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Abstract

Background: Somatic embryogenesis is one of the most popular in vitro regeneration methods for mass
micropropagation. In the present study, somatic embryogenesis via zygotic embryos was studied in Asparagus
racemosus Willd. Since the callus quality plays an important role in plantlet development, therefore, compact
embryogenic callus was selected for further embryogenesis.

Results: Somatic embryos were induced by zygotic embryos germinating on callus induction medium (MS media
with 1.54 mg L−1 2,4-D and 0.43 mg L−1 kinetin) in dark. Thereafter, the compact embryogenic callus differentiated
up on MS media with 0.1 mg L−1 NAA and 0.5 mg L−1 kinetin supplemented with various concentrations of
ancymidol. An addition of 0.75 mg L−1 ancymidol resulted in significant enhancement of somatic embryo formation
and no malformed embryos were observed. Scanning electron micrographs and thin sections confirmed the
structures as somatic embryos. Furthermore, these embryos were transferred to the same medium supplemented
with glutamine, casein hydrolysate, and 3% sucrose for conversion into green shoots. These shoots could be
multiplied in vitro using BAP-supplemented medium.

Conclusions: An effective method for conservation of an overexploited threatened medicinally important species
Asparagus racemosus has been developed. This is the first report of the formation of somatic embryos from zygotic
embryos in A. racemosus. Ancymidol in combination with kinetin and NAA was found to be most efficient for
somatic embryo maturation and germination. The established protocol would certainly advance the efficient
somatic embryo induction, maturation, and germination which could be utilized for large-scale propagation of
Asparagus species.
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Introduction
Asparagus racemosus Willd. (common name Shatavar;
Asparagaceae) is an important medicinal plant native to
the Indian subcontinent. The tuberous roots of A. race-
mosus are rich in the saponins, Shatavarin I to IV having
rejuvenating and phytoestrogenic properties. These
saponins are now extensively used in hormone replace-
ment therapy instead of synthetic estrogens that are
neither safe nor effective (Barrett-Connor, 1998). Roots
of A. racemosus are also reported to have antioxidant,

anti-ADH (Wiboonpun et al. 2004), and anti-amnesic
activity (Ojha et al. 2010).
In view of the increasing world population to cross

nine billion by 2050, indicating that the crop supplies
must be doubled to meet the requirement in changing
climatic conditions (Chaudhary et al. 2015; Chaudhary
et al. 2018). A. racemosus roots are extensively collected
from the wild causing mass destruction of the germ-
plasm. This overexploitation has put considerable
survival pressure on this plant making it endangered in
the region of its natural existence (Kala et al. 2006;
Chaudhary and Dantu, 2011). The plant is normally
propagated through seeds and by splitting the cluster of
roots. However, due to poor seed set and germination
and low availability of crown roots, propagation of elite
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lines is too slow. For these reasons, commercial produc-
tion of this crop has remained consistently low and not
able to fulfill the high market demands. This problem
could be offset by the rapid multiplication of A. racemo-
sus through tissue culture. Adventitious regeneration
from callus (Kar and Sen, 1985) and clonal propagation
through axillary branching (Bopana and Saxena, 2008)
have been reported earlier in A. racemosus. In vitro pro-
liferation in this genus through somatic embryos has
been reported for Asparagus species such as A. officinalis
(Kohmura et al. 1994; Li and Wolyn, 1995) A. breslerianus
(Mousavizadeh et al. 2017) through this process has been
reported for a large number of other species such as
Carica papaya L. (Anandan et al. 2012), Musa (Ma et al.
2012; Divakaran and Nair, 2011), and Cymbidium bicolor
Lindl. (Mahendran and Bai, 2012). Somatic embryogenesis
is the preferred method for mass proliferation because of
the possibility of rapid scale-up through a bioreactor for
direct plantation as in coffee (Ducos et al. 2010) or encap-
sulation and use as artificial seeds (Utomo et al. 2008). We
have been working on developing appropriate propagation
methods and agronomic practices for this plant (Chaudh-
ary and Dantu, 2011). In this paper, we report a method
for induction of embryogenic callus and differentiation of
somatic embryos from zygotic embryos. These somatic
embryos could be germinated to form shoots on a modi-
fied medium, which could then be multiplied through
shoot proliferation for increasing their numbers. This is
the first report for production of the somatic embryo
using zygotic embryos for this plant and conservation of
this species could be a noteworthy genetic resource for
future asparagus breeding programs.

