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Abstract

Background: Manual topping is a routine agronomic practice for balancing the vegetative and reproductive
growth of cotton (Gossypium hirsutum) in China, but its cost-effectiveness has decreased over time. Therefore, there
is an urgent need to replace manual topping with new approaches, such as biological topping. In this study, we
examined the function of GhREV transcription factors (a class Il homeodomain-leucine zipper family, HD-ZIP Ill) in
regulating the development of shoot apical meristem (SAM) in cotton with the purpose of providing candidate
genes for biological topping of cotton in the future.

Results: We cloned four orthologous genes of AtREV in cotton, namely GhREV1, GhREV2, GhREV3, and GhREVA4. All
the GhREVs expressed in roots, stem, leaves, and SAM. Compared with GhREVT and GhREV3, the expression level of
GhREV2 and GhREV4 was higher in the SAM. However, only GhREV2 had transcriptional activity. GhREV2 is localized
in the nucleus; and silencing it via virus-induced gene silencing (VIGS) produced an abnormal SAM. Two key genes,
GhWUSAT0 and GhSTM, which involved in regulating the development of plant SAM, showed about 50% reduction

in their transcripts in VIGS-GhREV2 plants.

GhSTM potentially.

Conclusion: GhREV2 positively regulates the development of cotton SAM by regulating GhWUSAT0 and
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Background

All aerial organs (leaves, stems, flowers, and germline) of
plants are derived from the shoot apical meristem
(SAM), which is the basis of aboveground biomass
sources for crops. The primordia of an organ arises from
the periphery of the SAM and develops into leaves at
the vegetative growth stage, or flowers at the reproduct-
ive growth stage (Pautler et al. 2013). In dicotyledonous
angiosperms, the SAM can be divided into three zones,
the central zone (CZ), the organizing center (OC) and
the peripheral zone (PZ). The central zone contains
three layers (L1-L3) of pluripotent stem cells. Directly
underneath the CZ lies the OC, which is a zonation with
signals regulating stem cell maintenance. The daughter
cells from the CZ are laterally displaced into the PZ,
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where they proliferate and ultimately differentiate during
organogenesis (Baurle and Laux 2003; Soyars et al
2016).

The class III homeodomain-leucine zipper (HD-ZIP
III) family of transcription factors (TFs) is unique to the
plant kingdom; it plays important roles in regulating em-
bryo patterning, meristem formation, organ polarity, vas-
cular development, and meristem function (Mcconnell
et al. 2001; Du and Wang 2015; Bustamante et al. 2016;
Shi et al. 2016). The HD-ZIP III family of Arabidopsis
consists of five members, including REVOLUTA (REV),
PHABULOSA (PHB), PHAVOLUTA (PHV), CORONA
(CNA) and ATHB8 (Baima et al. 1995; Green et al.
2005). All of these HD-ZIP III proteins possess the HD-
ZIP domain containing a homeodomain (a leucine zip-
per domain acting on DNA binding and protein
dimerization), a steroidogenic acute regulatory protein
lipid transfer domain (START), and a MEKHLA domain
(Ponting and Aravind 1999; Mukherjee and Biirglin
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2006). Studies with loss-of-function alleles of the HD-
ZIP III family members reveal that loss of REV gene can
lead to apparent defects in apical and axillary meristem
development, such as the lack of axillary meristematic
tissue, reduced branches, and underdeveloped or even
sterile flower structure (Talbert et al. 1995; Otsuga et al.
2001). The rev/phb/phv triple mutant shows enhanced
defective phenotype, indicating the functional redun-
dancy of REV, PHB and PHV in regulating SAM forma-
tion (Emery et al. 2003). ATHB8 and CAN antagonize
REV in certain tissues, but overlap with REV in other tis-
sues (Prigge et al. 2005).

Cotton (Gossypium hirsutum) is an important eco-
nomic crop with an indeterminate growth habit. In order
to help balance its vegetative and reproductive growth,
manual topping (removal of growth tips) of the main
stem is often performed during cotton production in
China. However, due to the decreasing labor force and
higher labor cost in recent decades, there is a pressing
need to develop more efficient techniques, such as bio-
logical topping, to replace manual topping. In this study,
we cloned and identified four homologs of AfREV genes
in cotton (GhREV1, GhREV2, GhREV3, and GhREV4),
and found that GEREV2 is a key regulator of the devel-
opment of SAM. The results shed light on developing
biological measures to control growth of the main stem
of cotton.

