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Abstract

Recently released Intel processors have been equipped with hardware instruction tracing facilities to securely and
efficiently record the program execution path. In this paper, we study a case for data integrity checking based on Intel
Processor Trace (Intel PT), the instruction tracing facility on x86 processors. We incorporate software instrumentation
and hardware instruction tracing to guarantee fine-grained data integrity without frequently switching the processor
mode. We incorporate the idea in a system named DTrace which provides primitives to instruct Intel PT to capture the
data load and store events, even current Intel PT implementations only record control transfers. The trace is analyzed
before the program makes security-sensitive operations. We apply DTrace in several case studies to show that the
primitives that DTrace provides are easy to use and help to enhance data integrity in applications. We further evaluate

DTrace with several microbenchmarks to show the time cost that DTrace’s data tracing operation incurs. We also
evaluate DTrace on Nginx to show the performance impact when Nginx is enhanced in security to provide the
integrity during the runtime execution for programmer-defined security sensitive data. We find the performance
overhead that DTrace incurs for the data tracing is moderate.

Keywords: Data integrity checking, Hardware instruction tracing

Introduction

Hardware instruction tracing is a dedicated hardware
facility to collect information on program execution for
debugging. Examples are Intel Processor Trace (Intel PT)
(Reinders 2013) and ARM Embedded Trace Macrocells
(ETM) (ARM 2016). They capture the information of pro-
gram execution path in real-time and record the trace
in the form of data packets. The debugger analyzes the
trace and infers program execution events such as what
instructions the program has just executed.

Researchers have explored to leverage Intel PT to
enhance software debugger (Kasikci et al. 2017; Cui et al.
2018) and enforce the security property of control flow
integrity (CFI) (Liu et al. 2017; Ge et al. 2017; Ding et al.
2017). These tools and systems benefit in terms of effi-
ciency and accuracy by digging out the information about
program control flow captured by Intel PT including
timestamps and control transfers.
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In this paper, we introduce a case for data integrity
checking, which defeats memory corruptions over
security-critical data. We propose an incorporation of
software instrumentation and hardware instruction trac-
ing for auxiliary information about program execution
captured at real-time to realize data protection. The pro-
totype, named DTrace, is implemented based on Intel PT,
while the idea of software-defined trace data is general to
hardware instruction tracing.

Software-defined trace data enables DTrace to check the
integrity of word-sized memory data even if the security-
critical and non-critical data reside in the same page.
DTrace instructs Intel PT to trace the software-specified
memory store and load operations in an application.
There is no restriction on where the accessed data resides
in memory. DTrace prevents the traced application from
making security-sensitive operations after a memory cor-
ruption is detected. It remembers the stored value of each
store event. Once a piece of corrupted data is loaded from
memory, the tracing hardware will record the corrupted
value as the load operation result. DTrace can detect the
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corruption as it cannot match the remembered stored
value and the loaded value at that memory address.

Previous data integrity enforcement techniques set up
an isolated memory region which is free from the risk
of memory corruptions. They need software-based tech-
niques (Akritidis et al. 2008; Castro et al. 2006; Oleksenko
et al. 2017; Erlingsson et al. 2006; Koning et al. 2017)
or hardware supports (Song et al. 2016; Wang and Jiang
2010; Hunt et al. 2016; Baumann et al. 2014; Kim et al.
2017; Chen et al. 2016; Azab et al. 2014; Rubinov et al.
2016) to enforce the isolation, which restrict all memory
write operations or require time-consuming operations of
switching processor mode to access the isolated memory
region. In comparison, DTrace’s data integrity enforce-
ment is both fine-grained and efficient.

We find that hardware instruction tracing simplifies the
isolation enforcement as it records tracing data securely
and efficiently. For example, Intel PT can be configured by
the kernel driver to save the trace into a memory buffer
which is inaccessible from the traced application. Thus the
application is incapable of corrupting the trace. Addition-
ally, the hardware facility addresses the memory buffer
with physical memory address, which allows the trace to
be written to the user-mode inaccessible memory buffer
without a processor mode switching to the kernel mode.

Current Intel PT implementations record only control
transfer instructions like conditional jumps and indi-
rect function calls, and simply ignore all memory access
events. Future Intel processor releases will reportedly
include a new instruction named PTWRITE to insert
software-defined value into the trace to enhance debug-
gers (Strong et al. 2015). As PTWRITE is still unavailable
on current processor releases yet (Hunter 2017), DTrace
emulates PTWRITE by encoding the memory data load
and store events with control transfer instructions and
synthesizes the events from the trace.

The prototype provides a few primitives for program-
mers or program analyzer to mark the security-critical
data load and store operations. We provide two case stud-
ies on different applications that show DTrace’s primitives
are easy to use and effective to enhance the data integrity
property in applications.

Furthermore, we describe another two case studies on
Nginx to demonstrate that DTrace can check the integrity
of fine-grained security-critical data with a moderate per-
formance overhead. The first case enhances Nginx’s access
control implementation by marking certain in-memory
variables that determine whether requests from certain
hosts should be blocked. The second case provides a com-
plete protection on Nginx’s function pointers to defeat
control flow hijacking attacks. We evaluate the perfor-
mance overhead that DTrace incurs in these two cases.
We further evaluate Redis while enabling the protec-
tion of DTrace. From all the case studies and real-world
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application evaluations, we believe that the protection
provided by DTrace would be practical on server and var-
ious cloud platforms (Amazon 2018; Wang et al. 2017) to
enforce data integrity checking on server applications.

We both evaluate the overhead with PTWRITE and
the emulated data recording operations. We find that
the overhead varies among the latency of PTWRITE
and the frequency that the data tracing operations are
used. Overall, DTrace incurs moderate performance over-
head in these two cases while the security is significantly
enhanced by defeating memory corruption attacks.

We further model the latency of PTWRITE and
prospect the performance impact when we adopt it on
future Intel processor releases. We find that PTWRITE
would further reduce the overhead of data tracing oper-
ations both in micro-benchmarks and Nginx evalautions
while DTrace’s emulation of PTWRITE provides an in-
stock solution that enhances the integrity of security-
critical data.