Materials and methods
Plant material and medium
Asparagus racemosus accession no. IC471921 was ob-
tained from National Bureau of Plant Genetic Resources,
New Delhi, and established in the Botanical Garden of
the Institute. Embryos were dissected under aseptic con-
ditions from berries sterilized in 70% ethanol followed
by direct flaming.
MS (Murashige and Skoog, 1962) basal medium sup-

plemented with 3% (w/v) sucrose and 0.8% (w/v) agar
was used for all experiments unless otherwise stated.
Medium taken in suitable culture vials was sterilized at
121 °C and 15 Psi for 15 min. For callus induction, young
embryos were cultured on MS medium supplemented
with various concentrations of either 2,4-D (0, 1.1, 1.54, or
2.2 mg L−1) alone or in combination with 0.43 mg L−1

kinetin. The callus from callus induction medium (CIM)
was transferred to somatic embryo induction (SEI)
medium. SEI medium was first standardized for the
growth regulators NAA (0.05, 0.1 mg L−1) and kinetin
(0.5, 1.0 mg L−1) and then for ancymadol (0.5, 0.75, or 1.0

mg L−1). Developed somatic embryos from the SEI
medium were transferred for germination (somatic
embryo germination, SEG medium) to MS with 0.1 mg
L−1 NAA, 0.5 mg L−1 kinetin, and 0.75 mg L−1 ancymidol
supplemented with either (i) 600 mg L−1 glutamine and
400 mg L−1 casein hydrolysate, or (ii) 800 mg L−1 glutam-
ine and 500 mg L−1 casein hydrolysate. These media con-
tained either 3 or 5% sucrose. For shoot multiplication
and elongation, germinating shoots were transferred to
MS supplemented with BAP (0, 0.002, 0.01, 0.02, 0.04,
0.06, 0.08, and 0.1 mg L−1). To achieve shoot proliferation
and cluster multiplication, healthy cultures were further
subcultured to three concentrations of BAP (0.04, 0.06,
0.08 mg L−1).
Cultures of zygotic embryos for callus induction were

incubated either in dark or under 16 h photoperiod for
the initial 4 weeks after which all cultures were
maintained under 16 h photoperiod and 30 μE m−2 s−1

irradiance provided by cool white fluorescent tubes.

Histology and SEM
The elongated bipolar embryo-like structures were fixed
in formalin:acetic acid:70% ethanol (1:1:18) and
dehydrated through a xylene-tertiary butyl alcohol series
before gradual infiltration with xylene-paraffin wax and
embedding in molten paraffin wax. The specimens were
sectioned at 8 μm (MICROM HM 340E microtome,
Germany), stained with 1% hematoxylin and erythrosine
and observed in a Nikon optical microscope E200
(Nikon, Japan), and photographed using Nikon Digital
Sight.
For scanning electron microscopy (SEM), calli-bearing

somatic embryos were fixed in 2.5% glutaraldehyde in
0.1 M phosphate buffer, pH 7.4 for 24 h at 4 °C (De
Mason et al. 1989). After washing in the same buffer,
the material was dehydrated in a graded ethanol
series, critical point dried, and coated with a thin
layer of gold. The processed material was scanned
and photographed in a Leo 435 VP Scanning Electron
Microscope at an acceleration voltage of 15–30 kV at
All India Institute of Medical Sciences, New Delhi.

Statistical analysis
Data for each experiment was recorded by counting the
number of somatic embryos per culture and presented
as mean ± standard error (SE). Quantitative data were
analyzed using one-way analysis of variance (ANOVA)
and comparisons between the mean values of treatment
were made by Duncan’s multiple range test (DMRT) at
0.05 level of probability using SPSS 18.0.

