

(28)

Thus we obtain

χ < 2C2
np2

[
1 − (1 − p)n−2] + 3C2

np2(1 − p)n−2

= n(n − 1)p2
[
1 + 1

2
(1 − p)n−2

]
.

(29)

�
From the Lemma 2, it holds that

χ <
3n(n − 1)

2
p2 <

3
2
(np)2. (30)

D The proof of Theorem 1
Proof 3 Here, we present the proof of Theorem 1

stated in “Some selection criteria of concatenated IR
schemes” section. Denote p1 as the error rate after one error
correction round. From the definition of χ , we know p1 <
χ
n . It is clear that the concatenated error correction scheme
can reduce the error rate to any given level, if and only if
p1 < p. Because p1 <

χ
n , p1 < p holds if χ

n < p. From
Lemma 2, χ

n < p holds if n(n − 1)p2
[
1 + 1

2 (1 − p)n−2] <

np. That is

p <
1

(n − 1)
[
1 + 1

2 (1 − p)n−2] . (31)

�

E The proof of Corollary 1
Proof 4 Here, we present the proof of Corollary 1

stated in “Some selection criteria of concatenated IR
schemes” section.

2
3(n − 1)

<
1

(n − 1)
[
1 + 1

2 (1 − p)n−2] <
1

n − 1
. (32)
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Thus, when p < 2
3(n−1) , the condition 31 holds. Let pth =

2
3(n−1) . Thus if p < pth, according to Theorem 1, the con-
catenated error correction scheme can reduce the error rate
to any given level. �
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