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Abstract 

Chest radiographs (CXRs) are the most widely available radiographic imaging modality used to detect respiratory dis-
eases that result in lung opacities. CXR reports often use non-standardized language that result in subjective, qualita-
tive, and non-reproducible opacity estimates. Our goal was to develop a robust deep transfer learning framework and 
adapt it to estimate the degree of lung opacity from CXRs. Following CXR data selection based on exclusion criteria, 
segmentation schemes were used for ROI (Region Of Interest) extraction, and all combinations of segmentation, data 
balancing, and classification methods were tested to pick the top performing models. Multifold cross validation was 
used to determine the best model from the initial selected top models, based on appropriate performance metrics, as 
well as a novel Macro-Averaged Heatmap Concordance Score (MA HCS). Performance of the best model is compared 
against that of expert physician annotators, and heatmaps were produced. Finally, model performance sensitivity 
analysis across patient populations of interest was performed. The proposed framework was adapted to the specific 
use case of estimation of degree of CXR lung opacity using ordinal multiclass classification. Acquired between March 
24, 2020, and May 22, 2020, 38,365 prospectively annotated CXRs from 17,418 patients were used. We tested three 
neural network architectures (ResNet-50, VGG-16, and ChexNet), three segmentation schemes (no segmentation, lung 
segmentation, and lateral segmentation based on spine detection), and three data balancing strategies (undersam-
pling, double-stage sampling, and synthetic minority oversampling) using 38,079 CXR images for training, and valida-
tion with 286 images as the out-of-the-box dataset that underwent expert radiologist adjudication. Based on the 
results of these experiments, the ResNet-50 model with undersampling and no ROI segmentation is recommended 
for lung opacity classification, based on optimal values for the MAE metric and HCS (Heatmap Concordance Score). 
The degree of agreement between the opacity scores predicted by this model with respect to the two sets of radiolo-
gist scores (OR or Original Reader and OOBTR or Out Of Box Reader) in terms of performance metrics is superior to the 
inter-radiologist opacity score agreement.

Keywords:  Chest X-ray (CXR), Deep transfer learning, Heatmap concordance, Lung opacity, Ordinal classification, 
Pretrained model

Introduction
Numerous disease processes affecting the lungs can result 
in lung opacities that are visualized on various imag-
ing modalities. Chest radiographs (CXRs) are the most 
ubiquitous imaging tests for diagnosing respiratory dis-
eases worldwide (Mettler Jr. et al., 2009; United Nations 
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Scientific Committee on the Effects of Atomic Radiation, 
2008). Importantly, the degree of lung opacities on CXRs 
have been shown to predict patient outcomes (Au-Yong 
et  al., 2022; Balbi et  al., 2021; Voigt et  al., 2022). Clini-
cally, CXR reports are typically not standardized, and 
the language used to convey certainty of a diagnosis is 
highly variable (Makhnevich et  al., 2019; Makhnevich 
et  al., 2022). Further, degree of lung opacity is typically 
estimated visually and oftentimes reported using vague, 
nonstandard language (i.e., mild, hazy, severe, extensive, 
patchy) (Little, 2022). Quantitative or semi-quantitative 
scores have been developed to determine degree of lung 
opacity, but because they vary in reproducibility and are 
time consuming to quantify, they are rarely used in clini-
cal practice (Au-Yong et  al., 2022; Monaco et  al., 2020; 
Reeves et al., 2021).

The established infrastructure for CXR availability, 
worldwide, represents a unique opportunity to leverage 
current machine learning (ML) models to improve the 
diagnostic and prognostic capabilities of a relatively inex-
pensive diagnostic test. The benefit of using ML models 
in medical image processing is evident by improvements 
in the diagnostic speed, accuracy, and reproducibility for 
detecting and quantifying numerous pathologic find-
ings as compared to radiologists (Erickson et  al., 2017; 
Rajpurkar et  al., 2017; Seah et  al., 2021; Wang et  al., 
2021). For interpretation of CXRs specifically, application 
of deep learning could help overcome human error due 
to fatigue and other interruptions (Brady, 2017). In addi-
tion, deep learning systems trained on sufficiently large 
datasets can assist and augment radiologists given the 
often-small number of experienced radiologists tasked 
with reading large volumes of CXRs taken every day (Wu 
et al., 2020). For instance, in a large-scale, retrospective, 
multireader, multicase study, in 80% of the study CXRs, 
the accuracy of radiologists assisted by a deep learning 
model was superior to that of unassisted radiologists 
and non-inferior for 95% of findings (Seah et  al., 2021). 
Recently, the unpredictability of patient outcomes dur-
ing the coronavirus disease 2019 (COVID-19) pandemic 
required many clinicians to use CXRs - not only as a 
diagnostic but also a prognostic tool. By applying com-
puter vision and deep learning on CXRs, multiple diag-
nostic and prognostic tools were proposed, including 
models predicting the length of hospital stays, mortality 
and ventilation, ICU admission, and likelihood of conver-
sion to severe infection (Au-Yong et al., 2022; Khan et al., 
2020; Mushtaq et al., 2021; Roberts et al., 2021).

