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Abstract

Reinforcement learning is a core technology for modern artificial intelligence, and it has become a workhorse for AI
applications ranging from Atrai Game to Connected and Automated Vehicle System (CAV). Therefore, a reliable RL
system is the foundation for the security critical applications in AI, which has attracted a concern that is more critical
than ever. However, recent studies discover that the interesting attack mode adversarial attack also be effective when
targeting neural network policies in the context of reinforcement learning, which has inspired innovative researches
in this direction. Hence, in this paper, we give the very first attempt to conduct a comprehensive survey on adversarial
attacks in reinforcement learning under AI security. Moreover, we give briefly introduction on the most representative
defense technologies against existing adversarial attacks.
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Introduction
Artificial intelligence (AI) is providing major break-
throughs in solving the problems that have withstood
many attempts of natural language understanding, speech
recognition, image understanding and so on. The latest
studies (He et al. 2016) show that the correct rate of
image understanding can reach 95% under certain condi-
tions, meanwhile the success rate of speech recognition
can reach 97% (Xiong et al. 2016).
Reinforcement learning (RL) is one of the main tech-

niques that can realize artificial intelligence (AI), which is
currently being used to decipher hard scientific problems
at an unprecedented scale.
To summarized, the researches of reinforcement learn-

ing under artificial intelligence are mainly focused on the
following fields. In terms of autonomous driving (Shalev-
Shwartz et al. 2016; Ohn-Bar and Trivedi 2016), Shai
et al. applied deep reinforcement learning to the problem
of forming long term driving strategies (Shalev-Shwartz
et al. 2016), and solved two major challenges in self driv-
ing. In the aspect of game play (Liang et al. 2016), Silver
et al. (2016) introduced a new approach to computer
Go which can evaluate board positions, and select the
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best moves with reinforcement learning from games of
self-play. Meanwhile, for Atari game, Mnih et al. (2013)
presented the first deep learning model to learn con-
trol policies directly from high-dimensional sensory input
using reinforcement learning. Moreover, Liang et al. (Guo
et al. 2014) also built a better real-time Atrai game play-
ing agent with DQN. In the field of control system, Zhang
et al. (2018) proposed a novel load shedding scheme
against voltage instability with deep reinforcement learn-
ing(DRL). Bougiouklis et al. (2018) presented a system for
calculating the optimum velocities and the trajectories of
an electric vehicle for a specific route. In addition, in the
domain of robot application (Goodall and El-Sheimy 2017;
Martínez-Tenor et al. 2018), Zhu et al. (2017) applied their
model to the task of target-driven visual navigation. Yang
et al. (Yang et al. 2018) presented a soft artificial muscle
driven robot mimicking cuttlefish with a fully integrated
on-board system.
In addition, reinforcement learning is also an impor-

tant technique for Connected and Automated Vehicle
System(CAV), which is a hotspot issue in recent years.
Meanwhile, the security research for this direction has
attracted numerous concerns(Chen et al. 2018a; Jia et al.
2017). Chen et al. performed the first security analysis
on the next-generation Connected Vehicle (CV) based
transportation systems, and pointed out the current sig-
nal control algorithm design and implementation choices
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are highly vulnerable to data spoofing attacks from even
a single attack vehicle. Therefore, how to build a reliable
and security reinforcement learning system to support the
security critical applications in AI, has become a concern
which is more critical than ever.
However, the weaknesses of reinforcement learning are

gradually exposed which can be exploited by attackers.
Huang et al. (2017) firstly discovered that neural network
policies in the context of reinforcement learning are vul-
nerable to “Adversarial Attacks” in the form of adding tiny
perturbations to inputs which can lead a model to give
wrong results. Regardless of the learned task or training
algorithm, they observed a significant drop in perfor-
mance, even with very small adversarial perturbations
which are invisible to human. Even worse, they found
that the cross-dataset transferability property (Szegedy
et al. 2013 proposed in 2013) also holds in reinforce-
ment learning applications, so long as both policies have
been trained to solve the same task. Such discoveries have
attracted public interests in the research of adversarial
attacks and their corresponding defense technologies in
the context of reinforcement learning.
After Huang et al. (2017), a lot of works have focused

on the issue of adversarial attack in the field of reinforce-
ment learning (e.g., Fig. 1). For instance, in the field of
Atari game, Lin et al. (2017) proposed a “strategically-
timed attack” whose adversarial example at each time
step is computed independently of the adversarial exam-
ples at other time steps, instead of attacking a deep RL
agent at every time step (see “Black-box attack” section).
Moreover, in the terms of automatic path planning, Liu
et al. (2017), Xiang et al. (2018), Bai et al. (2018) and
Chen et al. (2018b) all proposed methods which can take
adversarial attack on reinforcement learning algorithms

(VIN (Tamar et al. 2016), Q-Learning (Watkins and Dayan
1992), DQN (Mnih et al. 2013), A3C (Mnih et al. 2016))
under automatic path planning tasks (see “Defense tech-
nology against adversarial attack” section).
In view of the extensive and valuable applications of the

reinforcement learning in modern artificial intelligence
(AI), and the critical role for reinforcement learning in
AI security, inspiring innovative researches in the field of
adversarial research.
The main contributions of this paper can be concluded

as follows:
1 We give the very first attempt to conduct a

comprehensive and in-depth survey on the
literatures of adversarial research in the context of
reinforcement learning from AI security view.

2 We make a comparative analysis for the
characteristics of adversarial attack mechanisms and
defense technologies respectively, to compare the
specific scenarios and advantages/disadvantages of
the existing methods, in addition, give a prospect for
the future work direction.

The structure of this paper is organized as follow. In
“Preliminaries” section, we first give a description for
the common term related to adversarial attack under
reinforcement learning, and briefly introduce the most
representative RL algorithms. “Adversarial attack in rein-
forcement learning” section reviews the related research
of adversarial attack in the context of reinforcement learn-
ing. For the defense technologies against adversarial attack
in the context of reinforcement learning are discussed in
“Defense technology against adversarial attack” section.
Finally, we draw conclusion and discussion in “Conclusion
and discussion” section.

Fig. 1 Examples for adversarial attacks on reinforcement learning. As shown in the first line are the examples for adversarial attack in the field of Atari
game. The first image denotes the original clean game background, while the others show the perturbed game background which can be called as
“adversarial example”. Huang et al. (2017) found that the adversarial examples which are invisible to human have a significant impact on the game
result. Moreover, the second line shows the examples for adversarial attack in the domain of automatic path planning. Same as the first row, the first
image represents the original pathfinding map, and the remaining two images denote the adversarial examples generated by noise added. Chen
et al. (2018b) found that the trained agent could not find its way correctly under such adversarial examples
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Preliminaries
In this section, we give explanation for the common terms
related to adversarial attack in the field of reinforce-
ment learning. In addition, we also briefly introduce the
most representative reinforcement learning algorithms,
and take comparison of these algorithms from approach
type, learning type, and application scenarios. So as to
facilitate readers’ understanding of the content for the
following sections.

Common terms definitions
• Reinforcement Learning: is an important branch of

machine learning, which contains two basic elements
state and action. Performing a certain action under
the certain state, what the agent need to do is to
continuously explore and learn, so as to obtain a good
strategy.

• Adversarial Example: Deceiving AI system which
can lead them make mistakes. The general form of
adversarial examples is the information carrier (such
as image, voice or txt) with small perturbations
added, which can remain imperceptible to human
vision system.

1 Implicit Adversarial Example: is a modified
version of clean information carrier, which
generated by adding human invisible
perturbations to the global information on pixel
level to confuse/fool a machine learning technique.