Overall, this paper makes the following contributions:

— A novel design named DTrace that incorporates
hardware instruction tracing mechanism into data
integrity protection which realizes hardware data
tracing and provides fine-grained and efficient data
integrity guarantee.

— An emulation technique that makes hardware data
tracing realizable on commodity Intel processors
with moderate performance overhead.

— Evaluations in micro-benchmarks and a real-world
application which show that DTrace incurs moderate
performance overhead while enhances the data
integrity property.

Intel processor trace

Starting from the fifth generation, Intel architecture pro-
vides an extension named Intel Processor Trace (Intel
PT) to help the software debugger reconstruct the pro-
gram flow with low performance perturbation (Reinders
2013). Each core contains dedicated tracing hardware and
generates packets indicating events like branch-taken and
indirect function invocations along with program exe-
cution. Packets are highly compressed and need to be
decoded by the debugger. Intel PT is turned on by config-
uring model specific registers which can only be accessed
at OS-privileged level. It can also be configured to only
trace the program execution within a range of virtual
addresses which are specified by IP Filters.

As Intel PT is designed to record program execution,
it only records control flow information like instruction
pointers, indirect branch targets and directions of con-
ditional branches. Figure 1 shows a flow of packets gen-
erated by Intel PT along with program execution. Once
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Trace Packets Traced Program
PGE .L1 L1
TNT je .L2
""" Taken |
L2:
TIP .L3 leaqg .L3, %rax
jmp *%rax
PGD 0 L3
Fig. 1 Packets generated by Intel PT

Intel PT is enabled, a Packet Generation Enable (PGE)
packet leads the following packets. After executing a con-
ditional branch, the Taken or Not Taken (TNT) decision is
recorded in a TNT packet. On an indirect jump, a Target
IP (TIP) packet records the destination address. A Packet
Generation Disable (PGE) packet marks the end of the
packet flow once the tracing facility is turned off.

Intel has proposed a new instruction PTWRITE on
future generation Intel processors. It makes Intel PT
generate a packet whose payload is PTWRITE’s parame-
ter. Intel suggests to use it to provide more information
about the program execution for debuggers (Strong et al.
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2015). Though PTWRITE is unavailable on any currently
released processor (Beeman 2017; Hunter 2017), Intel
mentions that PTWRITE can typically be executed a sin-
gle processor cycle (Strong et al. 2015).

The tracing hardware writes packets into discontin-
uous memory buffers. Intel PT uses Table of Phys-
ical Addresses (ToPA) to address each piece of the
buffer. As Fig. 2 illustrates, the address of each piece of
buffer is set in a ToPA entry. A model specific regis-
ter IA32 RTIT OUTPUT BASE holds the base address
of ToPA Each entry in the ToPA can be configured with
an INT bit, which instructs Intel PT to trigger a Perfor-
mance Monitoring Interrupt (PMI) when that piece of
buffer becomes full.

Motivating example
Programmers enjoy the flexibility provided by memory
unsafe languages like C and C++ to address arbitrary vir-
tual memory locations via pointers, while taking the risk
that memory error bugs, such as buffer overflow, would be
exploited by malicious users to corrupt security-sensitive
data. Attackers can construct a series of memory error
exploits to be capable of writing any data to arbitrary
location (Hu et al. 2015). Defense mechanisms like Data
Execution Prevention (DEP) (Microsoft 2018) and con-
trol flow integrity (CFI) enforcement (Zhang et al. 2013;
Ding et al. 2017) prevent the attacker from inserting code
and corrupting control data, like return addresses and
function pointers, and further controlling the execution.
However, memory error exploits can change the appli-
cation’s behavior without corrupting any control data,
which does not violate control flow integrity (CFI) pol-
icy (Abadi et al. 2005) and thus bypasses CFI enforce-
ment. Recent studies have demonstrated the threat of

Physical Page E END

Stop Position

Physical Page X+1

N
b

Physical Page X INT

Page X Limit

Physical Page 2

Physical Page 1

IA32_RTIT_OUTPUT_BASEI >

Fig. 2 Table of Physical Addresses (ToPA)

ToPA Entries
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non-control-data attacks, such as corrupting configura-
tion and decision-making variables and bypassing access
restrictions (Chen et al. 2005; Song et al. 2016; Hu et al.
2016).

Take the code snippet from Nginx in Listing 1 as an
example. Nginx can be configured to block requests for
certain files from certain hosts. Such rule is represented
by an object of ngx http_access rule t. During initial-
ization, Nginx reads the configuration file and creates
ngx_http_access_rule_t objects. When Nginx receives an
HTTP request, it matches the incoming request’s addr
with records in rule.

1 typedef struct {
2 in_addr_t mask;
3 in_addr_t addr;
4 ngx_uint_t deny;
5} ngx http access_rule t;

7 char sngx http access rule(ngx conf t xcf) {

8 ngx_http_access_rule_t xrule = ...
9 rule->deny = is_deny(cf->args->elts[0].datal0]);
10 dtrace_storeé64 (&rule->deny, rule->deny) ;

11 // similarly for rule->addr and rule-smask

SRR

15 ngx_int_t ngx http access_inet (in_addr t addr,

16 ngx_http access rule t srule) ({

17 dtrace load64 (&rule->deny, rule->deny);

18 // similarly for rule-saddr and rule-s>mask
19 if ((addr & rule-smask) == rule->addr

20 && rule->deny)

21 return NGX_HTTP_FORBIDDEN;

22 “e .

23}

Listing 1 Simplified code snippet of Nginx. The access control of
Nginx is determined by several in-memory variables. Function
ngx_http_access_rule sets those variables and function
ngx_http_access_inet reads them. Two instrumented primitives
dtrace_store64 and dtrace_load64, help to check the value of
deny. The instrumentations are underlined.

The rules are vulnerable to memory errors as they
are stored in memory. A memory error exploit can cor-
rupt rule—deny before Nginx reads it. For example, if
rule— deny is reset to zero, the access restrictions in Line
20 will be bypassed. Thus the attacker becomes privileged
of requesting for the files through HT TP requests, where
the files should be forbidden to access otherwise.