Despite the advancement in CXR image processing 
via deep learning based on Convolutional Neural Net-
works (CNNs), the diagnostic and prognostic capabili-
ties of CXRs in the field of pneumonia research are still 

limited by many factors. Many ML models have prob-
lems with robustness, accuracy, and reliability due to 
low number of images used, imbalanced and biased 
datasets, black-box approaches failing to ensure that 
models do not overfit or use non-clinical features, and 
incomplete comparisons due to code availability, differ-
ences in processing pipelines, data balancing schemes, 
and validation procedures (Roberts et  al., 2021). In a 
review study of image-based COVID-19 diagnostic 
models, only 7 out of 32 papers used a dataset of over 
2000 images. Studies using a limited number of images 
to train such models can lead to low classification accu-
racy, high bias, and limited generalization of the devel-
oped models (Oh et  al., 2020). Moreover, (Alghamdi 
et  al., 2021; Roberts et  al., 2021), and the few models 
that identify the degree of opacity employ an often low 
number of data points (< 300) and lack testing of mul-
tiple architectures and preprocessing schemes (Cohen 
et al., 2020; Li et al., 2020). Finally, when heatmaps are 
employed to provide insights into how the model gen-
erates predictions, one observes a lack of a unifying 
metric that quantifies the clinical relevance of image 
regions that the model considers salient, making com-
parisons to other models based on the heatmap qualita-
tive (Samek et al., 2016).

The purpose of this study is to develop a robust medi-
cal imaging deep learning framework and adapt it to 
estimate CXR lung opacity. To this end, we utilized pro-
spectively quantified lung disease burden by radiolo-
gists at the time of dictation on 38,365 CXRs. We used 
this large dataset to test a set of models trained using all 
combinations of three different data balancing schemes, 
three different ROI (Region of Interest) segmentation 
strategies, and three different pre-trained CNN archi-
tectures to perform ordinal classification. Further, a 
transfer learning strategy that employed fine-tuning 
on a number of CNN layers (in addition to the com-
monly implemented fine-tuning on the fully connected 
network) was used. The output of these models was a 
lung-specific (i.e., left or right lung) opacity score, and 
a robust multi-level approach was used to determine 
the best model. We evaluated the models via testing on 
cross-validated data folds and out-of-the-box datasets, 
using ordinal specific performance metrics such as the 
macro-averaged mean absolute error (macro-averaged 
MAE), and proposed a novel metric of network heat-
map concordance to evaluate the clinical relevance of 
model-generated salient features. We identified the best 
performing models, performed robustness analysis, 
evaluated performance metrics across multiple demo-
graphic groups, produced visualizations using heat-
maps, and showcased the benefits of this approach.
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Methods
A multi-level pipeline is proposed for image classification 
based on the core principle of transfer learning with fine 
tuning. After the initial stage of data preparation, where 
images are converted, included, or excluded in the study 
based on specific criteria and preprocessed accordingly, 
images are analyzed using a combinatorial approach of 
different ROI extraction/segmentation approaches, dif-
ferent sampling/data balancing methods, and different 
neural network architectures. Once all combinations 
of these three modeling components are trained and 
tested, a list of the top performing models based on the 
metric of choice is constructed and these models then 
undergo subsequent robustness analysis where they are 
tested across multiple data folds using K-fold cross vali-
dation. Their heatmaps are also assessed for concordance 
with clinical relevance using a quantitative ROI overlap 
score. Using these metrics, the best model is chosen and 
is finally compared to expert radiologist annotations in 
an out-of-the-box dataset. Performance analysis is also 
performed on the chosen model across multiple popu-
lation groups based on race, sex, and COVID-19 status, 
and subgroup performance is reported. The framework is 
designed to optimize model selection while also combin-
ing computational efficacy and robustness.

As a use case of this pipeline, we analyzed 38,365 CXRs 
to estimate lung disease burden. In the first level, every 
combination of the following were implemented, result-
ing in a total of 27 models (each for left and right lung 
opacity detection – 54 models in total): (a) three image 
segmentation schemes for ROI generation (i.e., lung seg-
mentation, spine segmentation and no segmentation), (b) 
three data-balancing schemes for creation of balanced 
training data for transfer learning (i.e., random under-
sampling, oversampling and double-stage sampling), and 
(c) three network architectures (i.e., VGG-16, ResNet-50 
and CheXNet-121. Performance is reported on all above 
models that were created, based on multiple metrics).

Study design, setting, and population
This retrospective cohort study included consecutive 
adult patients, aged 18 and older, while hospitalized in 
1 of 12 acute care hospitals across a multihospital inte-
grated healthcare network in the New York metropolitan 
region between March 24, 2020, and May 22, 2020. Dur-
ing the time of the study at our institution, all emergency 
department (ED) patients and inpatients (IP) with single-
view CXR had their CXRs prospectively quantified at the 
time of dictation by board certified radiologists of var-
ied experience, referred to as the OR (Original Reader) 
in subsequent sections. The study was performed with 
institutional review board (IRB # 19–0596 and 20–0781) 
approval and waiver of informed consent. All study data 

was obtained from the Radiology Information System 
(RIS) and the enterprise inpatient Electronic Health 
Record (EHR; Sunrise Clinical Manager, Allscripts, Chi-
cago, IL).

CXR imaging quantification by radiologist
Lung disease burden was prospectively quantified by 
radiologists at the time of dictation with each lung anno-
tated by the degree of lung opacity as clear (0%), mild 
(1–33%), moderate (34–66%), or severe (67–100%). This 
was performed using discrete fields in the radiology 
reporting software (Nuance Powerscribe) using a pop-up 
upon a radiologist finalizing a CXR report with results 
stored in a secure radiology database. If the radiologist 
reported lung opacity in the report using the report-
ing system template, the data was stored in the radiol-
ogy database without the use of a pop-up. This score is 
referred to as the OR or Original Reader score in later 
sections of the paper.

Patient variables
Age was obtained as a continuous variable and sex as a 
binomial variable. Patient status was noted at the time of 
imaging as inpatient (IP), outpatient (OP), or Emergency 
Department (ED). Race was categorized as White, Black, 
Asian, other, or unknown. Diagnosis of COVID-19 for 
each CXR was confirmed by a positive result on at least 
one Polymerase Chain Reaction (PCR) test, either before 
the date that the CXR was taken or within 7 days after the 
CXR was taken. A patient was categorized as COVID-19 
positive if they had at least a single positive PCR test dur-
ing hospitalization.

