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CASE REPORT

Neuroradiological findings in a young 
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Abstract 

Background: We present the clinical, MRI and CT findings in a case of a new mitochondrial genome mutation (tRNA 
arginine gene), characterized by brain calcifications which are indicative of Kearns–Sayre syndrome (KSS). Some radio-
logical features resembled those of Fahr’s disease (affecting the PDGFRB gene).

Case presentation: A 36-year-old male presented some typical clinical features of KSS, including onset before 
20 years of age, pigmentary retinopathy, progressive external ophthalmoplegia and ptosis. However, the hallmark 
radiological finding of diffuse calcifications in the nuclear ganglia resembles some cases related to the PDGRFB muta-
tion. Genetic investigation revealed a new mutation in the mitochondrial tRNA-arginine gene.

Conclusions: Brain calcifications are a common feature of mitochondrial diseases, but little is known about their 
pathophysiology. Here, we describe radiological similarities between a new mitochondrial DNA mutation and other 
genetic conditions, which are related to Fahr’s disease. These similarities could provide new insights into putative 
genotype–phenotype correlations.
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Background
Mitochondrial dysfunction is emerging as a com-
mon contributor to neurodegeneration and spongiotic 
brain diseases and presents with a wide range of signs 
and severity (Ignatenko et  al. 2020). The relationships 
between genotype and phenotype, as well as the excep-
tional variability of non-overlapping diseases, remain 
poorly understood (Chung et al. 2021).

Kearns–Sayre syndrome (KSS) is a rare, sporadic mito-
chondrial oculo-cranial-somatic neuromuscular disorder 
with an estimated prevalence of around 1/125,000 (Leal 
et al. 2016; Pasquini et al. 2020). KSS is usually associated 

with a single large-scale mitochondrial DNA (mtDNA) 
deletion, which can range from 1,000 to 10,000 base pairs 
in length (Khambatta et  al. 2014). Over 150 deletions 
have been identified, the most common being a dele-
tion of a 4.9 Kb fragment, which extends from base 8,469 
to 13,147 and causes ~ 20% of cases (Alemi et  al. 2007; 
Sequiera et  al. 2021). In rare cases, KSS has also been 
associated with point mutations, frequently involving 
mitochondrial transfer RNA (tRNA) (Seneca et al. 2001; 
Emmanuele et  al. 2011). These mutations are generally 
not inherited but instead arise spontaneously during 
early embryonic development (Ainslie et al. 2016). Nor-
mal mitochondrial function depends on the expression of 
the mitochondrial genome. Human mtDNA is a 16,569-
kb circular molecule which contains 13 genes for the 
mitochondrial respiratory chain complexes subunits and 
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24 genes for mitochondrial protein biosynthesis, includ-
ing 22 tRNA genes (Scaglia 2008).

KSS classically presents before 20  years of age with 
a clinical triad of pigmentary retinopathy, progres-
sive external ophthalmoplegia and cardiac conduction 
anomalies. Many additional manifestations have been 
described, including weakness, fatigue, elevated levels 
of lactate and pyruvate, mental retardation, short stat-
ure, ataxia, hearing loss, and certain endocrinopathies 
(e.g. diabetes, hypoparathyroidism, dysthyroidism and 
suprarenal alterations) (Khambatta et  al. 2014; Zavatta 
and Clarke 2021; Sharma et al. 2016). High protein levels 
have also been identified in the cerebrospinal fluid (CSF) 
(Khambatta et al. 2014).

KSS is usually confirmed by the presence of “ragged red 
fibres (RRF)” on muscle biopsy and cytochrome c oxi-
dase (COX) deficiency (Goldstein and Falk 2003; Challa 
et  al. 2004). Ragged red fibres correspond to clumps of 
altered mitochondria in the subsarcolemmal region of 
the muscle fibre and can usually be identified when mus-
cle is stained with Gömöri trichrome stain (Reichmann 
et al. 1996). Cytochrome c oxidase is an essential enzyme 
that is active in mitochondria and its deficiency can 
result from mutation in the mitochondrial genome since 
three of its 13 structural subunits are encoded by mtDNA 
(Shoubridge 2001). COX/succinate dehydrogenase is 
identified by double-labelling histochemistry staining 
(Ross 2011).