2 Dominant Adversarial Example: is a modified
version of clean map, which generated by adding
physical-level obstacles to change the local
information to confuse/fool A3C path finding.

• Adversarial Attack: Attacking on artificial
intelligence (AI) system by utilizing adversarial
examples. Adversarial attacks are generally can be
classified into two categories:

1 Misclassification attacks: aiming for generating
adversarial examples which can be misclassified
by target network.

2 Targeted attacks: aiming for generating
adversarial examples which can target
misclassifies into an arbitrary label designated by
adversary specially.

• Perturbation: The noise added on the original clean
information carriers (such as image, voice or txt),
which can make them to be adversarial examples.

• Adversary: The agent who attack AI system with
adversarial examples. However, in some cases, it also
refer to adversarial example itself (Akhtar and Mian
2018).

• Black-Box Attack: The attacker has no idea of the
details related to training algorithm and
corresponding parameters of the model. However,
the attacker can still interact with the model system,
for instance, by passing in arbitrary input to observe
changes in output, so as to achieve the purpose of
attack. In some work (Huang et al. 2017), for
black-box attack, authors assume that the adversary
has access to the training environment (e.g., the
simulator) but not the random initialization of the
target policy, and additionally may not know what the
learning algorithm is.

• White-Box Attack: The attacker has access to the
details related to training algorithm and
corresponding parameters of the model. Attacker can
interact with the target model in the process of
generating adversarial attack data.

• Threat Model: Finding system potential threat to
establish an adversarial policy, so as to achieve the
establishment of a secure system (Swiderski and
Snyder 2004). In the context of adversarial research,
threat model considers adversaries capable of
introducing small perturbations to the raw input of
the policy.

• Transferability: an adversarial example designed to
be misclassified by one model is often misclassified by
other models trained to solve the same task (Szegedy
et al. 2013).

• Target Agent: The target subject attacked by
adversarial examples, usually can be a network model
trained by reinforcement learning policy, which can
detect whether adversarial examples can attack
successfully.

Representative reinforcement learning algorithms
In this section, we list the most representative reinforce-
ment learning algorithms, and make comparison among
them which can be shown in Table 1, where “value-based”
denotes that the reinforcement learning algorithm cal-
culates the expected reward of actions under potential
rewards, and takes it as the basis for selecting actions.
Meanwhile, the learning strategy for “value-based” rein-
forcement learning is constant, in other words, under the
certain state the action will be fixed.
While the “policy-based” represented that the reinforce-

ment learning algorithm trains a probability distribution
by strategy sampling, and enhances the probability of
selecting actions with high reward value. This kind of rein-
forcement learning algorithm will learn different strate-
gies, in other words, the probability of taking one action
under the certain state is constantly adjusted.

• Q-Learning

Q-Learning is a classical algorithm for reinforcement
learning, was proposed earlier and has been used widely.
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Table 1 The comparison of the most representation reinforcement learning algorithms

RL algorithm Approach type Learning type Application scenarios

Q-Learning (Watkins and Dayan 1992) Value-based Shallow Learning Motion Control, Control System,

and Robot Application et al.

DQN (Mnih et al. 2013) Value-based Deep Learning Motion Control, Neutralization Reaction

Control, and Robot Path Planning et al.

VIN (Tamar et al. 2016) Value-based Deep Learning Path Planning, and Motion Control et al.

A3C (Mnih et al. 2016) Combined Deep Learning motion Control, Game Playing, self-driving,

and Path Planning et al.

TRPO (Schulman et al. 2015) Policy-based Deep Learning Motion Control, and Game Playing et al.

UNREAL (Jaderberg et al. 2016) Combined Deep Learning Motion Control, and Game Playing et al.

Approach Type contains two categories, namely Policy-based, and Value-based. Meanwhile, learning Type also contains two categories, namely Shallow Learning, and Deep
Learning

Q-Learning was firstly proposed by C.Watkins (Watkins
and Dayan 1992) in his Doctoral Dissertation Learning
from delayed rewards in 1989. It is actually a variant of
Markov Decision Process (MDP)(Markov 1907). The idea
of Q-Learning is based on the value iteration, which can
be concluded as, the agent perceives surrounding infor-
mation from the environment and selects appropriate
methods to change the sate of environment according
to its own method, and obtains corresponding incen-
tives and penalties to correct the strategy. Q-Learning
proposes a method to update the Q-value, which can
be concluded as Q(St ,At) ← Q(St ,At) + α(Rt+1 +
λmaxa Q(St+1, a) − Q(St ,At)). Throughout the contin-
uous iteration and learning process, the agent tries to
maximize the rewards it receives and finds the best path to
the goal, and the Q matrix can be obtained. Q is an action
utility function that evaluates the strengths and weakness
of actions in a particular state and can be interpreted as
the brain of an intelligent agent.

• Deep Q-Network (DQN)

DQN is the first deep enhancement learning algorithm
proposed by Google DeepMing in 2013 (Mnih et al. 2013)
and further improved in 2015 (Mnih et al. 2015). Deep-
Mind applies DQN to Atari games, which is different
from the previous practice, utilizing the video informa-
tion as input and playing games against humans. In this
paper, authors gave the very first attempt to introduce
the concept of Deep Reinforcement Learning, and has
attracted public attentions in this direction. For DQN, as
the output for the value network is the Q-value, then if
the target Q-value can be constructed, the loss function
can be obtained by Mean-Square Error (MSE). However,
the input for value network are state S, action A, and
feedback reward R. Therefore, how to calculate the tar-
get Q-value correctly is the key problem in the context
of DQN.

• Value Iterative Network (VIN)

Tamar et al. (2016) proposed the value iteration net-
work, a fully differentiable CNN planning module for
approximate value iterative algorithms that can be used
for learning to plan, such as the strategies in reinforce-
ment learning. This paper mainly solved the problem of
weak generalization ability of deep reinforcement learn-
ing. There is a special value iterative network structure
in VIN (Touretzky et al. 1996). For this novel method
proposed in this work, it not only needs to use neural net-
work to learn a direct mapping from state to decision, but
also can embeds the traditional planning algorithm into
the neural network so that the neural network can learn
how to act under current environment, and use long-
term planning-assisted neural networks to give a better
decision.

• Asynchronous Advantage Actor-Critic Algorithm
(A3C)

The A3C algorithm is a deep enhancement learning
algorithm proposed by DeepMind in 2016 (Mnih et al.
2016). A3C completely utilizes the Actor-Critic frame-
work and introduces the idea of asynchronous training,
which can improves the performance and speeds up the
whole training process. If the action is considered to
be bad, the possibility for this action will be reduced.
Through iterative training, A3C constantly adjusts the
neural network to find the best action selected policy.

• Trust Region Policy Optimization (TRPO)

TRPO is proposed by J.Schulman in 2015 (Schulman
et al. 2015), it is a kind of random strategy search method
in strategy searchmethod. TRPO can solves the problem of
step selection of gradient update, and gives a monotonous
strategy improvement method. For each training iterative,
whole-trajectory rollouts of a stochastic policy are used
to calculate the update to the policy parameters θ , while
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controlling the change in policy as measured by the KL
divergence between the old and the new policies.