Classification, balancing, evaluation
Multiple models with all possible combinations of net-
work architectures, data balancing, and image segmen-
tation schemes were tested (Fig.  1), and the best model 
was determined using a series of steps detailed in Sec-
tion 2.4.5. The opacity predicted by the best model was 
evaluated using an Out Of Box test set (OOB test set) 
and performance was compared with scores given by 
expert radiologists.

Step A: DICOM to PNG conversion and application 
of exclusion criteria
The initial set of 83,197 DICOM images (20,180 patients) 
were processed using the following steps. When multiple 
scans were obtained for the same patient with the same 
accession number, only the first image was retained, and 
the others (often post-processed versions of the original 
X-ray via filtering) were discarded (38,575 images and no 
patients were discarded). In addition, the following types 
of images were also discarded: document-type images 
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Fig. 1  Schematic of the proposed pipeline. The different steps of the pipeline are denoted with letter from A–I. Overall pipeline of CXR framework 
for scoring opacity using deep learning. Steps include (A) Data Preparation: DICOM to PNG conversion and application of exclusion criteria; (B) 
image preprocessing and ROI extraction; (C) train/test data split and data balancing; (D) transfer learning setup for testing models generated using 
multiple combinations of X-ray segmentation schemes, sampling schemes to overcome dataset bias, and CNN architectures; (E) level 1 – single-fold 
analysis to determine top ‘N’ models; (F) level 2 – K-fold cross validation to determine best model; (G) comparison of best model with reader scores; 
(H) heatmap for visualization; and (I) model performance analysis across different patient populations, grouped by sex, race, and COVID-19 status
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(< 1% of total) that were mistakenly included as X-rays 
(112 images, 87 patients), and images with read errors/
acquisition issues (1580 patients, 4318 images). Images 
with read errors/acquisition issues that were discarded 
were identified based on the following criteria – images 
with a single accession number but multiple acquisition 
times, X-rays with missing content time, and images that 
could not be read or saved for various reasons.

Following the preparation of data, additional cri-
teria were applied to obtain the final set of images to 
pass through the deep learning framework (Fig.  2). The 
images remaining from the initial DICOM image post-
processing as previously described were then passed 
through rejection criteria. Of these, the following images 
were discarded: (a) images belonging to pediatric sub-
jects under 18 years of age (436 patients, 477 images), 
(b) images that were not the original X-ray but post-pro-
cessed images using a filter (651 patients, 1095 images) 

(these were detected using a customized pre-trained 
ResNet-50 model based on transfer learning). Images that 
were CXR negatives were also detected using a second 
customized pre-trained ResNet-50 model (51 patients, 
52 images), and the pixel intensities of these images were 
transformed to make them match the regular X-ray. Fur-
ther, in the image segmentation pipeline described in 
the next section, 255 CXRs belonging to 8 patients were 
discarded due to errors in lung ROI segmentation. Fol-
lowing these data exclusion steps, the remaining images 
(38,365 CXRs) were further processed in the next steps of 
the pipeline.

Step B: Image preprocessing and segmentation for ROI 
extraction
Prior to using deep learning–based solutions to classify 
extent of opacity, preprocessing lung CXR images via 
masking of non-clinical area can minimize the presence 

Fig. 2  Schematic of exclusion criteria and transfer learning framework. (A) Data exclusion criteria: multiple stages of image acquisition, DICOM to 
PNG conversion, and application of other exclusion criteria during the data pre-processing stage prior to final data creation; and (B) transfer learning 
framework used to leverage weights from pre-trained models along with our dataset of CXRs with scored opacities. The two different schemes and 
stages explored using this framework are portrayed
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of irrelevant features (Rajaraman et  al., 2020). Further, 
since the goal of the algorithm presented here is to clas-
sify left lung and right lung opacities separately, inde-
pendent left and right lung specific algorithms were 
developed for predicting each of these opacities. Said 
lung algorithms could potentially benefit from input 
images that are specific to the lung side under study. 
Toward this goal of independent left/right algorithm 
development, we tested multiple image preprocessing 
schemes prior to passing the images through the deep 
learning framework: (a) no segmentation scheme (using 
the complete CXR image with no removal of regions), 
(b) lung segmentation scheme (extracting only the spe-
cific lung ROI [left lung or right lung] using U-Net based 
semantic segmentation), and (c) spine segmentation 
scheme (division of the CXR image into left lung and 
right lung ROIs based on U-Net segmentation of the 
spine) (Ronneberger et al., 2015).

For both lung and spine-based ROI extraction, a stand-
ard U-Net semantic segmentation was used. The Japa-
nese Society of Radiological Technology (JSRT) dataset 
was used to obtain 247 training CXR images with pixel 
resolution 256 × 256 (Shiraishi et al., 2000). For lung seg-
mentation, the existing lung masks for said JSRT images 
were used (van Ginneken et  al., 2006). For spine seg-
mentation, masks on the JSRT dataset were manually 
annotated on the same 247 images as for the previous 
lung segmentation, and these masks were used to train 
a U-Net model to segment the spine and use the seg-
mented spine boundary to divide the image into left and 
right regions. In addition to ROI segmentation and image 
intensity scaling, normalization was performed to bring 
all intensities to the same range and enable faster training 
of the CNN.

Step C: Train/test split and data balancing methods
Given a dataset of images, every model generated a 
prediction output for each image and lung side, which 
denoted its probability of being classified into one of four 
classes defined based on degree of lung opacity. The exact 
quantitative definition of each class is as follows, with 
percentage values indicating the extent of opacity in the 
lung: 0 (clear), 1 (1–33%), 2 (34–66%), and 3 (67–100%), 
examples of which can be seen in Fig. 1.