Materials and methods

Plant materials and growth conditions

Gossypium hirsutum cv CCRI 41 and Xinshi 17 were
used in this study to perform the Agrobacterium-medi-
ated virus-induced gene silencing (VIGS) and quantita-
tive real-time polymerase chain reaction (qQRT-PCR)
assays. Seeds were germinated in sand and transfered
into a pot with 5L Hoagland’s solution (12 seed-
lings per pot) after 4 days. The experiment was carried
out in a greenhouse at 24 +2°C (day)/20 + 2 °C (night),
60% relative humidity, and 400 pmol-m™ s~ light with a
14'h (light)/10h (dark) photoperiod. The nutrient solu-
tions were changed every 4 days. Arabidopsis seedlings
were grown in a chamber with 22 °C, 60% relative humid-
ity, and 80 pmol-cm™%s™* light with a 14h (light)/10h
(dark) photoperiod for protoplast transient assays.

Protein phylogenetic tree and sequence analysis

The Basic local alignment search tool (BLAST) in Cotton-
Gen (http://www.cottongen.org) was used to search the
HD-ZIP III homologs in cotton, the corresponding amino
acid sequence was downloaded. The phylogenetic tree of
HD-ZIP III homologs in cotton and Arabidopsis was built
using the neighbor-joining method in MEGAS. Sequence
comparative analysis was aligned using multiple sequence
alignment (http://multalin.toulouse.inra.fr/multalin/).
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Extraction of RNA and qRT-PCR

Cotton seedling samples were collected for tissue-
specific expression of GhREVs at the sixth leaf stage.
Shoot apex samples of VIGS-ed cotton were collected
after VIGS-GhCLAI plants showing complete bleaching
of the first and second true leaves. The samples were im-
mediately frozen in liquid nitrogen and stored at - 80 °C.
Total RNA was isolated from the samples using a Rapid
Extraction Kit for plant RNA (Aidlab NO9, Beijing,
China), then reversely transcribed into cDNA. The ex-
pression of GhREVs, GhWUS10A, and GhSTM in the
plants was detected by qRT-PCR. Primers used are listed
in Additional file 1: Table S1.

Transcriptional activity assay

The effector and reporter constructs were used to detect
transcriptional activity of GhREVs. The reporter includes
four copies of GAL4 upstream activation sequence
(UAS), a minimal 35S promoter (TATA box included),
and a luciferase reporter gene. The effectors contained
the GAL4 DNA-binding domain with A¢DB5 (negative
control), or with AtWRKY29 (positive control) or indi-
vidual GAREVs under the control of the 35S promoter.
GhREV1, GhREV2, GhREV3, and GhREV4 were cloned
into GAL4 vector via restriction enzyme cloning using
Ncol and Stul, respectively. UBQ10-GUS was added as
an internal control for transfection efficiency. The activ-
ity of luciferase reporter was detected by an enzyme
standard instrument (Power Wave XS2, BioTek, Amer-
ica) after 12 h incubation.

Subcellular localization

The subcellular localization of GZREV2 protein was per-
formed in Arabidopsis protoplasts. Full length cDNA of
GhREV2 was cloned via restriction enzymes using Smal
and Kpnl into the pSuper1300 vector to generate pSu-
per:GhREV2-GFP. The fused constructs were trans-
formed or co-transformed into protoplasts for 12 h. The
fluorescence was examined by a confocal microscopy
(ZEISS710, Carl Zeiss, Germany).

Agrobacterium-mediated VIGS

A 330bp cDNA fragment of GKREV2 was amplified and
cloned into pYL156 (pTRV:RNA2) vector. The primers are
listed in Additional file 1: Table S1. Plasmids of binary TRV
vectors pTRV:RNAI and pTRV:RNA2 (Ctrl, GhCLAI,
GhREV?2) were transformed into Agrobacterium tumefac-
tions strain GV3101 by electroporation. Agrobacterium
strains were cultured for VIGS assays as previously de-
scribed (Mu et al. 2019). The mixtures of Agrobacterium
strains were infiltrated into two fully expanded cotyledons
using a needle-less syringe (Li et al. 2015).
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Data analysis

Data was pooled across independent repeats. The statis-
tical analyses was performed using one-way analysis of
variance (ANOVA), and treatment means were compared
using Duncan’s multiple range test at P < 0.05.

Results

Phylogenetic analysis of HD-ZIP IlI family

The HD-ZIP III family in Arabidopsis has been well
characterized (Byrne 2006; Youn-Sung et al. 2008;
Turchi et al. 2015). The full amino acid sequence of
the HD-ZIP III family members in Arabidopsis was
used as the query for a BLAST analysis against the
G. hirsutum National Biological Information (NBI)
protein database (https://www.cottongen.org/blast/).
Phylogenetic analysis showed 18 putative HD-ZIP III
members in cotton (Fig. 1la), including eight AtREV
paralogs, four genes located in the D subgenome and
other four genes in the A subgenome. They were
named as GIREVIA and GhREVID (Gh_A05G0892
and Gh_DO05G0975), GhREV2A and GhREV2D (Gh_
A03G0276 and Gh_D03G1290), GhREV3A and
GhREV3D (Gh_A08G1765 and Gh_D08G2109), and
GhREV4A and GhREV4D (Gh_A13G2011 and Gh_
D13G2409) (Fig. 1b), respectively. These GhREVs
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share 95%-99% similarity in their amino acid se-
quence. In addition, each GhREV shares more than
82% amino acid identity and 90% cDNA sequence
similarity with Arabidopsis REV. Because of the high
similarity of A subgenome and D subgenome (Fig.
1b), GhREVsA and GhREVsD cannot be distinguished