KSS-related neuroradiological findings are unspecific. 
Spongiosis, myelin loss and gliosis are the main patholog-
ical findings (Finsterer 2018; Alston et al. 2017), explained 
by increased T2-spin echo signal on MRI examination. 
In a recent study (Yu et al. 2016), MRI showed symmet-
ric high T2 signals in cerebral and cerebellar white mat-
ter, as well as in the brainstem. Although both grey and 
white matter can be affected, patients most often show 
symmetric high T2-weighted MRI signal in subcortical 
U-fibres and in the periventricular white matter. Subcor-
tical involvement is suggestive of KSS and is differenti-
ated from the prevalent deep white matter lesions seen 
in other mitochondrial disorders and leukodystrophies. 
The subcortical abnormalities can extend into the deep 
cerebral white matter (internal capsule, splenium, cer-
ebral and cerebellar peduncles), basal ganglia (46.7% of 
patients), thalamus (53.3%) and thalamocortical connec-
tions. The tegmentum of the brainstem, efferent cerebel-
lar fibres to the thalamus and the dentate nuclei are also 
frequently involved (Yu et al. 2016; Demange et al.1989; 
Chu et  al. 1999; Pasquini et  al. 2020). It is quite com-
mon to have restricted diffusion (evidenced by diffusion-
weighted imaging (DWI)) at the involved sites due to the 
status spongiosus of the tissue (Sacher et al. 2005). Occa-
sionally, T2 prolongation areas also show siderocalcific 

deposits, especially in basal ganglia and subcortical 
regions (Robertson et al. 1979). Finally, cerebral, cerebel-
lar and brainstem atrophy may be reported (Chu et  al. 
1999).

This report presents a case of KSS in a 36-year-old male 
with white matter abnormalities and diffuse calcifications 
in the nuclear ganglia. These were explained by a newly 
identified single mutation in the mitochondrial tRNA 
arginine gene. The radiological and clinical features may 
be explained by KSS, but some aspects resemble Fahr’s 
disease, a related genetic condition.

Case presentation
A 36-year-old male presented with some typical clinical 
findings of KSS, including onset before 20  years of age, 
pigmentary retinopathy, progressive external ophthal-
moplegia (CPEO) and ptosis. The patient had a history 
of complex childhood-onset neurological disease with 
fatigue, muscle weakness, hearing loss, cognitive impair-
ment, headaches, and ataxia. There was no evidence of 
alterations in cardiac conduction on electrocardiogram 
(ECG), as recently confirmed in our department. A 
muscle biopsy showed mitochondrial aggregates which 
altered the muscle fibre contour and created a “ragged” 
appearance (intracellular RRF; Gomori Trichrome stain-
ing; Vogel 2001). This was due to the accumulation of 
abnormal mitochondria underneath the plasma mem-
brane. 35–40% of fibres were also COX-deficient using 
combined COX/SDH staining (Ross 2011), which con-
firmed mitochondrial disease.

Genetic investigation did not highlight any chro-
mosomal alterations (karyotyping, chromosome 
microarray analysis) or mutations using whole exome 
sequencing (Ambry Genetics; Ploski 2016). MtDNA 
analysis (sequencing of mtDNA using Illumina MiSeq; 
McElhoe et al. 2014) did not find any known pathogenic 
point mutations associated with mitochondrial disease, 
but a new mutation (mtDNA; heteroplasmic variant, 
m10466C > T) was detected, which corresponded to the 
mitochondrial tRNA-arginine gene.

MRI and CT investigations showed mild involvement 
of the periventricular white matter (high T2 signal), with-
out clear effects on subcortical tissue (Fig.  1). No local 
calcifications were evident at these sites. Ventricles and 
sulci were within normal size limits.

At the level of the basal ganglia, we found symmetric 
T1-shortening involving the head and body of the cau-
date nuclei, pallidus, putamen, and posterior-medial 
thalami (Fig.  2). The T2*GE sequence and a CT scan 
confirmed the presence of diffuse calcifications, particu-
larly in the bilateral globus pallidus (Figs.  3, 4), where 
the T1-SE and T2-SE signal was hypointense. Some thin 
linear calcifications extended from the caudate into the 
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semioval centre and towards the cortex, following vessels 
and cortical projections. The brainstem and the cerebel-
lar white matter were not affected.