Initially, an Out Of the Box (OOB) test set of 286 
images was created for the purpose of annotation from 
an additional experienced radiologist and validation of 
the final model. This OOB test set was not used during 
the main pipeline for model creation. The remaining 
patient data was further split into train/test/validation 
using the ratio of 80, 10, and 10% of patients within the 
respective splits. Further, to eliminate risk of data leakage 
between the different splits, we ensured that images from 

each patient were contained in only one of the above 
splits. These splits were repeated to create five train/test/
validation folds to enable five-fold cross-validation for 
evaluation, as described in later sections.

The fact that data is not evenly distributed across the 
four opacity classes within each fold must be addressed, 
particularly for the training datasets prior to model train-
ing. To overcome this issue, three different sampling 
strategies were explored: (a) random under-sampling 
(in this strategy, the larger classes were randomly under 
sampled to reach comparable sample sizes with respect 
to the smaller classes), (b) double-stage sampling (in 
this scheme, a two-stage method was developed – with 
the balanced, randomly undersampled data used for the 
first stage of fine-tuning of the fully connected network 
weights and with the entire unbalanced dataset used for 
the second stage of fine tuning in which the weights of 
some CNN layers were also changed), and (c) random 
over-sampling (additional samples of the smaller and 
larger classes are generated via data augmentation [rota-
tion, scaling, translation] and these samples are resam-
pled randomly across classes such that the final dataset 
used for training is balanced).

Step D: Transfer learning using a multi‑level approach
Transfer learning is the concept of transferring knowl-
edge across different but related sources domains, such 
that knowledge built in one domain is generalizable to a 
second domain (Zhuang et al., 2019). In our pipeline, we 
performed transfer learning with fine-tuning of the con-
volutional layers of the network, along with fine-tuning of 
the fully connected layers. Performing fine-tuning of the 
convolutional layers of the network was possible since a 
large training dataset was available, even after class-bal-
ancing methods were applied.

To create a stable initialization for the fine-tuning 
of the convolutional layers, we adopted a multi-level 
method (Fig. 2B): (a) first, fine-tune the fully connected 
layers alone, and (b) second, unfreeze ‘N’ previous 
convolutional layers and fine-tune them as well. The 
hyperparameter ‘N’, denoting the number of previous 
convolutional layers that were fine-tuned, was set to T-5, 
where T = total number of convolutional layers in the 
CNN. We performed this multi-level approach using an 
initial phase of pre-training for a maximum of 20 epochs, 
followed by fine-tuning for a maximum of 20 epochs 
(Fig. 2B). Automated learning rate reduction was imple-
mented with patience values of seven epochs, imply-
ing that if the validation loss does not decrease for these 
number of epochs, the learning rate will be reduced. 
Similarly, an early stopping scheme was also used with 
a patience value of 10 epochs, such that the model with 
the lowest validation loss will be selected and saved. 
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The batch size was set to 32, and an ADAM optimizer 
was used. Since we used a two-stage process for transfer 
learning (pre-training plus fine-tuning), a learning rate 
of 0.001 was used for the first stage of the process and 
0.0001 for the second stage. Images were down sampled 
to 224 × 224 prior to going through the network, and all 
images were scaled between 0 and 1.

Step E: Model combinations evaluation
In the first stage of model analysis, combinations of the 
three image segmentation schemes, three data balancing 
schemes, and three network architectures were gener-
ated (as previously outlined). These combinations resulted 
in 27 models per lung side and a total of 54 models. 
Each model was trained, validated, and tested using the 
first fold of the five folds of data generated above. Each 
model generated was further evaluated based on preci-
sion, recall, F1-score, and macro-averaged mean absolute 
error (MAE), with all metrics averaged over left and right 
lungs. The application of macro-averaged MAE to evalu-
ate problems concerning ordinal classification in machine 
learning in general and medical imaging in particular have 
been documented widely in literature (Dembczyński et al., 
2008; Durán-Rosal et  al., 2021). The MAE computes the 
mean deviation of the predicted class from the true class, 
thereby penalizing classification errors based on the ordi-
nal scale. In our case, we apply the macro-averaged MAE 
to also account for class imbalance while penalizing for 
error. The top five model schemes based on MAE score 
were retained for further processing in the next stage. In 
addition to MAE, other metrics such as precision, recall, 
and F1-score were computed, all of which are defined 
below for each of the 4 classes.

Consider an example with ‘K’ classes, and the number 
of samples per class denoted by nc.

The MAE score for a class with the actual opacity score 
‘c’ is calculated over all samples nc belonging to class ‘c’ 
as:

MAEc = 
∑nc

i=1
yi−yi

nc
 , where yi is the predicted opacity 

score, and yi is the actual opacity score.
Further, the overall macro-averaged MAE = 

K
c=1

MAEc
Total#of classes K .

The precision, recall, and F1-score are all computed as 
weighted averages of the per-class metrics.

The precision for class ‘c’ is defined as: Precision = 
Pc =

True positive
True positive+False positive

;
From this, overall precision is computed as: 

Poverall =
Pc×nc
∑K

c=1
nc

.

The recall for class ‘c’ is defined as: Rc = 
True positive

True positive+False negative;

Based on this, the overall recall across all classes is 
computed as: Roverall = Rc×nc

∑K
c=1

nc
.

From the above computations of precision and recall, 
the F1-score per class is calculated as:

F1c = 2×Pc×Rc
Pc+Rc

 , where Pc and Rc refer to the precision 
and recall for class ‘c’.