• UNREAL
TheUNREALalgorithm is the latest depth-enhancement

learning algorithm proposed by DeepMind in 2016
(Jaderberg et al. 2016). Based on the A3C algorithm, the
performance and training process for this algorithm are
further improved. The experimental results show that the
performance for UNREAL at Atari is 8.8 times against
human performance and 3D at the first perspective, more-
over, UNREAL has reached 87% of human level in the
first-view 3Dmaze environment Labyrinth. For UNREAL,
there are two types of auxiliary tasks, the first one is the
control task, including pixel control and hidden layer acti-
vation control. The other one is back prediction tasks,
as in many scenarios feedback r is not always available,
allowing the neural network to predict the feedback value
will give it a better ability to express. UNREAL algo-
rithm uses historical continuous multi-frame image input
to predict the next-step feedback value as a training target
and uses history information to additionally increase the
value iteration task.
Adversarial attack in reinforcement learning
In this section, we discuss the related research of adver-
sarial attack in the field of reinforcement learning.
The reviewed literatures mainly conduct the adversarial
research on specific application scenarios, and generate
adversarial examples by adding perturbations to the infor-
mation carrier, so as to realize the adversarial attack on
reinforcement learning system.
Weorganize the reviewmainly according to chronological

order.Meanwhile, in order to make readers can understand

the core technical concepts of the surveyed works, we go
into technical details of important methods and represen-
tative technologies by referring to the original papers. In
part 3.1, we discuss the related works of adversarial attack
against the reinforcement learning system in the domain
of White-box attacking. In terms of Black-box attacking,
the design of adversarial attack against the target model
is shown in part 3.2. Meanwhile, we analyze the avail-
ability and contribution of adversarial attack researches
in the above two fields. Additionally, we also give sum-
mary on the attributions of adversarial attacking methods
discussed in this section in part 3.3.

White-box attack
Fast gradient signmethod (FGSM)
Huang et al. (2017) first showed that adversarial attacks
are also effective when targeting neural network poli-
cies in reinforcement learning system. Meanwhile, for this
work, the adversary attacks a deep RL agent at every time
step, by perturbing each image the agent observes.
The main contributions for Huang et al. (2017) can be

concluded as the following two aspects:

(I) They gave the very first attempt to prove that
reinforcement learning systems are vulnerable to
adversarial attack, and the traditional generation
algorithms designed for adversarial examples still can
be utilized to attack under such scenario.

(II) Authors creatively verified how effectiveness of
adversarial examples are impacted by the deep RL
algorithm used to learn the policy.

Figure 2 shows the adversarial attack on Pong game
trained with DQN, we can see that after adding small

Fig. 2 Examples for adversarial attacks on Pong policy trained with DQN(Huang et al. 2017). The first line: computing adversarial perturbations by
fast gradient sign method (FGSM)(Goodfellow et al. 2014a) with an ℘∞-norm constraint. The trained agent who should have taken the “down”
action took “noop” action instead under adversarial attack. The second line: authors utilized the FGSM with ℘1-norm constraint to compute the
adversarial perturbations. The trained agent can not take action correctly, which should have moved up, but took “down” action after interference.
Videos are available at http:// r11.berkeley.edu/adversarial

http://r11.berkeley.edu/adversarial
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perturbation to the original clean game background, the
trained agent cannot make a correct judgment according
to the motion direction of ball. Noting that the adversar-
ial examples are calculated by fast gradient sign method
(FGSM) (Goodfellow et al. 2014a).
FGSM expects the classifier can assign the same class to

the real example x and the adversarial example x̃ with a
small enough perturbation η which can be concluded as

η = εsign(ω) , ‖η‖∞ < ε (1)

where ω denotes a weight vector, since this perturba-
tion maximizes the change in output for the adversarial
example x̃, ωT x̃ = ωTx + ωTη.
Moreover, under image classification network with

parameters θ , model input x, targets related to input y,
and cost function J(θ , x, y). Linearizing the cost function
to obtain an optimal max-norm constrained perturbation
which can be concluded as

η = εsign(∇xJ(θ , x, y)) (2)

In addition, authors also proved that policies trained
with reinforcement learning are vulnerable to the adver-
sarial attack. However, among the RL algorithms tested in
this paper (DQN, TRPO (Schulman et al. 2015), and A3C),
TRPO and A3C seem to be more resistant to adversarial
attack.
Under the domain of Atari game, authors showed

that by adding human invisible noises to the original
clean game background can make the game unable to
work properly, and realize adversarial attack successfully.
Huang et al. (2017) gave a new attempt to take adversar-
ial research under the scenario of reinforcement learn-
ing, and this work proved that the adversarial attack still
exists in the domain of reinforcement learning. Moreover,
FGSM motivates a series of related research work, Miy-
ato et al. (2018) proposed a closely related mechanism to
compute the perturbation for a given image, and Kurakin
et al. (2016) named this algorithm as “Fast Gradient L2”
and also proposed a alternative of using 	∞ for normaliza-
tion which named as “Fast Gradient L∞”.

Start point-based adversarial attack on Q-learning (SPA)
Xiang et al. (2018) focused on the adversarial example-
based attack on a representative reinforcement learning
named Q-learning in automatic path finding. They pro-
posed a probabilistic output model based on the influ-
ence factors and the corresponding weights to predict the
adversarial examples under such scenario.
Calculating on four factors including the energy point

gravitation, the key point gravitation, the path gravitation,
and the included angle, a natural linear model is con-
structed to fit these factors with the weight parameters
computation based on the principal component analy-
sis(PCA) (Wold et al. 1987).

Themain contribution for Xiang et al. is that they built a
model, which can generate the corresponding probabilis-
tic outputs for certain input points, and the probabilistic
output of our model refers to the possibility of interfer-
ence caused by interference point on the path of agent
pathfinding.
Xiang et al. proposed 4 factors to determine wether the

perturbation can impact the final result for the agent path
planning, which can be concluded as:

Factor Formula expression

Factor 1:

⎧
⎪⎨

⎪⎩

eic = kc + i ∗ d′ ∗ k′
c−kc√

(k′c−kc)2+(k′r−kr)2

eir = kr + i ∗ d′ ∗
√

1−
(

k′c−kc√
(k′c−kc)2+(k′r−kr)2

)2

The energy
point
gravitation

Factor 2:
d1i = |aic − kc| + |air − kr|,
(kc, kr) = k, (aic, air) = ai ∈ A

The key point
gravitation

Factor 3:
d2i = min{d2|d2 = |aic − zjc| + |air

−zjr|, zj∈Z1},(zjc, zjr)= zj, (aic, air)
= ai ∈ A

The path
gravitation

Factor 4:
vka=(aic−kc, air−kr),vkt =(tc−kc,tr−kr)
cos θi=vka ·vkt/|vka||vkt|, θi = arccos θi

The included
angle

For Factor 1 can be named as the energy point grav-
itation, which denotes that it is more successful if the
adversarial point k is the point on the key vector v. Fac-
tor 2 is the key point gravitation, which represents that
the closer adversarial point is to the key point k, the more
likely it is to cause interference. Factor 3 can be called as
the path gravitation, which denotes that the closer adver-
sarial point is to the initial path Z1, the more possible it is
to bring about obstruct. Meanwhile, factor 4 can be con-
cluded as the included angle, which represents that the
angle θ between the vector from the point k to the adver-
sarial point ai and the vector from the key point to the
goal t.
Therefore, the probability for each adversarial point ai

can be concluded as

pai =
4∑

j=1
pjai = ω1 · aie + ω2 · d′

1i + ω3 · d′
2i + ω4 · θ ′

i (3)

where ωi denotes the weight for each factor respectively.
Storing the pai for each point, and select the top 10 as the
adversarial point.
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For this work, the adversarial examples can be found
successfully for the first time on Q-learning in path find-
ing and their model can make a satisfactory prediction
(e.g., Fig. 3). Under a guaranteed recall, the precision of
the proposed model can reach to 70% with the proper
parameter setting. By adding small obstacle points to
the original clean map, can interfere the agent’s path
finding. However, the experimental map size for this
work is 28 × 28, and there is no additional verifica-
tion for a larger maze map, which can be considered
to research in future works. However, Xiang et al. paid
attention to the adversarial attack problem in automatic
path finding under the scenario of reinforcement learn-
ing. Meanwhile this work own practical significance, as
the objective for this study is Q-learning which is the most
widely used and representative reinforcement learning
algorithm.