By checking the data integrity of rule—deny before
Nginx making any security-sensitive operations, DTrace
guarantees that the value loaded in Line 20 is the same
as the value stored in Line 9 in Listing 1. With the two
inserted primitives, dtrace_store64 and dtrace_load64,
DTrace stops Nginx from making security-sensitive oper-
ations after rule—deny is corrupted. dtrace_store64
makes the hardware tracing facility generate packets
representing an event that the program has stored a
64-bit value rule—deny into memory at the address of
&rule—deny. Similarly, dtrace_load64 makes the hard-
ware tracing facility record an event of loading a corrupted
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value of rule—deny. Later, before Nginx invokes a sys-
tem call to send the file in response to the HT TP request,
DTrace checks all records, detects that the loaded value
mismatches the previously stored value and aborts the
process. Thus, even the access rule is manipulated by the
attacker, Nginx does not send the file out of the server.

Assumptions. We assume that the attacker is able to
read and write to an arbitrary location in the user-mode
memory address space. The code pages are immutable as
they are protected by page permission. We trust the oper-
ating system kernel to load the instrumented program
binary securely, set page permissions and configure the
hardware tracing facility correctly.

DTrace assumes the application has been equipped
with control flow integrity (CFI) enforcement. Thus the
attacker cannot manipulate the control data to insert
hardware tracing events. In fact, researchers have pro-
posed solutions (Ge et al. 2017; Liu et al. 2017; Ding
et al. 2017) to enforce CFI with the help of Intel PT.
DTrace’s design is compatible with the Intel-PT-based CFI
enforcement.

Design

DTrace is designed to reuse hardware instruction tracing
facility to record data access events in applications. However,
there are three challenges that the design must deal with:

— The hardware instruction tracing facility on released
Intel processors does not provide data access tracing
instructions.

— The recorded data trace must be kept secure from
memory corruption exploits in user mode.

— Decoding the packets generated by the hardware
instruction tracing facility is time-consuming.

To deal with the first challenge, DTrace incorporates
hardware instruction tracing with software instrumen-
tation. DTrace provides a serial of primitives that can
be inserted in the application code to guide the hard-
ware to record the data access events. The primitives are
implemented with hardware instruction tracing so that
DTrace can later analyze the tracing result and restore
the information that the primitive invocation represents.
We propose a reuse of PTWRITE instruction to record
the instrumented data access events. Additionally, we
also propose an emulation of PTWRITE that works on
currently released platforms since PTWRITE is not sup-
ported yet.

To deal with the second challenge, DTrace keeps the
tracing record in kernel mode. It leverages the feature
of hardware instruction tracing that generating the trace
does not require a user/kernel mode switching. Traces are
analyzed in kernel mode as we set the trace storage as user
inaccessible. To reduce the frequency of kernel trapping
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for trace analysis, we delay the analysis to the time that
the application actively traps to the kernel for security
sensitive operations.

In terms of the third challenge, DTrace sets up a back-
ground worker thread responsible for packet decoding. It
does not occupy any computation resource until the appli-
cation thread wakes it up on the buffer of packets becomes
full. In order to eliminate the contention between the
application thread and the background worker, as the
worker may well not finish decoding when the core for
application starts to generate new packets, DTrace incor-
porates a dual-buffer design which makes the applica-
tion and worker threads work on separate buffers. The
buffers are exchanged when the application thread’s buffer
becomes full and the application thread will wait for the
background worker thread only if the worker is busy.

DTrace workflow

Figure 3 illustrates the cooperation of software instru-
mentation and hardware instruction tracing. DTrace pro-
vides program primitives that programmers can manually
insert into the source program (Step la) to mark the
security-critical data load and store events. Alterna-
tively, the protected application can be automatically
instrumented by LLVM passes (Step 1b) if the mem-
ory access events can be identified completely with static
analysis.

The primitives are inserted into the program as function
calls. The functions are implemented in a runtime file,
which is statically linked to the instrumented source pro-
grams (Step 2). The implementation encodes the memory
access events with PTWRITE operations. To record one
store operation, the implementation uses one PTWRITE
to record the address and another PTWRITE for the data
value.

The runtime file contains an initialization procedure to
notify the Trace Analyzer about all statically initialized
variables (Step 3). It also contains operations to trap to the
kernel to configure and enable Intel PT before the appli-
cation starts execution (Step 4). During execution, the
implemented primitives make Intel PT generate packets
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(Step 5a). Intel PT writes the packets into a dedicated
Trace Buffer in memory (Step 5b).

As configured by the Driver, Intel PT notifies the Driver
via a Performance Monitoring Interrupt (PMI) when the
Trace Buffer becomes overloaded (Step 6a). The processor
pauses the traced program execution and switches to the
PMI handler. The PMI handler invokes the Trace Analyzer
(Step 6b).

Intel PT encodes tracing packets compactly for mem-
ory efficiency. The Trace Analyzer reads the Trace Buffer,
decodes all packets, filters out irrelevant ones and leaves
only the packets generated from store and load event
(Step 6¢). On each store event, the Analyzer remem-
bers the stored value as the current value on the stored
address. Later, on decoding a load event, it looks for the
remembered value on the same address and compares
the loaded value with the remembered one. If there is a
mismatch, the Analyzer reports the error and aborts the
program (Step 7). Traces are also analyzed before the pro-
gram makes security-critical system calls such as write
and mprotect (Step 8).

As shown in the shaded area in Fig. 3, the Trace Buffer
is allocated in kernel’s memory space. The Intel PT Driver
and the Trace Analyzer work in kernel mode. Note that
Intel PT writes the packets into the Trace Buffer without
being restricted by virtual page permission (Step 5b).

DTrace primitives

DTrace provides a serial of primitives that help to cap-
ture security-sensitive data access events. As we dis-
cussed in “Motivating example” section, dtrace_store64
and dtrace_load64 are two of the primitives that capture
the events of storing and loading the security-sensitive
data. We list all primitives that DTrace currently supports
in Table 1.

Each of the primitive accepts two parameters. The first
parameter is the address of the security-sensitive variable,
which helps the Trace Analyzer distinguishes different
recorded variables. The second parameter is the value of
the variable. The primitives vary on supported data sizes
and load/store events.