Finally, the overall F1-score is computed as: F1overall = 
F1c×nc
∑K

c=1
nc.

Step F: 5‑fold cross validation of top five models
In the second stage of model analysis, the top five models 
from the first stage are further retrained and evaluated 
across all the five folds of data generated. All metrics ana-
lyzed previously, along with a new metric based on heat-
map concordance, were computed across all five folds. 
The addition of the heatmap concordance score (HCS) 
ensured that interpretability and clinical relevance of 
chosen features were quantified and played a key role in 
choice of best model.

Step G: Stage 3 – final model training and testing
In the final stage of model analysis, the best model from 
Stage 2 is trained on an entirely new train-test split of the 
data. In this stage, the resulting model predictions are 
also evaluated against newly annotated scores assigned 
by an expert radiologist, referred to as the OOBTR or 
Out Of Box Test Reader throughout the manuscript. The 
role of the OOBTR is to provide a second reader score 
at the final analysis stage, to enable inter-reader compari-
son of annotated scores. Using both reader scores as ref-
erence, model-reader agreement can be compared with 
agreement between readers. Both heatmap scores and 
MAE are evaluated for model prediction versus annota-
tions by the Original Reader at time of X-ray acquisition 
(OR), Out Of Box Test Reader (OOBTR) during the time 
of testing, and the heatmaps are visualized for different 
scenarios in a matrix form.

Step H: Heatmap generation
Saliency maps describing the importance of image 
regions in the decision-making process of the classifier 
were generated for each class. These maps were gener-
ated for each output class using the gradient-weighted 
class activation mapping (Grad-CAM) visualization 
method by global pooling of gradients that are flowing 
backward from the last convolutional layer of the CNN 
(Rajaraman et al., 2020; Selvaraju et al., 2020).

Following the generation of per-class saliency maps, 
heatmaps describing network ‘attention’ were gener-
ated by weighted averaging of the saliency maps of all 
classes with weights determined by the network’s out-
put probabilities for each class. The resulting heatmaps 
indicate salient regions that the network is ‘looking at’ 
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during its classification process (Fig.  3). Finally, heat-
maps for the left-lung and right-lung specific classifiers 
were averaged to obtain an averaged heatmap for the 
whole lung.

Heatmap score  To compute the novel HCS, we com-
pute the ratio of all non-zero heatmap pixels within the 
lung boundary region to all non-zero heatmap pixels in 
the total image. The computation of the lung boundary 
region is done via the U-Net segmentation algorithm 
described in the earlier section. The averaged heatmap 
score from left and right lungs was multiplied with the 
mask to generate a measure of overlap between heatmap 
salience and the lung boundary.

The final methodology used to assess model performance 
is a combination of the macro-averaged MAE score and 
the macro-averaged heatmap score, with both assessed 
jointly in a balanced manner.

Lung Mask ×
(

heatmapleft + heatmapright
)

/2
(

heatmapleft + heatmapright
)

/2

Step I: Performance analysis across distinct patient 
populations
To observe and compare model accuracy and perfor-
mance across distinct patient populations, the model that 
was trained on the master dataset was tested on patient 
subgroups and performance metrics were noted. The dis-
tinct patient subgroups were generated based on demo-
graphic data, and the following categories of patients 
were evaluated: (a) COVID-19 status (i.e., COVID-19 
positive, COVID-19 negative), (b) race (i.e., Asian, Black, 
White, Other, Unknown), and (c) sex (i.e., male, female).

Results
Patient population
The initial set of 83,197 DICOM images (20,180 patients) 
were processed. After application of exclusion criteria 
(Fig.  2) 38,365 images, obtained from 17,418 patients, 
remained in total. Summary statistics of patient demo-
graphics and image statistics for the overall dataset 
and the train/test/validation and OOB test groups are 
included in Tables 1 and 2. Patient-wise statistics, shown 
in Table  1, include sex (male/female), patient status 

Fig. 3  Examples of generated heatmaps and classifications from the model, the OR, and the OOBTR. The value within the parantheses in the figure 
refers to the predicted (in case of model) or annotated (in case of reader) opacity scores for the left and right lungs respectively. For example, OR 
(2,3) indicates an Original Reader (OR) CXR opacity score of 2 for the left lung, and 3 for the right lung
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(inpatient, outpatient, and ED), COVID-19 status (posi-
tive/negative), and race. Image-wise statistics, shown in 
Table 2, include X-ray view (anterior-posterior/posterior-
anterior) and CXR opacities. Both patient and image sta-
tistics maintain similar distributions/values across the 
different data splits.

Model training and testing
After training all 27 models using 30,586 images with test 
and validation sets of 3660 and 3833 images, we meas-
ured their performance using the precision, recall, F1, 
and macro-averaged MAE metrics (Table  3). All mod-
els were ranked according to MAE score and the top 

Table 1  Demographics distributions for the corpus under study in terms of patients

Patient-wise demographics for age, sex, patient status, COVID-19 status, and race.