This case of genetic mitochondriopathy is character-
ized by symmetric basal ganglia calcifications (BGCs) 
and T2 hyperintensities in the white matter. Mitochon-
drial disorders (MDs) primarily affect muscles and the 

brain, where focal lesions, such as white and grey matter 
stroke-like lesions, atrophy, BGCs and subcortical calcifi-
cations, can be found (Finsterer and Kopsa 2005; Carafoli 
2010; Finsterer and Torres de Carvalho 2017).

Basal ganglia calcifications. BGCs are not an unu-
sual finding on CT scans (3–6 per 1,000) (Brannan 
et al. 1980) or on autopsy and are generally unrelated to 

Fig. 1 Magnetic resonance axial sections T2 spin-echo sequence showing hyperintensities in the white matter

Fig. 2 a Magnetic resonance axial sections T1 spin-echo sequence showing areas of hyperintense signal in thalami and hypointense signal in pars 
medialis of the globus pallidus, b axial T2 spin echo hyposignal in pars medialis of the globus pallidus
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calcium abnormalities or neurological disease (Johnson 
et  al. 2013; Verulashvili et  al. 2006). CT and MRI scans 
are important for identifying calcification patterns and to 
establish possible differential diagnoses. The most appro-
priate tool is CT, since MRIs can underestimate calcium 
load (calcium deposits reduce the T1 relaxation time, on 

T2-images the lesions appear hypointense and on T2* 
gradient recalled echo (GRE), the signal is very low). 
BGCs, which consist of hydroxyapatite, zinc, iron and 
magnesium in a protein rich stroma, most commonly 
involve the globus pallidus, caudate and dentate nucleus. 
Other common intracranial calcifications include the 

Fig. 3 T2* gradient recalled echo (GRE) sequence MRI axial sections showing extensive brain calcification

Fig. 4 Non-enhanced axial CT sections demonstrating bilateral, nearly symmetric calcifications in the basal ganglia and posterior thalamus. Less 
intense and punctuated calcifications present in the caudate nuclei
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pineal gland, falx, arachnoid granulations, and choroid 
plexus. The specific pathogenesis of BGCs is unknown, 
but alterations in alkaline phosphatase activity, calcium 
metabolism and vascular supply have been proposed as 
possible mechanisms. Neuronal cell loss and gliosis are 
usually absent at the site of basal ganglia calcification, but 
when present, may determine neurological dysfunction. 
Patients with bilateral BGCs most commonly experience 
movement abnormalities, cognitive impairment and psy-
chiatric symptoms. These symptoms may be due to neu-
ronal degeneration and mineralization, affecting mainly 
dopaminergic transmission in the basal ganglia, which 
leads to fronto-subcortical loop dysfunction (including 
the motor, oculomotor, prefrontal, and anterior cingu-
late circuits). Congruently, PET and SPECT studies dem-
onstrate decreased metabolism in the basal ganglia and 
frontal lobe of patients with BGCs (Oliveira and Oliveira 
2013).

Symmetric BGCs can be idiopathic (Fahr’s disease) 
(Tai and Batla 2015; Nicolas et al. 2013) or secondary to 
a long list of causes (Table 1). Fahr’s disease is a genetic 
condition which can affect the SLC20A2, PDGFB, PDG-
FRB genes, where secondary (non-genetic) causes are not 
recognizable. Non-idiopathic Fahr’s disease is commonly 
associated with parathyroid gland diseases.

In Fahr’s disease, there is commonly a pattern of sym-
metric calcifications in the pallidus, thalamus and den-
tate nucleus. Other areas of calcification include the 
brainstem, cerebellum and cortical/subcortical white 
matter, but these are less consistently reported. Hypopar-
athyroidism is often associated with tissue calcification 
in the basal ganglia as consequence of altered calcium/
phosphate homeostasis. The pattern of intracranial calci-
fication in some PDGFRB patients (Nicolas et  al. 2013), 
which primary involves the caudate nuclei, thalami and 
lenticular nuclei, is quite similar to that found in our 
patient.