Programmer Annotation
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LLVM Instrumentation Runtime File

Fig. 3 DTrace work flow
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Table 1 Primitives provided by DTrace

Primitive Data length in bytes Places of instrumentation

dtrace_load64 8 Reading unsigned/signed long data

dtrace_store64 8 Writing unsigned/signed long data
dtrace_load32 4 Reading unsigned/signed int data
dtrace_store32 4 Writing unsigned/signed int data
dtrace_load8 1 Reading unsigned/signed char data

dtrace_store8 1 Writing unsigned/signed char data

Here we explain the usage of the primitive with the
example of Fig. 1. The primitive dtrace_store64 is inserted
in Line 10, which is specifically used for the events of
writing a 64-bit variable. It accepts the address of the vari-
able rule— deny and the value of that variable as the two
parameters.

Emulating PTWRITE

PTWRITE has not been supported by any Intel processor
release yet (Hunter 2017; Beeman 2017). The prototype
emulates PTWRITE based on indirect jump instructions
and Intel PT’s control flow tracing. The primitives are
implemented with the emulation. The decoder recon-
structs the inserted data value according to a special
packet flow pattern.

Page 6 of 15

DTrace emulates PTWRITE by orchestrating a serial of
indirect jump instructions in a particular order. To record
an N-bit value val, the program executes an indirect jump
into a jump table with 2V entries at offset val. Let the base
address of the jump table be B and each entry of the jump
table is in one byte. Intel PT generates a packet for such
indirect jump with B + val as its payload. The Trace Ana-
lyzer then extracts the payload, subtract B and gets the
recorded value val.

As Fig. 4a shows, each entry of the jump table con-
tains a retq instruction returning back to the origi-
nal site. A retg instruction takes 1 byte. To record a
48-bit pointer value, a table with 2*% entries will require
a continuous virtual memory region of at least 2*® bytes,
which exceeds the limit of the virtual memory space. To
reduce the size of jump tables, DTrace breaks long data
types into shorter pieces. For example, DTrace instru-
ments the application to jump twice with indexes saved
in %rax and %rdx as illustrated in Fig. 4b. The Trace
Analyzer decodes the two consecutive indirect jump
events and merges the payloads into a complete 48-bit
value.

All pages for the same jump table have the same content
as each entry in the jump table is the same instruction.
To reduce physical memory usage, DTrace maps all virtual
pages for the same jump table to a single physical page as
shown in Fig. 5.

leaq jtl(%rax), %rax

callg *%rax

(@)

leaq jtl(%rax,2), %rax
leaq jt2(%rdx), %rdx

callg *%rax

c3 retq
c3 retq
c3 retq
Jump Table
e2 ff jmp *%rdx
e2 ff jmp *%rdx

e2 ff *%rdx

jmp

Jump Table 1

c3 retq
c3 retq
c3 retq

(b)

Fig. 4 Jump tables. a One-Step Jump. b Two-Step Jump

Jump Table 2
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jmp *%rdx
jmp *%rdx S~oo
jmp *%rdx S
JPtae jmp *%rdx
JPtae jmp *%rdx
<2 jmp *%rdx
jmp *%rdx TS~
jmp *%rdx TS~
jmp *%rdx Pt ]
- Physical Page
Virtual Pages
Fig. 5 Jump table mappings

Implementation

We implement DTrace on Debian 9.1 with Linux Kernel
4.9, running on Intel Core i7-7700 with 16GB memory.
We modify the Intel PT driver implemented by Linux
perf subsystem, with customized ToPA setting and PMI
handler. The modified PMI handler decodes packets in
trace buffer and matches the load and store records. We
replace some security sensitive system call handlers like
read, write, execve, mmap and setuid. The new system call
handlers simply invoke the Trace Analyzer and turns to
the original handler.

DTrace sets up all jump tables in user mode before the
application starts execution. The application then sends
the base addresses of the jump tables to the Trace Ana-
lyzer. The user mode runtime talks with kernel to enable
and stop Intel PT before and after application execution.
These operations are implemented in constructor and
destructor, declared with GCC constructor and destructor
attributes and invoked automatically by C runtimes.

Jump table

In the runtime files, we declare three large arrays accord-
ing to the sizes of the three jump tables. The arrays are
not initialized so that they do not account for disk space in
the linked binary file. During executing the application’s
constructor, we unmap all virtual pages assigned for them
and map the same physical page at each virtual page base
address in the range.

Jumping indirectly and back has higher latency than
an indirect function invocation and paired return, as
the processor optimizes the return address prediction
with an internal call stack while most other indirect
jumps fail in branch prediction. In dtrace_storeX and
dtrace_loadX, the last operation is jumping into a jump

table. We set the content of the last jump table with retq
instructions, which return directly back to the caller of
dtrace_storeX and dtrace_loadX. At the same time, a retq
is encoded in only one byte, which doubles the number
of entries in a jump table without allocating more virtual

pages.

Intel PT filter

Intel PT records all control flow transfer instructions by
default, which fill the Trace Buffer with large quantities of
uninteresting packets to DTrace like conditional branch
taken-not-taken. The irrelevant packets increase the bur-
den of packet decoding and the number of interrupts for
the Trace Buffer filling events.

We leverage the instruction pointer filter (IP filter)
mechanism provided by Intel PT to trace only the indirect
jumps DTrace inserted in application. The i7-7700 plat-
form supports two different IP filters. We set two ranges.
One for the primitive functions like dtrace_storeX and
dtrace_loadX. The other for the jump tables. All primitive
functions are assembled into .zext section closely together.
The first IP filter range is determined by the address of the
first function and the address of the last instruction in the
last function. The filter for jump tables is determined in
a similar way. We compare all jump tables’ base addresses
for the lowest one before setting the filter, as compilers
provide no guarantee for the address order of different
global data objects. Global variables may be allocated in
a reversed order than what they are defined in the source
program.

ToPA table setting
Intel PT locates the Trace Buffer with Table of Physical
Addresses (ToPA) structure. In Fig. 5, each ToPA entry
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points to a physical memory region with physically con-
tinuous pages. The last entry has a special bit named END
set, indicating that it points to the first ToPA table entry
rather than a buffer page. When the last physical page in
the Trace Buffer is filled, Intel PT moves forward to the
first physical page pointed to by the first ToPA entry and
overwrites the first few packets in the head of the Trace
Buffer.