Patients All Data Train Test Validation OOB Test

Patient Count N (%) 17,418 (100) 13,808 (79.27) 1726 (9.99) 1725 (9.90) 159 (0.91)

Image Count N (%) 38,365 (100) 30,586 (79.72) 3660 (9.53) 3833 (9.99) 286 (0.74)

Age Mean (stdev) 60.88 (16.98) 60.89 (16.98) 60.81 (17.30) 60.78 (16.70) 62.44 (15.77)

Sex
  Male (%) 8983 (51.57) 7123 (51.58) 903 (52.31) 873 (50.60) 84 (52.83)

  Female (%) 8435 (48.42) 6685 (48.41) 823 (47.68) 852 (49.39) 75 (47.16)

Patient Status
  IP (%) 10,246 (58.82) 8096 (58.63) 1003 (58.11) 1043 (60.46) 104 (65.4)

  OP (%) 197 (1.13) 158 (1.14) 18 (1.04) 17 (0.98) 4 (2.51)

  ED (%) 6975 (40.04) 5554 (40.22) 705 (40.84) 665 (38.55) 51 (32.07)

COVID-19 Status
  Positive (%) 6692 (38.42) 5259 (38.08) 672 (38.93) 698 (40.46) 63 (39.62)

  Negative (%) 10,725 (61.57) 8548 (61.90) 1054 (61.06) 1027 (59.53) 96 (60.37)

  Unknown (%) 1 (0.005) 1 (0.007) 0 (0.00) 0 (0.00) 0 (0.00)

Race
  Black (%) 3153 (18.10) 2476 (17.93) 322 (18.65) 329 (19.07) 26 (16.35)

  White (%) 7942 (45.59) 6264 (45.36) 802 (46.46) 801 (46.43) 75 (47.16)

  Asian (%) 1349 (7.74) 1074 (7.77) 129 (7.47) 136 (7.88) 10 (6.28)

  Other (%) 4120 (23.65) 3304 (23.92) 391 (22.65) 380 (22.02) 45 (28.30)

  Unknown (%) 854 (4.90) 690 (4.99) 82 (4.75) 79 (4.57) 3 (1.88)

Table 2  Demographics distributions for the corpus under study in terms of images

Image-wise demographics for CXR view and opacity degree.

Images AllData Train Test Validation OOB Test

Image Count N (%) 38,365 (100) 30,586 (79.72) 3660 (9.53) 3832 (9.99) 286 (0.74)

Xray view
  PA (%) 456 (1.18) 374 (1.22) 39 (1.06) 40 (1.04) 3 (1.04)

  AP (%) 36,596 (95.38) 29,165 (95.35) 3491 (95.38) 3665 (95.61) 275 (96.15)

  Unknown (%) 1313 (3.42) 1047 (3.42) 130 (3.55) 128 (3.33) 8 (2.79)

CXR opacity - left
  None 12,488 (32.55) 9983 (32.63) 1234 (33.71) 1174 (30.62) 97 (33.91)

  Mild 12,381 (32.27) 9798 (32.03) 1189 (32.48) 1300 (33.91) 94 (32.86)

  moderate 8310 (21.66) 6625 (21.66) 760 (20.76) 862 (22.48) 63 (22.02)

  severe 5185 (13.51) 4180 (13.66) 477 (13.03) 496 (12.94) 32 (11.18)

CXR opacity - right
  None 12,938 (33.72) 10,237 (33.46) 1297 (35.43) 1311 (34.21) 93 (32.51)

  mild 11,382 (29.66) 9080 (29.68) 1051 (28.71) 1171 (30.55) 80 (27.97)

  moderate 8459 (22.04) 6771 (22.13) 792 (21.63) 821 (21.42) 75 (26.22)

  severe 5585 (14.55) 4498 (14.70) 520 (14.20) 529 (13.80) 38 (13.28)
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five models were chosen to be further evaluated using a 
five-fold cross-validation technique. One may observe 
that models with CheXNet-121, ResNet-50, and VGG-
16 architectures along with the data preprocessing of 
no-ROI segmentation, or spine-based ROI segmenta-
tion, and sampling strategies of double-stage or under-
sampling were among the top-performing models. These 
models, which were in the final top five retained for fur-
ther processing, had an MAE score of 0.40–0.41 and F1 
score ranging from 62 to 64%. The entire dataset of mod-
els had F1 scores ranging from 38 to 64%, indicating the 
wide variability based on model parameters. Models with 
data balancing strategies involving over-sampling and 
data preprocessing comprised of lung-based ROI seg-
mentation did not perform as well as the other models, as 
per the macro-averaged MAE.

Selection of best model from top five models
Five-fold cross validation was performed on the top 
five models from Table  3 to provide a more thorough 

and rigorous evaluation of them and to establish model 
robustness and reliability. Table  4 shows the metrics 
defined above along with mean and standard devia-
tion ranges over the five-fold cross-validation experi-
ments. MAE values of the top five models ranged 
between 0.38–0.45, and F1 scores ranged from 61 to 
65%. While MAE values of the top three models were 
very close (with an MAE range of 0.39–0.405, within 
.01 of MAE score), the macro-averaged heatmap con-
cordance score of the fine-tuned ResNet-50 models 
were much superior (0.18 versus 0.13). Upon further 
examination, we observed that for the CheXNet-121 
model, several moderate and severe opacity images, as 
per the original radiologists annotation, had heatmaps 
with low clinical concordance, as the salient regions 
as delineated by the heatmap were partly outside the 
lung boundary regions. Comparisons of these models 
for binary outcomes (presence or absence of opaci-
ties, none/mild or medium severe opacities, severe or 
not severe opacities) were also calculated and the three 

Table 3  Comparison of all models for Fold 1 and choosing top five models by MAE

Model Architecture Data Balancing 
Strategy

Segmentation Type Precision Recall F1 MAE

CheXNet-121 UNDER NONE 65.18 64.90 64.41 0.3953
CheXNet-121 DOUBLE NONE 64.88 65.02 64.62 0.4023
ResNet-50 UNDER NONE 63.62 63.46 62.82 0.4097
ResNet-50 DOUBLE SPINE 63.85 64.24 63.91 0.4144
VGG-16 DOUBLE SPINE 62.89 62.54 62.60 0.4151
VGG-16 UNDER NONE 62.60 62.32 62.24 0.4161