White-box based adversarial attack on DQN (WBA)
Based on the SPA algorithm introduced above, Bai et al.
(2018) proposed that they first use DQN to find the opti-
mal path, and analyzed the rules of DQN pathfinding.
They proposed a method that can effectively find vulner-
able points towards White-Box Q-table variation in DQN
pathfinding training. Meanwhile, they built a simulation
environment as a basic experiment platform to test their
method.
Moreover, they classified two types of vulnerable points.
(I) The vulnerable point is most likely on the boundary

line. Moreover, the smaller 
Q (the Q-value
difference between the right and downward
direction) is the more likely be a vulnerable point is.

For this characteristic of vulnerable pints, they proposed
a method to detect adversarial examples. Let P denotes
the set of points on the map P = {P1,P2, ...,Pn}, and each
point Pi obtains four Q-values Dij = (Qi1,Qi2,Qi3,Qi4)
respectively, which indicate up, down, right, and left.
Meanwhile, selecting the direction with the max Q-vale
f (Pi) = {j|maxj Qij}, and determining wether point Pi is
on the boundary line

ϕ(Pi) = OR(f (Pi)!= f (Pi1),f (Pi)!= f (Pi2),
f (Pi)!= f (Pi3), f (Pi)!= f (Pi4))

(4)

where Pij = {Pi1,Pi2,Pi3,Pi4} is the set of the adjoining
points for four directions of Pi, A = {a1, a2, ..., an} repre-
sents the points on boundary line. Calculating the Q-value
difference 
Q = |Qi2−Qi3|, and sorting 
Q ascending to
construct B = {b1, b2, ..., bn}. They took the first 3% of the
list as the smallest 
Q-value points. Finally got the set of
suspected adversarial examples, which can be concluded
as X = {x1, x − 2, ..., xn},X = A

⋂
B.

For theother typeofvulnerablepoints can be concluded as:

(II) Adversarial examples are related to the gradient of
maximum Q-value for each point on the path.

Bai et al. found that when the Q-values of consecutive
two points fluctuate greatly, their gradient is greater and
they are more vulnerable to be attacked.
Meanwhile, they found that the larger angle between two

adjacent lines is, the greater slope of the straight line is. Set
angle between the direction vectors of two straight lines
to be θ

(
0 < θ < π

2
)
, the function can be concluded as

Fig. 3 An illustration of the interference effect before and after adding adversarial points when the path size is 2. We show two types of maps here,
where (a) denotes the first type, and (b), (c) all belong to the second category
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cos θ = |s1 · s2|
|s1||s2| = |m1m2 + n1n2 + p1p2|

√

m2
1 + n21 + p21

√

m2
2 + n22 + p22

(5)

where s1 = (m1, n1, p1), s2 = (m2.n2, p2) are the direc-
tion vectors for Line L1, L2. Finally, can find the first large
1% of the angle between the two lines on the path as the
suspected interference point.
For WBA, authors successfully found the adversarial

examples and the supervised method they proposed is
effective, which can be shown in Table 2 for details. How-
ever, in this work, with the increase of training times,
the accuracy rate decreases. In other words, when train-
ing times are large enough, the interference point can
make the path converge, although the training efficiency
is reduced.
Similar to the work of Xiang et al., the maps used

for experiment are 16 × 16 and 17 × 17 is size, and
there is no way to verify the proposed adversarial attack
method more accurately with such map size. It is rec-
ommended that the attack method can be verified on
different categories of map-size, which can better illustrate
the effectiveness of the proposed method in this paper.

Common dominant adversarial examples generation
method (CDG)
Chen at al. (2018b) showed that dominant adversarial
examples are effective when targeting A3C path finding,
and designed a Common Dominant Adversarial Examples
GenerationMethod (CDG) to generate dominant adversarial
examples against any given map.
As shown in Fig. 4, are the dominant adversarial exam-

ples for the original map which can attack successfully.

Chen et al. found that on the dominant adversarial exam-
ple perturbation band, the value gradient rises the fastest.
Therefore, they call this perturbation band as “gradient
band”. By adding obstacles on the cross section of gradi-
ent band can perturb the agent’s path finding successfully.
The generation rule for dominant adversarial example can
be defined as:

• Generation Rule: Adding “baffle-like” obstacles to
the cross section of gradient band in which the value
gradient rises the fastest, can impact A3C path
finding.

Moreover, in order to calculate the Gradient Band more
accurately, authors considered two kinds of situations
according to the difference for original map and gradient
function, one situation is that obstacles exist on both sides
of the gradient function, and the other is that obstacles
exist on one side if the gradient function.
A. Case 1: Obstacles exist on both sides of the gradient

function.
As in this case, obstacles exist on the both

sides of the gradient curve, then need to tra-
verse all the coordinate points in Obstacle =
{(Ox1 ,Oy1), (Ox2 ,Oy2), · · · , (Oxn ,Oyn)}, and to find the
nearest two points from this gradient curve in the upper
and lower part respectively. Therefore, the Gradient Band
function FGB(x, y) under such case can be concluded as:

⎧
⎪⎨

⎪⎩

f (x, y)upper = y − (U+a0 + a1x + ... + akxk)

f (x, y)lower = y − (L+a0 + a1x + ... + akxk)
XL < x < Xmax,YL < y < Ymax

(6)

Table 2 Features for adversarial perturbations against single same original clean map, which can show how the different
characteristics affect the interference of adversarial example

Number Point coordinates Max Q-value Top 
Q On the boundary

Point1 (4,5) 90.2229 0.0198 True

Point2 (4,10) 140.7650 0.1616 True

Point3 (2,3) 60.9148 0.2214 True

Point4 (3,4) 71.4446 0.3199 True

Point5 (5,6) 109.0013 0.3595 True

Point6 (0,2) 48.4608 0.4645 True

Point7 (6,7) 126.3412 0.6992 True

Number On the path Top angle size Angle size Perturbation point

Point1 True Ø 74◦ True

Point2 False Ø Ø True

Point3 True Ø 75◦ True

Point4 True 3 69◦ True

Point5 True 1 84◦ True

Point6 True Ø 71◦ True

Point7 True 2 77◦ False
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Fig. 4 The first line shows dominant adversarial examples for the original map. The fist picture denotes the original map for attack, and the three
columns on the right are the dominant adversarial examples of successful attacks. Meanwhile, the red dotted lines represent the perturbation band.
The second line denotes the direction in which the value gradient rises the fastest. By comparison between dominant adversarial examples and the
contour graph, can found that on the perturbation band, the value gradient rises fastest

where f (x, y)upper and f (x, y)lower denote the upper/lower
bound function respectively, Xmax and Ymax denote the
boundary value of the map, (XL, 0) and (0,YL) are the
intersection points of f (x, y)lower and the coordinate axis.