When a ToPA table entry has another bit INT set, Intel
PT triggers an interrupt on filling the corresponding phys-
ical pages. The interrupt handler consumers the buffered
packets and reenables tracing. However, the interrupt is
not precise, and it is thus likely that writing to the next
region occurs by the time the interrupt is taken (Intel
2018). As the shaded region in Fig. 2 indicates, though
Intel PT is set to pause on filling physical page X, the page
X+1 has been written with hundreds of bytes when Intel
PT actually pauses.

To avoid any tracked corruption data access event
missed due to ring buffer overwrite, we set the INT bit a
few entries before the last entry in ToPA. The Trace Ana-
lyzer scans the buffer up to the current Intel PT write
position. After the trace analysis, the Driver resets the cur-
rent write position to the beginning of the Trace Buffer
and Intel PT starts over. Figure 2 illustrates such set-
tings. INT bit is set on Physical Page X which makes
an interrupt is triggered when this page is fully filled.
The Stop Position mark indicates the location that last
packet resides when the processor jumps to the inter-
rupt handler. It is a few packets above Page X Limit
as the result of the interrupt event’s impreciseness. The
shaded area in Fig. 2 indicates all packets. The Trace
Analyzer will consume all packets within the shaded
area without missing any packet generated after the
interrupt.

In the implementation, we set the whole buffer as 32
pages and the INT bit at the 16th page, which leaves 16
pages after the INT bit to hold all packets generated after
the interrupt is triggered. We find no record loss with this
setting during evaluation.

Dual-buffers

DTrace sets up separate buffers for the application
thread and the background worker to eliminate producer-
consumer conflicts. The two buffers are pointed to
by two different ToPA tables. Though the pages in
one buffer may be discontinuous, DTrace remaps the
pages to a continuous virtual address region to easy the
decoding operations. Switching the buffers takes sim-
ple operations of reconfiguring the Intel PT model spe-
cific registers (MSRs). All of the processor-generated
packets are guaranteed to be flushed into the buffer
before switching by temporarily suspending Intel PT
(Intel 2018).
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Kernel storage

The tracing results are analyzed into data value records
and saved in kernel accessible memory. In order to reduce
the memory footprint of the kernel, we allocate the mem-
ory using mmap so that the allocated memory pages can
be automatically recycled when the process exits. We
set the page permission of the allocated pages as user-
inaccessible and remap the pages as kernel accessible.

In the prototype, we use a four-level radix tree to save all
recorded memory values. The radix tree is indexed by the
memory variable address, which is passed as a parame-
ter in the DTrace primitive calls. We plan to leverage Intel
processor features like Intel MPX (Oleksenko et al. 2017)
to speed up the radix tree search and update operations.

Evaluations

In this section, we first analyze how DTrace could
be used in real-world applications to enhance security
property. Besides the motivating example discussed in
“Motivating example” section, we further provide three
case studies from different applications. Then we analyze
the security guarantee that DTrace provides by demon-
strating how DTrace defeats memory corruptions. Finally,
we evaluate the performance overhead that DTrace
incurs with both micro-benchmarks and a real-world
application.

Case study
In this subsection, we report our experience in which we
apply the protection mechanism of DTrace on multiple
real world applications, the Linux user authorization util-
ity sudo, the FTP server application wu-fipd and the web
server Nginx. The former two applications have reported
CVEs which are exploitable for arbitrary memory corrup-
tion as demonstrated by FlowStitch (Hu et al. 2015). In
these two cases, we analyze the program source and pick
one security related case for each of them. Then we work
as the application programmer to manually insert DTrace
primitives and recompile the applications. For the last case
study on Nginx, we apply static analysis on the source code
to automatically identify the load and store operations that
need to be instrumented. Overall, we find that DTrace is
easy to be adopted in application development.

sudo. The Linux utility sudo 1.8.3 is vulnerable to CVE-
2012-0809 (CVE 2012). Normally, it displays the sudo
binary’s file name with vfprintf when running in debug
mode. If the filename is made up with malicious format
character like the infamous %n, the attacker is able to
write to any in-memory variable of sudo. The exploit cre-
ates a soft link of sudo with malicious format character
as its file name. When the soft link is executed, vfprintf
corrupts a memory object specified by the attacker.

We pick the uid field of sudo as the security-critical in-
memory data. It decides the identity of an authorized user
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to execute a user-specified ask pass program. The code
snippet is presented in Listing 2. The field is updated in
Line 8 and retrieved in Line 16. The retrieved value is used
as a parameter to the system call setuid, which decides the
privileges of the current process. The attacker may wish to
overwrite this value to zero, making the ask pass program
work under root user while the only authenticated user is
the unprivileged logged-in user.
struct user details {

uid_t uid;
} *user detail;

1
2

3

4

5 static char #x

6 get_user_ info (struct user_details ud) {
7 A

8 ud->uid = getuid() ;

9 dtrace store32(&ud->uid, ud->uid) ;

un o} o

13 static char =
14 sudo_askpass (const char +askpass,

15 const char sprompt) {

16 uid t uid = user detail->uid;

17 dtrace_load32 (&user detail->uid,
18 user detail->uid) ;

19 setuid (uid) ;

S
Listing 2 Defeating CVE-2012-0809 in sudo.