CheXNet-121 DOUBLE SPINE 63.37 63.62 63.20 0.4193

VGG-16 DOUBLE NONE 63.45 62.76 62.36 0.4210

CheXNet-121 UNDER SPINE 63.55 63.62 63.25 0.4214

ResNet-50 DOUBLE NONE 63.02 63.75 62.77 0.4238

ResNet-50 UNDER SPINE 63.79 62.72 62.60 0.4279

VGG-16 OVER LUNG 60.43 61.37 61.06 0.4320

VGG-16 OVER NONE 60.81 60.98 60.11 0.4371

CheXNet-121 OVER NONE 61.56 61.76 60.85 0.4392

ResNet-50 DOUBLE LUNG 62.54 62.22 62.14 0.4412

VGG-16 UNDER SPINE 62.32 62.43 61.56 0.4439

ResNet-50 UNDER LUNG 61.31 61.38 60.93 0.4454

CheXNet-121 OVER SPINE 61.13 61.24 60.80 0.4489

ResNet-50 OVER LUNG 59.63 60.58 59.64 0.4600

CheXNet-121 OVER LUNG 58.94 59.23 58.39 0.4613

VGG-16 UNDER LUNG 60.95 60.17 60.02 0.4612

VGG-16 DOUBLE LUNG 61.01 61.07 60.73 0.4635

ResNet-50 OVER SPINE 60.39 61.20 60.37 0.4665

CheXNet-121 UNDER LUNG 60.55 60.72 60.40 0.4669

ResNet-50 OVER NONE 59.54 57.31 56.07 0.4864

CheXNet-121 DOUBLE LUNG 59.58 60.60 59.68 0.4973

VGG-16 OVER SPINE 35.79 46.46 38.04 0.9625
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main performance metrics (precision, recall and F1) are 
listed in Table 5.

Given these results, upon examining both the F1 scores 
as well as the HCS values, the best model overall was the 
fine tuned ResNet-50 model, with undersampling as the 
data balancing scheme, and no ROI based segmentation 
as the preprocessing step. F1-score of this model was 
64.33%, MAE was 40.99 and HCS score was 0.18.

Evaluation of top model compared to expert radiologist 
reader
Following model comparison based on the deep learn-
ing framework described above, predictions of model 
opacity based on the top model were obtained for the 
OOB (Out of Box) test set. Multiple evaluation metrics 
such as the MAE, F1-score, precision, and recall were 
applied to determine the model performance (Tables 6 
and 7). The MAE in particular evaluates the difference 

between expected and predicted values, and was cru-
cial in determining the model performance given the 
ordinal nature of the data. Other metrics include: Pre-
cision, which computes the percentage of predictions 
that an image had opacity score ‘A’ that were correct; 
Recall, which computes the percentage of correctly 

Table 4  Robustness comparison of final models across all five folds and choice of best model

Model Architecture Data 
Balancing 
Strategy

Segmentation 
Strategy

Precision Mean 
(stdev)

Recall
Mean (stdev)

F1 Mean (stdev) MAE Mean (stdev) MA HCS Mean

CheXNet-121 DOUBLE NONE 65.89 (1.28) 66.30 (1.13) 65.82 (1.18) 0.3944 (0.0147) 0.1481

CheXNet-121 UNDER NONE 65.36 (1.26) 65.47 (1.15) 65.06 (1.32) 0.3930 (0.0126) 0.1352

ResNet-50 UNDER NONE 64.88 (1.10) 64.81 (0.82) 64.33 (0.85) 0.4099 (0.0147) 0.1830

ResNet-50 DOUBLE SPINE 64.33 (1.21) 64.37 (0.99) 63.90 (1.19) 0.4149 (0.0157) 0.2057

VGG-16 DOUBLE SPINE 62.02 (1.31) 61.18 (1.27) 61.44 (1.27) 0.4325 (0.0182) 0.1631

Table 5  Comparison of final models across all five folds for binary models

Model Architecture Data Balancing 
Strategy

Segmentation 
Strategy

Precision Mean 
(Stdev)

Recall Mean (Stdev) F1 Mean (Stdev)

(A) None versus mild/medium/severe

  CheXNet-121 DOUBLE NONE 93.47 (0.92) 88.07 (0.78) 90.69 (0.7)

  CheXNet-121 UNDER NONE 92.70 (0.93) 88.76 (1.29) 90.68 (0.78)

  ResNet-50 UNDER NONE 92.61 (1.7) 88.08 (1.86) 90.25 (0.68)

  ResNet-50 DOUBLE SPINE 92.05 (2.03) 88.18 (2.15) 90.03 (0.63)

  VGG-16 DOUBLE SPINE 79.63 (1.85) 79.63 (2.29) 81.46 (0.82)

(B) None/mild versus medium/severe

  CheXNet-121 DOUBLE NONE 80.74 (1.38) 81.91 (2.51) 81.29 (1.44)

  CheXNet-121 UNDER NONE 78.70 (1.83) 84.81 (1.6) 81.62 (1.1)

  ResNet-50 UNDER NONE 80.06 (2.42) 81.24 (4.72) 80.46 (1.66)

  ResNet-50 DOUBLE SPINE 79.12 (1.7) 81.65 (4.09) 80.24 (1.41)

  VGG-16 DOUBLE SPINE 79.63 (2.14) 83.38 (4.27) 79.64 (2.07)

(C) None/mild/medium versus severe

  CheXNet-121 DOUBLE NONE 62.91 (3.34) 59.32 (4.83) 60.91 (2.91)

  CheXNet-121 UNDER NONE 58.96 (4.09) 64.97 (3.24) 61.61 (2.27)

  ResNet-50 UNDER NONE 64.43 (3.8) 54.61 (8.26) 58.42 (4.16)

  ResNet-50 DOUBLE SPINE 62.05 (3.81) 57.43 (6.92) 59.24 (3.85)

Table 6  Output comparison between final model, OR (Original 
Reader), and OOBTR (Out Of Box Test Reader). Model output 
compared with OOBTR and OR using multiple evaluation metrics 
for the multiclass classification problem

O.O.B.T.R.- O.R. Model- O.R. Model- O.O.B.T.R.