by

RT-PCR. Thus, we named GHhREVsA/D as

GhREV1, GhREV2, GhREV3 and GhREV4, respect-
ively, in the following work.

Spatial and temporal expression pattern of GhREVs genes
The expression levels of genes tend to be correlated with
their biological functions. Total RNA of roots, stem, leaf,
and shoot apex were extracted from cotton seedlings at the
cotyledon stage and at the 2", 4™ 6™, and 8™ leaf stages.
Quantitative real-time PCR (qRT-PCR) was performed to
determine the temporal and spatial transcription expression
patterns of GIREVs. The results showed that GEREV genes
were expressed in all of the tested tissues, higher in the
stem and SAM (Fig. 2). GhREV2 and GhREV4 showed
higher expression levels than GAREVI and GhREV3 in
roots, leaves, and the SAM, while the stem possessed more
GHhREV3 transcript in addition to GEREV2 and GhREV4
(Fig. 2). Considering the temporal expressing pattern of
GhREVs in roots (Fig. 2a), leaves (Fig. 2c), and shoot apex
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Fig. 1 Sequence analysis of Gossypium hirsutum REVOLUTA (GhREV). (a) Phylogenetic tree of HD-ZIP Ill family in both cotton and Arabidopsis. The
tree was drawn to scale with branch lengths in the same unit. (b) The amino acid sequence alignment of REV in cotton and Arabidopsis
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Fig. 2 The expression levels of GhREVs family members in root (a), stem (b), the youngest expanded leaf (c) and shoot apex (d) at cotyledonary,
the 2", 4™ 6™ and 8" leaf stages. The expression of GhREVT in stem was regarded as ‘1". GhActin9 was used as the internal control. There were
no data of roots at the 8™ leaf stage due to the failure of RNA extraction

(Fig. 2d), there were no obvious and explicit differences
from the cotyledon stage to the 6™ or 8™ leaf stage.
For the stem, we observed that the expression level of
GhREV2 and GhREV4 peaked at the 4™ leaf stage,

GhREV2 and GhREV3 act as transcriptional activators

To determine whether GhREVs confer transcriptional
activity, we carried out an Arabidopsis protoplast-based
transactivation assay (Fig. 3a). Compared with the nega-

while GEREV3 peaked at the 8™ leaf stage (Fig. 2b). tive control, GhREV2 and GhREV3 significantly
a b Relative luciferase activity
Reporter
GAL4 UAS TATA 0.90 2.90 4.90 6.(?0 8.(?0 10.‘00
Luciferase AtDB5
Effectors AtWRKY29 a
GhREV1
AtDBS5:
GhREV2
AtWRKY29: GhREV3
GhREV4
GhREV
Fig. 3 Transcriptional activity of GhREVs. a Diagram of the reporter and effector constructs for the transactivation assay. The reporter includes four
copies of GAL4 upstream activation sequence (UAS), a minimal 35S promoter (TATA box included), and a luciferase reporter gene. The effectors
contain the GAL4 DNA-binding domain with AtDB5 (negative control) or with AtWRKY29 (positive control) or GhREVs under the control of the 355
promoter. b Relative luciferase activity of GhREVs in Arabidopsis protoplasts. Reporter and effector constructs were co-expressed in 10-day-old
Arabidopsis protoplasts; and luciferase activity was measured 12 h after transfection. The data are shown as mean + SD from three independent
repeats (n = 3). The above experiments were repeated three times with similar results
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protoplast. Protoplasts were isolated from leaves of 10-day-old Arabidopsis to express 35S5:GFP (top) or 355:GhREV2-GFP (bottom). The subcellular
localization were examined using a confocal microscope. Bright is bright field. Bright field and green fluorescence images were merged.
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activated the luciferase reporter. The activation activity
of GhREV2 was similar to that of AtWRKY29 (Asai
et al. 2002; Li et al. 2017) (Fig. 3b).