A. Case 2: Obstacles exist on one side of the gradient
function.
In this case, the calculating for distance between obsta-

cle edge points and gradient function is same with case 1.
However, under such scenario, obstacles exist on one side
of the gradient function curve, hence, under this case can
only obtain the upper/lower bound function for the Gradi-
ent Band. Therefore, the Gradient Band function FGB(x, y)
can be concluded as:
⎧
⎪⎪⎨

⎪⎪⎩

f (x, y)upper = min{f (Xmax, 0), f (0,Ymax)}
f (x, y)lower = y −

(
L + a0 + a1x + ... + akxk

)

XL < x < Xmax,YL < y < Ymax

(7)

Finally setting Y =[ 1, 2, ...,Ymax] and X =[ 1, 2, ...,Xmax]
respectively, and generating the obstacle function set
Obaffle = {FY1 , ..., FX1 , ...}
For this paper, the lowest generation precision for CDG

algorithm is 91.91% (e.g., Fig. 5), which can prove that the
method proposed in this work can realize the common

dominant adversarial examples generated under A3C path
finding with a high confidence.
This paper showed that, the generation accuracy for

adversarial examples of CDG algorithm is relatively high.
By adding small obstacles at physical level on the original
clean map, it will interfere with the path finding process
of A3C agent. Comparing to other works in this field, the
experimental map size for Chen’s work contains 10 cate-
gories, 10×10, 20×20, 30×30, 40×40, 50×50, 60×60,
70×70, 80×80, 90×90, 100×100, which makes it possi-
ble to better verify the effectiveness of the proposed CDG
algorithm proposed in this paper.

Black-box attack
Policy induction attack (PIA)
Behzadan and Munir (2017) also discover that Deep Q-
network(DQN) based policy is vulnerability under adver-
sarial perturbations, and verified that the transferability
(Szegedy et al. (2013) proposed in 2013) of adversarial
examples across different DQN model does exist.
Therefore, they proposed a new type of adversarial

attack named policy induction attack based on this vulner-
ability of DQN. Their threat model considers that adver-
sary can get limited priori information, reward function
R and an estimate for the update frequency of the target
network. In other words, adversary is not aware of target’s
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Fig. 5 Samples for Dominant Adversarial Examples. For the first column is the original clean map for path finding. For columns on the right are the
samples for Dominant Adversarial Examples generated by CDG algorithm proposed in this paper, and (a), (b), (c), (d) represent four different
samples for dominant adversarial examples

network architecture and its parameters at every time
step, adversarial examples must be generated by black-box
techniques (Papernot et al. 2016c).
For every time step, adversary computes the pertur-

bation vectors δ̂t+1 for the next state st+1 such that
maxa′ Q̂(st+1 + δ̂t+1, a′; θ−

t ) causes Q̂ to generate its max-
imum when a′ = π∗

adv(st+1). The whole process for policy
induction attack can be divided into two parts, namely
initialization and exploitation.
The initialization phase must be done before target

starts interacting with the environment. Specifically, this
phase can be divided as follow:

1) Training DQN policy based on the adversary’s reward
function r′ to obtain a adversarial strategy π∗

adv.
2) Creating a replica of the target’s DQN and initializing

it with random parameters.

The exploitationphase takes adversarial attack operations
(e.g., designing adversarial input), and constitutes the life
cycle which can be shown in Fig. 6. The cycle is initialized
by the first observation value of the environment, and to
cooperate with the operation of the target agent.
In the context of policy induction attacks, this paper

conjectured that the temporal features of the training pro-
cess may be utilize to provide protection mechanisms.
However, an analytical treatment of the problem to estab-
lish the relationship of model parameters will suggest a
deeper insight and guidelines into design a more security
deep reinforcement learning architecture.

Specific time-step attack
As the uniform attack strategies (e.g. Huang et al. (2017))
can be regarded as a direct extension of the adversarial
attack in DNN-based classification system, since the
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Fig. 6 The exploitation cycle of policy induction attack (Behzadan and Munir 2017). For the first phase, adversary will observes the current state, and
transitions in the environment. Then adversary will estimate the optimal action to select based on the adversrial policy. For the next phase,
adversary take perturbation into application, and perturb the target’s input. Finally, adversary will waits for the action that agent selected

adversarial example at each time step is computed inde-
pendently of the adversarial examples at other time step.
However, such tactic has not consider the uniqueness of
the RL problem.
Lin et al. (2017) proposed two tactics of adversarial

attack in the specific scenario of reinforcement learning
problem, which namely strategically-time attack and the
enchanting attack.

• Strategically-Timed Attack (STA)

As the reward signal in many RL problems is sparse, an
adversary need not attack the RL agent at every time step.
Therefore, this adversarial attack tactic utilizes this unique
characteristic to attack selected subset of time steps of RL
agents. The core of strategically-timed attack is that the
adversary canminimize the expected accumulated reward
of target agent by strategically attacking less than � << L
time steps, to achieve the purpose of adversarial attack,
which can be formulated intuitively as an optimization
problem

min
b1,b2,...,bL,δ1,δ2,...,δL

R1(s̄1, ..., s̄L)

s̄t = st + btδt for all t = 1, ..., L
bt ∈ 0, 1, for all t = 1, ..., L

∑

t
bt ≤ �

(8)

where s1, ..., sL denotes the sequence of observations or
states, δ1, ..., δL is the sequence of perturbations, R1 rep-
resents the expected return at the first time step, b1, ..., bL
denotes when an adversarial example is applied, and the �

is a constant to limit the total number of attacks.
However, the optimization problem in 8 is a mixed

integer programming problem, which is difficult to solve.

Hence, authors proposed a heuristic algorithm to solve
this task, with a relative action preference function c,
which computes the preference of the agent in taking the
most preferred action over the least preferred action at the
current state (similar to Farahmand (2011)).
For policy gradient-based methods such as A3C algo-

rithm, Lin et al. defined the function c as

c(st) = max
at

π(st , at) = min
at

π(st , at) (9)

where st denotes the state at time step t, and at denotes
the action at time step t, and π is the policy network which
maps the state-action pair (st , at) to a probability.
Meanwhile, for value-based methods such as DQN, the

function c can be defined as

c(st) = max
at

eQ(st ,at)
T

∑
ak e

Q(st ,ak)
T

− min
at

eQ(st ,at)
T

∑
ak e

Q(st ,ak)
T

(10)

where Q denotes the Q-values of actions, and T denotes
the temperature constant.

• Enchanting Attack (EA)

The purpose for enchanting attack is to push the RL
agent to achieve the expected state sg after H steps under
the current state st at time step t. Under such attacking
approach, the adversary needs to specially design a series
of adversarial examples st+1 + δt+1, ..., st+H + δt+H , hence,
this tactic of attack is more difficult than strategically-
timed attack.
The first hypothesis assumed that we can take full con-

trol of the target agent, and enable to take any action in
any time step. Therefore, under such condition, this prob-
lem can be simplified to planning an action sequence,
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which can make agent to the target sate sg from state st .
For the second hypothesis, Lin et al. specially designed an
adversarial example st + δt to lure target agent to imple-
ment the first action in planned action sequence with
method proposed by Carlini and Wagner (2017). After
agent observes the adversarial examples and takes the first
action designed by adversary, the environment will return
a new sate st+1 and iterative build adversarial examples
in this way. The attack flow for enchanting attack can is
shown in Fig. 7.
For this work, strategically-time attack can achieve the

same effect as the traditional method (Huang et al. 2017),
while reduce the total time step for attacking. Moreover,
enchanting attack can lures target agent to take planned
action sequence, which suggests a new research idea for
the follow-up studies. Videos are available at http://yclin.
me/adversarial_attack_RL/.