Results
The simple sterilization procedure resulted in recovering
100% sterile cultures. Zygotic embryos cultured on 2,4-
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D alone did form callus but the presence of kinetin was
absolutely necessary for the development of embryo-
genic callus (Table 1). MS culture media containing 0.43
mg L−1 kinetin and 1.54 mg L−1 2,4-D resulted in 74%
cultures that formed creamish, hard, nodular, compact
callus (compact embryogenic callus (CEC)), and also
showed some globular (Fig. 1a) and bipolar embryos.
The callus was regularly maintained on this medium for
the continuous formation of somatic embryos.
Somatic embryo induction could be achieved on chan-

ging the auxin from 2,4-D to NAA, increasing kinetin
concentration and addition of the growth retardant
ancymidol to the CIM. An optimum concentration of
NAA (0.1 mg L−1) and kinetin (0.5 mg L−1) resulted in
4.83 embryos per culture (Table 2). An addition of 0.75
mg L−1 ancymidol to this medium increased the number
of globular (14 per culture; Fig. 1b) embryos with 77%
maturing into bipolar embryos (11 per culture; Fig. 1c)
at the end of 6 weeks. The globular embryos had a shin-
ing smooth surface while the bipolar embryos appeared
as elongated structures (Fig. 1b, c).
The SEI medium supplemented with glutamine (600

and 800 mg L−1), casein hydrolysate (400 and 500 mg
L−1), and sucrose (3 or 5%) promoted germination of
somatic embryos (Fig. 1d). Glutamine at 600 mg L−1 and
casein hydrolysate at 400 mg L−1 in the presence of 3%
sucrose supported germination in almost 65% of cultures
within 2 weeks of transfer.
Furthermore, histological and SEM studies confirmed

the structure of somatic embryos in the present work. A
longitudinal section of the bipolar embryo showed a
broad dome-like coleoptile enclosing the scutellum with
a distinct narrow radicular end (Fig. 2a). SEM revealed
that the globular embryos that were spherical and
smooth surfaced (Fig. 2b) while the elongated bipolar
embryos had an outer mesh-like epidermis (Fig. 2c)
Shoot multiplication was carried out on MS media

supplemented with BAP. At higher BAP concentration,
there was a steady increase in the multiple shoot buds

but shoots were shorter. Three concentrations of BAP
(0.04, 0.06, and 0.08 mg L−1) demonstrated high shoot
numbers with no stunted shoots. Maximum number of
shoots (15.87) per cluster was obtained on MS supple-
mented with 0.08 mg L−1 BAP with an average length of
2.93 cm (Table 3). Moreover, the shoots were observed
thick and healthy in this medium.

Discussion
In vitro somatic embryogenesis is one of the most useful
biotechnological tools used in plant breeding, propaga-
tion, and conservation approaches. There are severalTable 1 Effect of 2,4-D and kinetin concentrations on callus

induction on zygotic embryo cultures.

S. no. Growth regulators (mg L−1) % of explants*
producing CEC2,4-D Kn

1. 0 0 4

2. 1.1 0 15

3. 1.5 0 45.2

4. 2.2 0 33.9

5. 1.1 0.43 54.4

6. 1.5 0.43 73.5

7. 2.2 0.43 61.7
*Twenty-four replicates per treatment, repeated thrice
Only cultures incubated in dark produced compact embryogenic callus (CEC)

Fig. 1 Induction of somatic embryogenesis in Asparagus racemosus
from zygotic embryos. a Initiation of globular embryos (arrow
marked) from embryogenic callus on CIM (bar 0.09 mm). b Globular
embryo differentiation after 30 days of transfer to SEI medium. Note
the smooth shining surface of the globular embryos (bar 0.05 mm).
c Bipolar embryo structures developing from globular embryos
30 days after subculture to fresh SEI medium (bar 0.15 mm).
d Germinating multiple somatic embryos (arrow marked) 14 days
after transfer to SEG medium (bar 0.135 mm)

Table 2 Effect of NAA and kinetin concentration on somatic
embryo induction from zygotic embryos

S. no. Growth regulators
(mg L−1)

No. of somatic embryos
per culture*

1. 0.05 NAA + 0.5 KN 2.94 ± 0.76a

2. 0.05 NAA + 1.0 KN 3.88 ± 0.64a

3. 0.10 NAA + 0.5 KN 4.83 ± 0.39b

4. 0.10 NAA + 1.0 KN 2.71 ± 0.78a

Values represent mean ± SE
*Fifteen replicates per treatment, repeated thrice
One-way ANOVA with Duncan’s multiple range test was applied
Data in columns followed by different letter (superscript) significantly different
at 0.05 % level