Subcellular localization of GhREV2

To determine the subcellular localization, GhREV2
was fused with the C-terminus of green fluorescent
protein (GFP) and transformed into Arabidopsis pro-
toplasts. The empty GFP construct was driven by the
cauliflower mosaic virus 35S promoter and expressed
in the cytoplasm, nucleus, and plasma membrane of
the protoplasts. The fluorescence signals derived from
the GHREV2-GFP construct were observed only in nu-
cleus (Fig. 4).

Silencing of GhREV2 causes developmental defect in
cotton SAM

To characterize the function of GAREV?2, we silenced
it in cotton seedlings via the Tobacco rattle virus
(TRV)-based VIGS system. After the VIGS-GLAI
plants showed albino phenotype, the relative expres-
sion levels were assessed using qRT-PCR. The data
showed that not only GEREV2 but also GhREVI,
GhREV3 and GhREV4 were silenced compared with
those in the control due to the high similarity of
GhREV genes. The silencing efficiency of GAREVs all
exceeded 55% (Fig. 5a).

After two months after the plants were treated with
the VIGS system, the VIGS-GhREV2 plants exhibited
an abnormal SAM, but not the VIGS-Ctrl plants (Fig.
5b). For the possible mechanism of this abnormality,
we determined the relative expression level of
WUSCHEL (GhWUSA10) and SHOOT MERISTEM-
LESS (GhSTM), two key genes involved in SAM devel-
opment, found that the transcripts of both
GhWUSA10 and GhSTM decreased by 50% in VIGS-
GhREV?2 plants (Fig. 5¢).

Discussion

Similar to AtREVs in Arabidopsis, GhREVs are
expressed in various tissues in cotton (Fig. 2). We
speculate that GAZREVs may also be involved in the
formation of vascular bundles (Ramachandran et al.
2016), in the establishment of leaf polarity (Kim et al.
2010; Xie et al. 2014), and in the differentiation of
the SAM (Lee and Clark 2015; Mandel et al. 2016).
The expression of GAREV2 and GhAREV4 in the SAM
was significantly higher than GAREVI and GhREV3
(Fig. 2), indicating that GAREV2 and GhREV4 may
act mainly in the development of the shoot apex.

In addition, double luciferase reporter assays showed
that only GhREV2 and GhREV3 possess transcriptional
activity (Fig. 3). Based on the spatio-temporal expression
patterns, GhREV3 may acts as a positive TF in the stem
to regulate the development of vascular tissues, while
GhREV2 may play a major role in regulating the SAM.
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Although GhREV4 showed higher expression levels than
GhREV1 and GhREV3 in all tested tissues, it does not
function as a transcriptional activator. Moreover,
GhREV2 was located in the nucleus (Fig. 4), as expected
with its TF function.

Owing to the high homology of GAREVs, the silen-
cing of GhREV2 also reduced the expression level of
other family members to a certain extent. However,
the transcriptional activity assay showed that only
GhREV2 and GhREV3 had transcriptional activity, and
the expression of GHREV3 was less in the SAM.
Therefore, we speculated that GhREV2 plays the
major function in controlling the development of the
SAM.

Extensive molecular genetic studies have identified key
regulators and networks that operate in the SAM pro-
cesses across species. It is known that the homeodomain
of WUSCHEL (WUS) TF is essential for the mainten-
ance of stem cells in plant SAM. WUS expresses in the
OC (Mayer et al. 1998), and then enters the CZ and acti-
vates the transcription of CLAVATA3 (CLV3) (Yadaw
et al. 2012; Daum et al. 2014). In turn, CLV3 can repress
WUS expression. These events form a negative feedback
loop that guarantees the dynamic size adjustment of the
stem cell niches in the SAM (Clark 1997; Schoof et al.
2000; Lenhard and Laux 2003; Gaillochet and Lohmann
2015). In addition, the SHOOTMERISTEMLESS (STM)

is a member of the KNOX family and it prevents stem
cell differentiation by inhibiting the expression of organ-
forming factors ASYMMETRIC LEAVESI (ASI) and AS2
in the CZ (Katayama et al. 2010). The mutation of STM
can lead to premature termination of the stem and meri-
stem. That is in parallel with WUS-CLV3 pathway
(Clark et al. 1996; Endrizzi et al. 2010). Importantly, it
has been reported that HD-ZIP III family, including
REV and PHB, can strongly interact with B-type ARABI-
DOPSIS RESPONSE REGULATORs (ARRs) to activate
WUS (Zhang et al. 2017). In this study, we found that
the expression of GhEWUSA10 and GhSTM is explicitly
suppressed in VIGS-GhREV2 plants, indicating that
GhREV2 may function together with GhWUSA10 and
GhSTM to regulate the development of cotton SAM.

Conclusion

The results in this study indicate that GhREV2, a nu-
clear localized transcriptional activator, positively affects
the development of cotton SAM, potentially by modulat-
ing the transcripts of GhWUSA10 and GhSTM.
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