Adversarial attack on VIN (AVI)
The main contribution for Liu et al. (2017) is that they
proposed a method for detecting potential attack which
can obstruct VIN effectiveness. They built a 2D navigation
task demonstrate VIN and studied how to add obstacles to
effectively affect VIN’s performance and propose a general
method suitable for different kinds of environment.
Their threat model assumed that the entire environ-

ment (including obstacles, starting point and destination)
is available, and they also know that the robot is trained
by VIN, meanwhile, it is easy to get the VIN planning path
and the theoretical path. Based on this threat model, they
summarized three rules which can effectively obstructing
VIN.

• Rule 1: The father away from the VIN planning path,
the less disturbance to the path.

Such rule can be formulated as:

v1yk =ω1 min
{
d1|d1=

√

(xr − ykr)2 + (xc − ykc)2,

(xr , xc)=x ∈ X,(ykr, ykc)=yk ∈ Y
}

(11)

where xr , xc is the coordinate of x, (ykr , ykc) is the coordi-
nate of yk , ω1 is the weight of v1.

• Rule 2: It is most likely to be success when adding
obstacles around the turning points on the path.

Such rule can be formulated as:

v2yk =ω2 min
{
d2|d2= max(|tr ,−ykr|, |tc − ykc|),

(tr , tc)= t ∈ T , (ykr , ykc) = yk ∈ Y
}

(12)
where (tr , tc) denotes the coordinate of t, (ykr , ykc) repre-
sents the coordinate of yk , ω2 is the weight for v2. The
formula considers the Chebyshev distance from yk to the
nearest turning point, and utilize the weight ω2 to control
the attenuation of v2.

• Rule 3: The closer the adding obstacle position is to
the destination, the less likely it is to change the path.

The representative for (xnr , xnc) is the coordinate of xn,
(ykr , ykc) denotes the coordinate of yk , ω3 is the weight for
v3. Hence, the formula can be concluded as:

v3yk = ω3 max(|xnr − ykr|, |xnc − ykc|), (xnr , xnc)
= xn, (ykr , ykc) = yk ∈ Y (13)

this formula considers the Chebyshev distance from yk to
the destination, and utilize the weight ω3 to control the
attenuation of v3.
Calculating the value v considering three rules for each

available point, meanwhile, sorting the values to pick up
most valuable points S = y|vyk ∈ maxi V , y ∈ Y ,V =
vy1, vy2, ..., vyk .
Liu’s method has great performance on automatically

finding vulnerable points of VIN and thus obstructing
navigation task, which can be shown in Fig. 8.
However, this work has not give an analysis of the

successful adversarial attack from the algorithm level,
but summarized the generation rules from the successful
black-box adversarial examples. Meanwhile, similar to the

Fig. 7 Attacking flow for enchanting attack (Lin et al. 2017). Enchanting attack from the original state st , the whole processing flow can be concluded
as follow: 1) action sequence planning; 2) generating adversarial examples with target actions; 3) agent takes actions under adversarial example; 4)
environment gives the next sate st+1. Meanwhile, adversary utilizes the prediction model to attack the target agent with initial state st

http://yclin.me/adversarial_attack_RL/
http://yclin.me/adversarial_attack_RL/
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Fig. 8 Examples for adversarial examples successfully attack. The examples show that the method proposed in this paper do have ability to find
vulnerabilities under VIN pathfinding, and thus interfere the performance of agent automatic pathfinding. a Sample of testing set. b Available
Obstacle 1. c Available Obstacle 2. d Available Obstacle 3. e Available Obstacle 4. f Available Obstacle 5

work of Xiang et al. and Bai et al., the map size has too
many limitations. Only the size under 28 × 28 have been
experimentally verified, and such size is not enough to
prove the accuracy of the method proposed in this paper.

Summary for adversarial attack in reinforcement learning
We give summary on the attributions of adversarial
attacking methods described above, which can be shown
in Table 3.
FGSM (Goodfellow et al. 2014a), SPA (Xiang et al.

2018), WBA (Bai et al. 2018), and CDG (Chen et al.
2018b) belong to White-box attack, which have access
to the details related to training algorithm and corre-
sponding parameters of the target model. Meanwhile,
the PIA (Behzadan and Munir 2017), STA (Lin et al.
2017), EA (Lin et al. 2017), and AVI (Liu et al. 2017)
are Black-box attacks, in which adversary has no idea
of the details related to training algorithm and corre-
sponding parameters of the model, for the threat model
discussed in these literatures, authors assumed that the
adversary has access to the training environment bat has
no idea of the random initializations of the target pol-
icy, and additionally does not know what the learning
algorithm is.
For White-box attack policies, we summarize the

parameters utilized for such methods. SPA, WBA, CDG,
PIA, and AVI all have the specific target algorithm,

however, the target for FGSM, STA, anf EA is not
single reinforcement learning algorithm, in this sense,
such adversarial attack methods are more universal
adaptability.
Moreover, the learning way for these adversarial attack

methods are different, as FGSM, SPA, WBA, CDG, and
AVI are all “One-shot” learning, and PIA, STA, and
EA are “Iterative” learning. Additionally, for all attack
methods introduced here can generate adversarial exam-
ples to achieve the purpose of attacking successfully
under a relatively high confidence. The application sce-
nario for FGSM, PIA, STA, and EA are Atari game,
meanwhile, the scenario for SPA, WBA, CDG, and AVI
are all path planning. We also take a statistical anal-
ysis of the attack results for the algorithms discussed
above.

Defense technology against adversarial attack
Since the adversarial examples attack proposed by
Szegedy et al. (2013) in 2013, meanwhile, there are many
related researchers have investigated the approaches to
defense against adversarial examples. In this section, we
briefly discussed some representative attempts that have
been done to resist adversarial examples. Mainly divided
into three parts, which are modifying input, modify-
ing the objective function, and modifying the network
structure.
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Modifying input
Adversarial training and its variants

• Adversarial training
Adversarial training is the one of the most com-

mon strategies in the related literature to improve the
robustness of neural networks. By continuously inputting
new types of adversarial examples and conducting adver-
sarial training, the network’s robustness is continuously
improved. In 2015, Goodfellow et al. (2014b) developed
a method of generating adversarial examples (FGSM, see
(Goodfellow et al. 2014a)), and they also proposed to
conduct adversarial training to resist adversarial pertur-
bation exploiting the adversarial examples generated by
the attackmethod, the adversarial examples are constantly
updated during the training process so that the classifi-
cation model can resist the adversarial examples. How-
ever, Moosavi-Dezfooli et al. (2017) pointed out that no
matter how many adversarial examples are added, there
are new adversarial examples that can cheat the trained
networks in 2017. After that, by combining adversarial
examples with other methods, researchers have produced
better approaches defending adversarial examples in some
recent works.

• Ensemble adversarial training

It trains networks by utilizing the several pre-trained
vanilla networks to generate one-step adversarial exam-
ples. The model by adversarial training can defend weak
perturbations attack but can’t defend against strong ones.
Based on this, Florian Tramer et al. (2017) introduced the
ensemble adversarial training, which enhances training
data with perturbations transferred from other static pre-
trained models, this approach separates the generation of
adversarial examples from themodel being trained, simul-
taneously drawing an explicit connection with robustness
to black-box adversaries. This model trained by ensem-
ble adversarial training has strong robustness to black-box
attacks on ImageNet.

• Cascade adversarial training

For unknown iterative attacks, Na et al. (2018) proposed
cascade adversarial training, they trained the network by
inputting adversarial images generated from the iterative
defended network and one-step adversarial images from
the network being trained. At the same time, the authors
regularized the training with a unified embedding so that
the convolution filters can gradually learn how to ignore
pixel-level perturbations. The cascade adversarial training
is shown in Fig. 9.