BGCs have also been described in mitochondrial dis-
eases, such as mitochondrial encephalomyopathy, lactic 
acidosis, and stroke-like episodes (MELAS), Leigh syn-
drome and KSS. However, these are uncommon (Fin-
sterer and Kopsa 2005; Valanne et al. 1998) and calcium/

phosphate metabolism is usually normal. Progressive 
and symmetric calcifications in the globus pallidus, puta-
men, caudate, thalamus and corona radiata are the most 
common radiological findings in MELAS, together with 
parietal stroke-like lesions and severe cortical atrophy 
(Valanne et  al. 1998; Sue et  al. 1998; Harrington et  al. 
1981).

Bilateral BGCs have been described in some cases of 
Leigh syndrome, mainly involving the putamen. The syn-
drome is characterized by symmetrical T2 hyperintensi-
ties in periventricular white matter, which is suggestive 
of hypomyelination (Valanne et  al. 1998; Angural et  al. 
2018).

In some patients, KSS has been associated with cer-
ebellar and brainstem atrophy, as well as calcification in 
the basal ganglia (Chu et  al. 1999; Valanne et  al. 1998). 
In particular, some patients show punctate symmetric 
T2-hyperintensities in the globus pallidi or in the medial 
thalamic nuclei and tegmentum of the brainstem. In cer-
tain cases, CT scans show diffuse calcifications in the 
globus pallidi and caudate nuclei (Robertson et al. 1979; 
Valanne et al. 1998).

T2-hyperintensities in the white matter. Mitochon-
drial encephalopathies are associated with structur-
ally and/or functionally abnormal mitochondria, which 
affects the brain because of its high dependence on oxi-
dative metabolism. Cerebral and cerebellar white matter 
involvement is increasingly being recognized as a feature 
of mitochondrial disorders, consisting mainly of cyst-like 
lesions, neuroinflammation and demyelinating condi-
tions. Clinically, patients with leukoencephalopathy most 
often present with recurrent episodes of neurological 
regression. Onset is often in infancy and progresses with 
a neurodegenerative course. In KSS, status spongiosus 
of white and grey matter is the most typical lesion and 
involves the cerebrum, cerebellum (white matter) and 
brainstem (grey matter). The disorder is also character-
ized by neuronal degeneration, astrocytosis and demyeli-
nation. In particular, the distinguishing feature of KSS is 
the involvement of subcortical white matter (areas of T2 
prolongation, sometimes with subcortical calcifications), 
as opposed to the deep white matter pathology seen 

Table 1 Secondary basal ganglia calcifications. Adapted from Tai and Batla (2015)

Endocrinopathies Hypoparathyroidism, hyperparathyroidism

Inherited Mitochondrial diseases, Cockayne syndrome, Pantothenate 
kinase-associated neurodegeneration (PKAN)

Birth hypoxia

Infections TORCH, tuberculosis, AIDS, toxoplasmosis

Toxic Carbon monoxide or lead poisoning, radiotherapy, chemotherapy

Age-related
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in other mitochondrial disorders. KSS-related lesions 
involve the frontal and temporal regions (subcortical U 
fibres), as well as the periventricular and deep white mat-
ter but spare the immediate periventricular layer. Leigh’s 
syndrome is characterized by the presence of microcystic 
cavitation following necrosis of the temporal and fron-
tal white matter. Transient infarct-like lesions are the 
hallmark of MELAS and mainly involve the temporo-
parieto-occipital white and grey matter, with slight mass 
effect (Valanne et  al. 1998; Sue et  al. 1998; Bindu et  al. 
2018).

Conclusions
This case of a 36-year-old male presents a complex clini-
cal and radiological condition with features resembling 
both KSS and Fahr’s disease. A new mutation in the mito-
chondrial tRNA-arginine gene was identified. The cor-
relation between tRNA mitochondrial genes and brain 
calcification has not been clarified and warrants further 
study. Studying this putative relationship could provide 
new insight into the pathophysiological pathways which 
lead to similar phenotypes and related genetic condi-
tions. The interactions between mtDNA mutations and 
energy homeostasis could create new avenues for thera-
peutic intervention.
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