The field uid is a 32-bit unsigned integer. We locate the
place where it gets updated in Line 9. This is the only place
that uid can be updated legally. We invoke dtrace_store32
after the store operation, with the address of the field uid
in a struct user_details and the correct value of uid as
parameters. We make the program log the access event in
Line 17 with the value read from memory. The two events
will be recorded into traces and verified when the applica-
tion invokes setuid. If the sudo process loads a corrupted
value in Line 16, DTrace will detect such a mismatch from
the trace and abort the subsequent setuid system call. As
the result, the exploit of escalating the privilege through
setuid will fail.

wu-ftpd. The FTP server wu-ftpd is vulnerable to CVE-
2000-0573 (CVE 2000) which escalates the privilege of
a wu-ftpd server daemon running in non-root into root
user. The CVE introduces a format string error which
empowers a remote attacker to corrupt arbitrary mem-
ory data in the address space. As Listing 3 indicates, the
wu-ftpd process saves the current non-root user uid in a
record named pw— pw_uid. Then it acquires an escalated
privilege which is required by setsockopt. Normally, when
it completes the privileged operations, the process will
drop the privilege as indicated in Line 15, which restores
the uid saved in pw—pw_uid.

struct passwd {
uid t pw_uid;
} +pw;

aos W =

struct passwd xsgetpwnam(char sname) {
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6 pw->pw_uid = getuid();
7 dtrace_store32 (&pw->pw_uid,pw->pw_uid) ;

o)

11 FILE sgetdatasock(...){

12

13 seteuid(0) ;

14 setsockopt (...);

15 dtrace load32 (&pw->pw uid,pw->pw uid) ;
16 seteuid (pw->pw_uid) ;

18} o
Listing 3 Defeating CVE-2000-0573 in wu-ftpd.

However, with the help of CVE-2000-0573, it is highly
appealing that the attacker sets the value in pw—pw_uid
with zero, which indicates a root user and misleads the
process to keep the escalated privilege. The attacker may
further access security sensitive files through the root-
user FTP daemon, which would have been blocked by file
permission checking. For example, she may replace /etc/-
passwd to set up a user account which can be used for
remote login.

With the help of DTrace, we can enhance the secu-
rity property of wu-fipd by checking the data integrity of
pw—pw_uid. As Line 14 in Listing 3 indicates, we can
add a dtrace_load32 operation before loading the possi-
bly corrupted value of pw— pw_uid, which records the
actual loaded value into the hardware instruction trace.
If the attacker corrupts the uid into any value different
than pw—pw_uid should be, the Trace Analyzer would
discover such a mismatch and abort the system call of
seteuid. As a result, wu-ftpd daemon cannot be hijacked
into a root-user process that is controlled by the remote
attacker.

Nginx. The widely-deployed web server Nginx is
vulnerable to multiple memory error bugs like CVE-
2013-2028 (CVE 2013) and CVE-2014-0133 (CVE
2014), which leave various kinds of security-sensitive
data under the risk of being controlled by remote
attacker. Besides the decision-making data discussed in
“Motivating example” section, here we further try to
apply DTrace’s protection mechanism to all function
pointers, which will help to defeat control flow hijacking
attacks (Checkoway et al. 2010). We have developed some
LLVM passes to statically analyze and instrument Nginx
at the intermediate representation level.

We briefly describe our static analysis and instrumnen-
tation algorithm in Listing 4. The algorithm leverages
the type information in LLVM intermediate represen-
tations (IR). For example, in Line 9 and 15, it checks
whether the data type is a function-pointer type. LLVM-
IR has the notations that indicate pointers and the type of
data they point to. Though we compile Nginx using -O2
optimization level, we manage to reserve the type infor-
mation by applying such static analysis and instrumen-
tation before any optimization. We first compile Nginx



Wang et al. Cybersecurity (2019) 2:1

without any optimization, which leaves the type infor-
mation from source intact. Then we apply the static
analysis and instrumentation on the unoptimized IR.
Finally we continue to compile the files with -O2 level
optimizations.

def is_funcptr_ty(ty):
return is_pointer_ ty(ty) and is_function_ ty
(ty.get_pointer element ty())

# a module is an LLVM-IR file that corresponds to
# a compiled C source file
def analyze_and_instrument (module) :

N v R W N e

8 for i in module:
if is_load(i):
10 ty = i.get_loaded data type()
11 if is_funcptr ty(ty):
12 prmt = get primitive for size(ty)
13 calli = create_call (prmt,
14 i.get_loaded ptr(), i)
15 calli.insert_after (i)
16 elif is_store(i):
17 ty = i.get_stored data_type()
18 if is_funcptr ty(ty):
19 prmt = get_primitive for size(ty)
20 calli = create_call (prmt,
21 i.get_stored ptr(), i)
22 calli.insert_after (i)

Listing 4 The static analysis and instrumentation algorithm that
help to protect all function pointers in Nginx.

The instrumentation adds the primitives after each
identified access to function pointers. As the instru-
mented primitive after a store instruction records the
stored function pointer value, once it gets corrupted, the
primitive after the corresponding load instruction will
record the corrupted loaded value. Finally, when DTrace
performs the checks before a security-sensitive system
call, the corrupted loaded value will be identified.

Security analysis

We analyze the data integrity security property that
DTrace provides. DTrace’s goal is to reveal the data cor-
ruptions over the specified security-sensitive data. Under
the enhancement of DTrace, even though the attacker is
assumed to have arbitrary memory write capability, any
data corruption will be discovered and the related security
sensitive operation will be rejected.

We hereby show that the attacker cannot bypass the
data integrity checking that DTrace provides. First of
all, DTrace injects data access recording operations right
alongside each data access event by programmer annota-
tion or program analysis. DTrace will not miss any data
access operation as long as the recording coverage is
complete.

Second, DTrace’s data recording operation is embedded
in the program code which cannot be bypassed as long as
the instrumented instructions are executed. We assume
that control flow integrity techniques are deployed in
the application to provide the assurance that the attacker
cannot hijack the program execution. Furthermore, we
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assume that the system will properly handle page per-
mission settings that ensure instrumented instructions
cannot be modified by the attacker. As the result, the
embedded data tracing operations will loyally record
down all the data access events.

Third, the data access tracing is implemented by Intel
instruction tracing mechanism, which is controlled by
some model specific registers (MSRs) and can only be
manipulated in kernel mode. Even though the user-mode
application is controlled by the attacker, she is not able to
disable the Intel processor tracing mechanism by updating
the MSRs. We also assume that the Intel PT management
code is loaded and executed properly by the loading pro-
cess of kernel, which ensures that the hardware tracing
feature is enabled properly before the process execution.