• Principled adversarial training

From the perspective of distributed robust optimiza-
tion, Aman Sinha et al. (2018) provided a principled

adversarial training, which guaranteed the performance of
neural networks under adversarial data perturbation. By
utilizing the Lagrange penalty form of perturbation under
the potential data distribution in the Wasserstein ball,
the authors provide a training process that uses worst-
case perturbations of training data to reinforce model
parameter updates.

• Gradient Band-based Adversarial Training

Chen et al. (2018b) proposed a generalized attack
immune model based on gradient band, which can be
shown in Fig. 10, mainly consists of Generation Module,
Validation Module, and Adversarial Training Module.
For the original clean map, Generation Module can

generate dominant adversarial examples based on the
Common Dominant Adversarial Examples Generation
Method (CDG) (see Section 3.2.4). Validation Module
can utilize the well trained A3C agent against the origi-
nal clean map, to calculate the Fattack for each example
based on the success criteria for attack proposed in this
paper. Adversarial Training Module utilize a single exam-
ple which can attack successfully for adversarial training,
and obtain a newly well trained A3C agentnew which can
finally realize “1:N” attack immunity.

Data randomization
In 2017, Xie et al. (2017) found that introducing random
resizing to the training images can reduce the strength of
the attack. After that, they further proposed (Xie et al.
2018) to use randomization at inference time to mitigate
the effects of adversarial attack. They add a random resize
layer and a random padding layer before the network of
classification, their experiments demonstrate that the pro-
posed randomization method is very effective at resisting
one-step and iterative attacks.

Input transformations
Guo et al. (2018) proposed strategies to defend against
adversarial examples through transforming the inputs
before feeding them to the image-classification sys-
tem. The input transformations include bit-depth reduc-
tion, JPEG compression, total variance minimization, and
image quilting before feeding the image. And the authors
showed that total variance minimization and image quilt-
ing are very effective defenses on ImageNet.

Input gradient regularization
Ross and Doshi-Velez (2017) first exploited input gradient
regularization (Drucker and Le Cun 1992) to improve the
adversarial robustness. In this defense technology trains
differentiable models that penalizes the degree to which
small changes in inputs can alter model predictions. And
the work shown that training with gradient regularization
strengthened the robustness to adversarial perturbations,
and it has a greater robustness combined the gradient
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Fig. 9 The structure of cascade adversarial training

regularization with adversarial training, but the computa-
tional complexity is too high.

Modifying the objective function
Adding stability term
Zheng et al. (2016) conducted stability training through
adding stability term to the objective function to encourage
DNN to generate similar output for images of various per-
turbed versions. The perturbed copy I ′ of the input image
I is generated by a Gaussian noise ε, the final loss L is
consisted of the task objective Lo and the stability loss
Lstability.

Adding regularization term
Yan et al. (2018) append the regularization term based
on adversarial perturbations to the objective function,
they proposed a training recipe called “deep defense”.

Specifically, the authors optimize the objective function
jointed the original objective function term and a scaled
‖
x‖p as a regularization term. Given a training set
{(xk , yk)} and the parameterized function f, andW collects
learnable parameters of f, the new objective function can
be optimized as bellow:

min
W

∑

k
L(yk , f (xk ;W )) + λ

∑

k
R

(

−‖
xk‖p
‖xk‖p

)

(14)

By combining an adversarial perturbation-based regular-
ization with the classification objective function, the train-
ing model can learn to defend against adversarial attacks
directly and accurately.

Dynamic quantized activation function
Rakin et al. (2018) first explored to use quantization
of activation functions and proposed to exploit adaptive

Fig. 10 Architecture for the gradient band-based generalized attack immune model
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quantization techniques for the activation functions so
that training the network to defend against adversarial
examples. They show the proposed Dynamic Quantized
Activation(DQA) method greatly heightened the robust-
ness of DNN under white-box attack, such as FGSM
(Goodfellow et al. 2014a), PGD (Madry et al. 2017), and
C&W (Carlini and Wagner 2017) attacks on MNIST and
CIFAR-10 datasets. In this approach, the authors integrate
the quantized activation functions into on adversarial
training method, in which training model to learn param-
eters γ to minimize the risk R(x,y)∼L[J(γ ,x,y)], γ consists of
parameters in DNN. Based on this, given the input image
x and the adversary example x + ε, this work aim to min-
imize the objective function to enhance the robustness

minR(x,y)∼L[maxJ([γ ,T],x+ε,y)] (15)

where adding a new set of learnable parameters T :=
[ t1, t2, ..., tm−1]. For n-bit quantized activation function,
the quantization will have 2n − 1 threshold values T, let
m = 2n − 1, sgn represents the sign function, thenm level
quantization function is as follows:

f (x) = 0.5 ×
⎡

⎣sgn(x − tm−1) +
m/2+1∑

i=m−1
ti(sgn(ti − x)

+ sgn(x − ti−1)) +
2∑

i=m/2
ti−1(sgn(ti − x)

+sgn(x − ti−1)) − sgn(t1 − x)

⎤

⎦

(16)

Stochastic activation pruning
Inspired by game theory, S. Dhillon et al. (2018) proposed
a mixed strategy Stochastic Activation Pruning (SAP) for
adversarial defense. The method prunes a random acti-
vation subset (preferentially pruning those with smaller
magnitude) and expands survivors to compensate, using
SAP to pretrained networks without any additional train-
ing provides robustness against adversarial examples. And
the authors showed that combining SAP with adversar-
ial examples has a greater benefits. In particularly, their
experiments demonstrate that SAP can effectively defend
against adversarial examples in reinforcementlearning.

Modifying the network structure
Defensive distillation
Papernot et al. (2016a) proposed the defensive distilla-
tion mechanism for training network to resist adversarial
attacks. Defensive distillation, a strategy that trains mod-
els to output the probability of different classes rather than
the difficult decision of which class to output, the prob-
ability is provided by an early model that uses the labels
of hard classification to train on the same task. Papernot

et al. showed that defensive distillation can be used to
resist small-disturbed adversarial attacks through training
network to defend L-BFGS (Szegedy et al. 2013) attack and
FGSM (Goodfellow et al. 2014a) attack. Unfortunately,
defensive distillation is only applicable to DNN models
based on energy probability distributions. Nicholas Car-
lini and David Wagner proved that defensive distillation
is ineffective in (Carlini and Wagner 2016), and they
introduced amethod of constructing adversarial examples
(Carlini and Wagner 2017), this method is not affected by
various anti-attackmethods, including defensive distillation.

High-level representation guided denoiser
Liao et al. (2018) proposed high-level representation
guided denoiser (HGD) to defend adversarial exam-
ples for image classification. The main idea is to
train a denoiser based on neural network for remov-
ing the adversarial perturbation before sending them
to the target model. FLiao et al. use denoising U-net
(Ronneberger et al. 2015) (DUNET) as a denois-
ing model. Compared to denoising autoencoder (DAE)
(Vincent et al. 2008), DUNET is directly connected
between encoder layers and decoder layers of the same
resolution, so the network only needs to learn how to
remove noise, instead of learning how to reconstruct the
whole image. And without using a pixel-level reconstruc-
tion loss function, the authors use the difference between
top-level outputs of the target model induced by orig-
inal and adversarial examples as the loss function to
guide the training of an image denoiser. The proposed
HGD has a good generalization and the target model
is more robust against both white-box and black-box
attacks.