Chaudhary and Dantu Bulletin of the National Research Centre          (2019) 43:113 Page 3 of 5



factors which affect somatic embryogenesis and regener-
ation, for example, explant type and culture media. Som-
atic embryo formation has been extensively studied in A.
officinalis using various explants (Li and Wolyn, 1995;
Levi and Sink, 1992; Dupire et al. 1999). Zygotic em-
bryos have been utilized in several plant species such as
Quercus suber (Testillano et al. 2018) and peach palm
(Steinmacher et al. 2016). The responsiveness of zygotic
embryos to somatic embryo formation is being reported
here for the first time for any species of Asparagus.
The growth hormone plays a critical role in embryo in-

duction, maturation, and germination. NAA is considered
to be a milder auxin and has often proved to be better
than 2,4-D in maturing of somatic embryos as in Centella
(Martin, 2004). Therefore, 2,4-D was used in the CEI
medium while NAA was studied in SEI medium. Further-
more, inclusion of ancymidol in SEI medium inhibited
callus proliferation and promoted globular and bipolar
embryo differentiation only in the compact and nodular
callus. Ancymidol is a known inhibitor of gibberellic acid
biosynthesis and by promoting the accumulation of
storage protein that improves somatic embryo maturation
(Li and Wolyn, 1995). During the progress of globular
embryos into bipolar structures, the outer epidermal cells
elongate giving a mesh-like appearance. Similar changes
in epidermal cells were observed in the SEM of somatic

embryos of Musa species (Pan et al. 2011). Inclusion of
glutamine and casein hydrolysate in SEG medium im-
proved both maturation and germination of the somatic
embryos in the present study as have been shown in
earlier studies in A. officinalis (Li and Wolyn, 1995) and
chickpea (Patil et al. 2009). Varying sucrose concentra-
tions affected somatic embryo formation, their matur-
ation, and germination in A. officinalis (Levi and Sink,
1992). In A. racemosus, ancymidol was noticed to enhance
somatic embryogenesis only in combination with a certain
level of a carbon source and/or osmoticum in the
medium.
In the present study, the growth hormone BAP was

tested for the germination of the somatic embryo. The
medium supplemented with 0.08 mg L−1 BAP was
observed to be best for producing about 16 shoots per
cluster. Kar and Sen (1985) has demonstrated the
multiplication of shoots in A. racemosus derived from
callus cultures on a medium containing BAP (1 mg L−1)
and IAA (0.1 mg L−1).

Conclusion
This is the first report describing in vitro somatic em-
bryo formation in A. racemosus. Ancymidol was found
to be the key plant growth regulator for multiplication
and maturation during somatic embryogenesis since
along with NAA and kinetin. It also reduced the forma-
tion of malformed somatic embryos and facilitated fur-
ther embryo maturation and germination. The
established protocol in this study will be valuable for
somatic embryogenesis induction and maintenance
which could be applied for mass propagation and germ-
plasm conservation of this species.

Abbreviations
Ancymidol: α-cyclopropyl-α (4-methoxyphenyl)-5-pyrimidine methanol;
CIM: Callus induction medium; MS: Murashige and Skoog; NAA: α-
naphthaleneacetic acid; SEI: Somatic embryo induction; SEG: Somatic embryo
germination; SEM: Scanning electron microscopy; 2,4-D: 2,4-
dichlorophenoxyacetic acid

Fig. 2 Histology and SEM of somatic embryos. a L.S. of somatic embryo revealing a primary somatic embryo (pe) with shoot pole (sp) and root
pole (rp). A secondary embryo (se) is arising from the body of the primary embryo. Note the coleoptile (cp) and scutellum (sc). (bar 0.42 mm).
b, c SEM of somatic embryos. b globular embryos; note the distinct dome-like structures with smooth epidermal surface (c) bipolar embryo. Note
the characteristic mesh-like epidermal surface (bar 30 μm, 200 μm, respectively)

Table 3 Effect of BAP on in vitro shoot cluster multiplication in
Asparagus racemosus

S. no. BAP concentration
(mg L−1)

Mean no. of shoots* Mean length of
shoots (cm)*

1. 0.04 11.36 ± 0.51a 4.48 ± 0.28a

2. 0.06 12.27 ± 0.65ab 3.88 ± 0.29a

3. 0.08 15.87 ± 0.56b 2.93 ± 0.24b

Values represent mean ± SE
*Twenty replicates per treatment, repeated thrice. One-way ANOVA with
Duncan’s multiple range test was applied
Data in columns followed by different letter (superscript) significantly different
at 0.05 % level
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