We further show that the data integrity checking that
DTrace provides can prevent the attacker from making
security-sensitive operations. As we discussed earlier, any
data corruption attack on specified security sensitive data
can be revealed from the trace analysis. DTrace conducts
such analysis before security-sensitive system calls. As the
data corruption event can be discovered in the trace anal-
ysis, the process will fail in the trace analysis part and
cannot step into the system call handling. Even though the
trace analysis may happen long after the data corruption
event takes place, DTrace ensures the corruption can-
not be finally exploited and affect any security-sensitive
operations. For example, in the example of corrupting the
uid in the sudo case, even if the attacker is able to send
a crafted uid to trick the kernel, DTrace will abort any
security-sensitive system call as it discovers the corrup-
tion event from the trace.

Performance analysis

The Intel PT driver and Trace Analyzer are implemented
as a kernel module for Linux 4.9 without any kernel mod-
ification. The kernel module registers a non-maskable
interrupt handler to receive PMI when the Trace Buffer is
full. The prototype is evaluated on a machine with Intel
Core i7-7700 running at 3.6GHz and 16GB memory.

Microbenchmarks. We evaluate the primitives based
on emulated PTWRITE for loading and storing a
48-bit value with a busy loop running 200,000 times. The
two bars of load, rand and store, rand in Fig. 6 indicate
the number of CPU cycles required when the application
records a random 48-bit value in each iteration. The other
two bars labeled load, seq and store, seq indicate the num-
ber of cycles they take when the value to be recorded in
each iteration increases in a constant step.

The emulated primitives take fewer CPU cycles than
a getppid system call, which takes 630 cycles on Linux
4.16.10 where kernel page table isolation (KPTI) is turned
on by default. It proves that the emulated primitives would
be more efficient than system calls to pass word-sized data
to kernel.
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We further break down the overhead and report the
results in Fig. 6. We find that Intel PT packet decoding
time varies little among primitives and inputs. However,
with stable input patterns, the primitives take much fewer
cycles in indirect jumpings and value recording/checking
in kernel mode. A sequential access pattern helps the pro-
cessor predict indirect branch targets and reduces TLB
miss rate.

We measure how much performance benefit DTrace
can get from different optimizations that we use. We apply
different optimizations on the implementation of store,
rand operation, which shows the most significant latency
in Fig. 6. We display the evaluation results in Table 2. The
performance benefit from replacing indirect jmp instruc-
tions with rets can be shown by comparing the cycle
numbers between Row 2 and Row 3, which reduces about
70 cycles for each store, rand operation. The major perfor-
mance optimization is gained by parsing the packets with
multiple worker threads as shown by the cycle difference
between Row 3 and Row 4 in Table 2. We can see that the
number of cycles is further reduced with about 130 cycles.
Row 4 is the final design of DTrace.

Table 2 Rand-store operation’s latency changes in different

designs

Design Cycles
jmp Instr. + Single Thread 375
ret Instr. 4+ Single Thread 308
ret Instr. + Multiple Threads 178

PTWRITE latency model. We model the latency of
PRWRITE by evaluating a pair of callg and retq instruc-
tions as Intel PT will generate two packets in a total of 8
bytes for them, similar to the 9-byte packet for PTWRITE.
Though Intel expects the latency of a single PTWRITE to
be about one cycle (Strong et al. 2015), the total latency
will be a bit higher considering decoding and online
checking. We find that the latency of a pair of call/ret
is around 12 cycles when the instructions are traced and
packets are decoded. Thus we model the latency of two
PTWRITEs in the following Nginx evaluations to be as
good as 12 and as bad as 36 cycles, which is between the
latency of a single pair of callg/retq and double pairs.

Nginx. We apply the data integrity checking in two
different scenarios on Nginx 1.12.2 and evaluate Nginx’s
throughput. In each scenario, we evaluate both emu-
lated PTWRITE and multiple PTWRITE latency models.
The results are displayed in Fig. 7. The result for two
PTWRITEs modeled with X cycles is indicated by the bar
labeled with ptwrite-X. The baseline Nginx is compiled
without any modification. All of the optimization levels
are set to -0O2, which is the level used when compiling
Debian’s Nginx package. We use the ApacheBench bench-
marking tool in these evaluations. The tool sends 100000
requests to Nginx and fetches a 612-byte webpage.

In the first scenario, we protect Nginx to defeat the
threat discussed in “Motivating example” section. We
configure Nginx to deny all incoming requests. We man-
ually insert the primitives in the source file to ensure
the integrity of those variables as shown in Listing 1.
The throughputs for different PTWRITE latency models
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and emulated PTWRITE are displayed as the left-hand
side cluster in Fig. 7. As each of inserted primitive is
invoked once in responding to one HTTP request, both
implementations incur inapparent overhead.

In the second scenario, we write an LLVM pass to
automatically identify and instrument all function pointer
accesses in Nginx. On serving each HTTP request, Nginx
performs 104 function pointer read operations and 17
function pointer write operations on average. In the base-
line, serving each request takes 31 microseconds on aver-
age. The throughput drops 1.1 to 2.7% when a primitive’s
latency varies from 12 to 36 cycles, and 7.9% for emulated
PTWRITE.

Redis. We further apply the function pointer pro-
tection mechanism to Redis, the in-memory key-value
store. We use the static analysis algorithm described in
Listing 4 to identify and instrument all function pointer
access events in Redis. We measure the throughput of
Redis by sending INCR requests using the built-in bench-
mark of Redis. The evaluation results are displayed in the
right-most cluster of Fig. 7. The results show that the func-
tion pointer protection mechanism provided by DTrace
incurs moderate overhead on Redis and the overhead
varies as the latencies of PTWRITE differ. The overhead is
6.7% for emulated PTWRITE and is expected to be as low
as 3.9% if the latency of PTWRITE can be reduced to 12
cycles.

Discussion

Instrumenting the application with new indirect jump
operations does not increase the risk of being exploited by
control data attacks like Jump Orient Programming (JOP)
(Checkoway et al. 2010; Bletsch et al. 2011). On one hand,
Jump tables are mapped with non-mutable page permis-
sion to avoid corruption, which indicates the content of
jump table is stable after initialization. Attackers can nei-
ther alter the entries nor insert new entries into them. On
the other hand, the index into the jump table is masked

with the size of the jump table. For example, for an indi-
rect jump into a table with 2V entries, the index is masked
with 2V — 1 before use. As the result, no index beyond the
upper bound exists.