Add detector subnetwork
Metzen et al. (2017) proposed to add a detector sub-
network for augmenting deep neural networks, the sub-
network is trained on a binary classification task that
distinguishes real data from data containing adversarial
perturbations. Considering that detector is also adver-
sarial, they proposed dynamic adversary training, which
introduces a novel adversary that aims at fooling both the
classifier and the detector, and trains the detector to coun-
teracting this novel adversary. The experiment results
show that dynamic detector has the robustness and its
detectability is more than 70% on the CIFAR10 dataset
(Krizhevsky and Hinton 2009).

Multi-model-based defense
Srisakaokul et al. (2018) explored a novel defense
approach, MULDEF, based on the principle of diversity.
The MULDEF approach firstly constructs a family of
models by combining the seed model (the target model)
with additional models(constructed from the seedmodel),
the constructed family of models are complementary to
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each other to obtain robustness diversity, specifically, the
adversarial examples of a model usually doesn’t be the
adversarial examples of other models in model family.
Then the method randomly selects one model in these
models to be applied on a given input example. The ran-
domness of selection reduces can reduce the success rate
of the attack. The evaluation results demonstrate that
MULDEF augmented the adversarial accuracy of the tar-
get model by about 35-50% and 2-10% in the white-box
and black-box attack scenarios, respectively.

Generativemodels
• PixelDefend

Song et al. (2017) proposed a method named Pix-
elDefend which can utilized generative models to defend
against adversarial examples. In this paper, authors
showed that the adversarial examples mainly lie on low
probability regions of training distribution, regardless of
the attack type and target model. Moreover, they found
that neural density model outperform on detecting the
human invisible adversarial perturbations, and based on
this discovery, Song et al. proposed a new approach
named PixelDefend which can purifies a perturbed image
return to the distribution of training data. Meanwhile,
they announced that PixelDefend can be utilized as
a novel family of methods which can combined with
other model-specific defenses. Experimental results (e.g.,
Fig. 11) showed that PixelDefend can greatly improves
the recovery capability of varieties state-of-art defense
methods.

• Defense-GAN

Samangouei et al. (2018) gave the first attempt to con-
struct a defense model against adversarial attack based on
GAN (Radford et al. 2015). They proposed a new defense
policy namedDefense-GAN which takes use of generation

model to improve the robustness against Black/White-
Box Attack. Moreover, any classification model can uti-
lize the Defense-GAN proposed in this paper, and will
not change the structure of classifier or the process for
training. Defense-GAN can be used as a defense tech-
nology that can against any adversarial attack as such
method does not assume knowledge of the process for
generating the adversarial examples. The experimental
results showed that Defense-GAN proposed in this paper
is effective when against different adversarial attacks, and
can improve the performance on existing defense tech-
nologies.

Discriminativemodel
Since it is not guaranteed that the generated adversarial
examples will obstruct the VIN path planning success-
fully generated in Liu et al. (2017), Wang et al. explored
a fast approach to automatically identify VIN adversar-
ial examples. In order to estimate whether an attack is
successful, they compared the difference between the two
paths on a pair of maps, the normal map and the adver-
sarial map. By visualizing the pair of paths on a path
image, they transformed the different attack results into
different categories of path images. In this way, they ana-
lyzed the possible scenarios of the adversarial maps and
define the categories of the predicted path pairs. They
divided the results into four limited categories, which
are the unreached path (UrP) class, the fork path (FP)
class, the detour path (DP) class and the unchanged
path (UcP) class. Based on the categories definition, they
implemented a training-based identification method by
combining the path feature comparison and path images
classification.
In this method, the UrP and UcP can be identified

through path feature comparison and the DP and FP
can be identified through path image classification. The
experimental results showed that this method can achieve

Fig. 11 The example for PixelDefend (Song et al. 2017). The first image denote the original clean image in CIFAR-10 (Krizhevsky et al. 2014), and the
remaining pictures represent the adversarial examples based on varieties attack methods which have been shown above each example, and the
predicted label has been shown on the bottom. Meanwhile, the second line denotes the corresponding purified images
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(a) (b) (c) (d)
Fig. 12 Four categories of VIN adversarial maps. The first line denotes the original maps, the second line represents the adversarial eaxmples
generated, and the third line is the extracted path image. a The UrP. b The FP. c The DP. d The UcP

Table 4 Different attacks targeted by different defense technologies

Modifying input FGSM IFGSM PGM CDG DeepFool C&W JSMA ITGSM

Adversarial training �
Ensemble adversarial training �
Cascade adversarial training �
Principled adversarial training �
Gradient band-based adversarial training �

Data randomization � �
Input transformations �
Input gradient regularization � �

Modifying the objective function FGSM DeepFool C&W Small perturbations PGD

Adding stability term �
Adding regularization term �
Dynamic quantized activation function � � �
Stochastic activation pruning �

Modifying the network structure FGSM IFGSM DeepFool C&W JSMA ITGSM BIM Opt

Defensive distillation � �
High-level representation Guided Denoiser � �
Add detector subnetwork � � �
Multi-model-based defense � �
Generative models � �
Characterizing adversarial subspaces � � � � �
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a high-accuracy and faster identification than manual
observation method (e.g., Fig. 12).

Characterizing adversarial subspaces
Ma et al. (2018) gived the first attempt to explain the
extent adversarial perturbation can effect the Local Intrin-
sic Dimensionality (LID) (Houle 2017) characteristic of
adversarial regions. Moreover, they showed empirically
that LID characteristics can facilitate the distinction of
adversarial examples generated by several state-of-art
attacks. Meanwhile, they proved that LID can be utilized
to differentiate adversarial examples, and the experimen-
tal results show that among the five attack strategies
(FGSM (Goodfellow et al. 2014a), BIM-a (Saad 2003),
BIM-b (Saad 2003), JSMA (Papernot et al. 2016b), Opt)
based on three benchmark data sets (MNIST (LeCun et al.
2010), CIFAR-10 (Krizhevsky et al. 2014), SVHN (Netzer
et al. 2011)) considered for this paper, the method based
on LID can outperform againstmost state-of-art methods.
Ma et al. announced that their analysis of LID charac-

teristic for adversarial region, not only can motivates new
direction for effective adversarial defense, but also pro-
vides more challenges for the development of new adver-
sarial attacks, meanwhile, enable us to better understand
the vulnerabilities of DNNs (LeCun et al. 1989).

Conclusion and discussion
In this paper, we give the very first attempt to con-
duct a comprehensive survey on adversarial attacks in
the context of reinforcement learning under AI security.
Reinforcement learning is a workhorse for AI applications
ranging from Atari Game to Connected and Automated
Vehicle System (CAV), hence, how to build a reliable rein-
forcement learning system to support the security critical
applications in AI, has become a concern which is more
critical than ever. However, Huang et al. (2017) discovered
that the interesting attack mode adversarial attack also be
effective when targeting neural networks under reinforce-
ment learning, which has inspired innovative researches
in this direction. Therefore, our work reviews such con-
tributions, and mainly focus on the most influential and
interesting works in this field. We give a comprehensive
introduction to the literatures on adversarial attack under
various fields of reinforcement learning applications, and
briefly analyze the most valuable defense technologies
against existing adversarial attacks (Table 4).
Although, the RL system does exist the security vulner-

ability of “Adversarial attack”, by the survey on existing
adversarial attack technologies, it is found that the exist of
complete Black-box attacks are rare (complete Black-box
attack means that the adversary has no idea of the tar-
get model, and can not interact with the target agent at
all), which makes it very difficult for adversaries to attack
the reinforcement learning system in practice. Moreover,

owing to the very high activity in this research direction,
it can be expected that, in the future an largely reliable
reinforcement learning system will be available to support
critical security applications in AI.
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