In DTrace prototype, disabling Intel PT is implemented
in statically linked destructors. The destructor is invoked
automatically after the program leaves main function.
However, the destructor still has a return operation
back to C runtime provided by libc. DTrace focuses
on data integrity enforcement. We assume a control
flow integrity (CFI) enforcement is deployed. Under CFI
assumption, the attacker cannot control the program exe-
cution directly into the trap operation in the destructor
into kernel to disable Intel PT, and jump back to continue
program execution without instruction tracing. Further-
more, DTrace works as an enhancement to CFI system
as non-control data attacks are a great threat to security-
critical applications.

DTrace’s data access trace generation interfaces require
the programmer to mark the store and load operations.
An alternative is to specify the security-critical data
itself. However, tracing still works on data access oper-
ations and marking the variables requires a fully auto-
matic alias analysis on the protected variables. DTrace
focuses on the data integrity enforcement rather than
security-critical identification. In fact, DTrace is orthog-
onal to static alias analysis techniques (Wang et al. 2017;
Kuznetsov et al. 2014; Mashtizadeh et al. 2015). The analy-
sis results specify a complete set of data access operations
where DTrace’s interfaces suit well. Nevertheless, we dis-
cuss the case of function pointer integrity enforcement in
“Evaluations” section which relies on an automatic analy-
sis to identify all function pointer access operations.

A complete data integrity enforcement should trace all
security-critical data access sites. If programmers spec-
ify the data access operations themselves with DTrace,
they should ensure that the marked store operation
set is complete and the load operation set is sound.
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Otherwise DTrace will complain about a mismatch
between recorded value and loaded value during trace
analysis, or fail to find the recorded value at all. Further-
more, the enforcement would be further strenthened if
the whole data flow of security critical data is marked,
including the in-memory pointers pointing to the security
sensitive data.

Related work

Data isolation. Researchers have proposed numerous
solutions to enforce the integrity of security-critical data.
Data flow integrity can be achieved by restricting all
memory write operations within their bounds so that
no memory error exploit can be launched (Akritidis
et al. 2008; Castro et al. 2006; Oleksenko et al. 2017;
Erlingsson et al. 2006; Koning et al. 2017). The high
overhead of instrumenting all memory writes regard-
less of the exploitability makes these solutions far from
practical.

There are also explorations for techniques to set up
secure memory regions for secure critical data. The secure
region is isolated with hardware supports such as virtual
memory page permission (Song et al. 2016; Wang and
Jiang 2010), Intel SGX (Hunt et al. 2016; Baumann et al.
2014; Kim et al. 2017), ARM memory domain (Chen
et al. 2016) and TrustZone (Azab et al. 2014; Rubinov
et al. 2016). There are two challenges to isolate mem-
ory region with hardware support. The first one is the
coarse-grained protection that hardware isolation mech-
anisms support. Most of the memory in the same page
will be wasted if the security-critical data only occupies
a few bytes, such as rule—deny in Listing 1. The second
challenge is that accessing the isolated memory region
requires time-consuming processor mode switching oper-
ations, such as changing page permissions or entering the
enclave. What is worse, when a whole data structure is
placed in the secure region, accessing the non-secure-
critical data in that data structure also requires a mode
switching.

Researchers have also explored data integrity enforce-
ment based on encryption. Tuck et al. proposed a
new hardware to encrypted control data (Tuck et al
2004). CCFI utilizes the AES-NI instructions on x86
processors to protect control data in C/C++ appli-
cations (Mashtizadeh et al. 2015). Encryption-based
techniques require private storage to hold the encryp-
tion keys. Additionally, the encrypt data in memory
suffers from replay attacks, where the attacker can
replace one piece of encrypt data with another piece
to change the decrypted value without knowing the
encryption keys.

In comparison, hardware traced data does not risk any
memory corruption or information leak in user mode.
It needs no switching between processor mode when
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it generates trace data. DTrace can also protect word-
size data even if security-sensitive data collocates with
non-sensitive data.

Hardware tracing. Flowguard (Liu et al. 2017), Grif-
fin 2017 and Pittypat (Ding et al. 2017) enforces control
flow integrity with Intel Processor Trace by recording
the analyzed application’s control flow and checking the
traces. Pittypat enforces a stricter policy than the other
two as it incorporates online point-to analysis. How-
ever, Pittypat cannot distinguish different array elements
if the path-sensitive analysis fails. DTrace reuses Intel
PT for data access event tracing. Furthermore, DTrace’s
design is compatible with these systems of CFI enforce-
ment and can be adopted to improve the preciseness
of these systems. For example, it can help Pittypat to
distinguish different array elements that the applica-
tion has accessed by recording an integer value of the
array index.

Paupore et al. (2015) proposes hardware assisted taint
tracking on mobile devices. One of the feasible tracing
hardware is Embedded Trace Macrocell (ETM) shipped
with recent ARM chips. DTrace is implemented on x86
architecture with Intel Processor Trace. DTrace tracks
only the security-critical data without the burden of a
full data flow tracing. ETM has a feature of data tracing
(ARM 2016) which records memory data access events in
packets. However, ETM can only be configured to watch
a range of memory rather than word-sized values scat-
tered in stack and heap, which would significantly include
redundant tracing results.

Snorlax (Kasikci et al. 2017) leverages Intel Processor
Trace to record multi-threaded application’s execution
and help diagnosing data race bugs. It relies on point-to
analysis to determine pointer variable values. We believe
diagnosing tools like Snorlax would benefit from DTrace
as the accurate pointer values can be recorded in Intel PT
traces without the dependence on static analysis.

Conclusion

We have explored a novel application of hardware instruc-
tion tracing to check data integrity. The prototype imple-
mentation, named DTrace, is based on Intel PT and
emulates PTWRITE instructions to make it ready to use.
It incorporates software instrumentation and hardware
tracing to enforce fine-grained data integrity without fre-
quently switching the processor mode. DTrace is easy to
be applied in applications and incurs moderate perfor-
mance overhead.
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