MAE 0.4560 0.3305 0.4316

Precision 61.63 68.31 71.18

Recall 62.05 67.12 68.70

F1 61.38 66.99 69.05

R-squared 0.55 0.614 0.6769
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recognizing an image with opacity ‘A’; and F1-score, 
which gives a single score that balances precision 
and recall via calculating the harmonic mean of these 
values.

The following combinations of predictions are evalu-
ated using the metrics mentioned above: (a) OOBTR 
(Out of Box test Reader) score vs. the OR (Original 
Reader) score, (b) Model score vs. the OR (original 
reader) score, and (c) Model score vs. the OOBTR (out of 
box test reader) score.

In comparing classification outputs between our final 
model, the OR (Original Reader), and the OOBTR (Out 
Of Box Test Reader), we found that that the current 
model has MAE of 0.4316 when its output was com-
pared with the OOBTR and an MAE of 0.3305 when 
its output was compared with the OR, whereas the 
OOBTR-OR comparison had an MAE of 0.456. Other 
evaluation metrics, including the F1-score, precision, 
recall, and R-squared errors, were also reported. It was 
observed that the Model predictions compared with the 
OR and OOBTR scores has a higher recall score (67.12 
and 68.70), higher precision (68.31 and 71.18), and higher 
F1-score (66.99 and 69.05) in contrast with the recall, 
precision, and F1-score from the OR-OOBTR score com-
parisons (62.05, 61.63, and 61.38 respectively). These 
results demonstrate that the model’s predicted scores 
were closer to the OR and OOBTR scores as opposed 
to the OR and OOBTR scores, which were further apart 
upon comparison.

Multiple binary comparisons were also shown in terms 
of these evaluation metrics (prediction of no opacity 
versus mild, medium, and severe opacity; prediction of 
no opacity and mild opacity versus medium and severe 
opacity; and prediction of no opacity, mild, and medium 
opacity versus severe opacity). Across all categories in the 
multiple binary comparisons, excluding precision and 
f1 scores in the presence or absence of opacity compari-
son, it was observed that Model-OR and Model-OOBTR 
performance metrics had consistently higher values than 
the OR-OOBTR metrics. This is particularly apparent in 
the case of the severe vs. not severe binary comparison, 
in which the Model-OR and Model-OOBTR F1-scores 
(65.45 and 70.32 respectively) where over 10 points 
higher than the OR-OOBTR F1-score (53.45).

Finally, visual inspection of the resulting heatmaps 
in different levels of agreement between predicted and 
annotated labels reveals that, in all cases of complete 
agreement between the model and the expert radiolo-
gist reader, the ROI of the model focuses on clinically rel-
evant areas of CXRs (Fig. 3).

Performance analysis of best model across population 
groups based on race, sex, and COVID‑19 status
Performance metrics were also computed across dif-
ferent population groups, based on race, sex and covid 
status (Table 8). A comparison of macro-averaged MAE 
scores across different racial groups shows that average 
MAE scores span a range, varying from 0.3971 (Asian) 
to 0.4626 (Black). A similar comparison of MAE across 
patients grouped based on sex showed that MAE is 
0.4129 for the female group and 0.4295 for the male 
group. The MAE of patients grouped based on COVID-
19 status showed variability from 0.4216 for the COVID-
19–positive group to 0.4584 for the COVID-19–negative 
group. F1-scores across all groups showed variability 
from 61.58 to 67.44.

Discussion
We developed a robust deep transfer learning framework 
that was adapted to estimate CXR lung opacity using 
transfer learning and then validated it against annota-
tions by expert radiologists. Our framework provides a 
comprehensive pipeline to perform machine learning 
analysis on radiographic images.

Although several studies have built models to detect 
pneumonia, few studies have annotated lung images 
beyond present/absent labels and do not include infor-
mation regarding degrees of opacity present (Roberts 
et al., 2021). The degree of lung opacities on CXRs have 
been shown to predict patient outcomes (Au-Yong et al., 
2022; Balbi et al., 2021; Voigt et al., 2022) and, therefore, 
the ability to make this distinction accurately may prove 

Table 7  Output comparison between final model, OR (Original 
Reader), and OOBTR (Out Of Box Test Reader). Model output 
compared with OOBTR and OR using multiple evaluation metrics 
for multiple binary classifications with binary output classes 
derived from the original multiclass output values

O.O.B.T.R.- O.R. Model- O.R. Model- O.O.B.T.R.

Absence or Presence of Opacity
  Precision 92.50 88.64 88.89

  Recall 89.53 91.19 93.62

  F1 90.95 89.89 91.12

  R-squared 0.45 0.42 0.49

No Opacity, Mild Opacity VS. Medium & Severe Opacity
  Precision 77.53 81.31 82.57

  Recall 75.08 84.23 84.08

  F1 76.25 82.51 83.01

  R-squared 0.21 0.44 0.46

Not Severe or Severe
  Precision 46.64 55.27 71.56

  Recall 62.57 80.64 69.53

  F1 53.45 65.45 70.32

  R-squared 0.06 0.02 0.28
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vital in future studies. Pulmonary opacity, which repre-
sents air/gas in the alveolar space replaced by a process 
such as fluids or cells, has been closely related to both 
pulmonary disease severity and prognosis (Au-Yong 
et al., 2022; Balbi et al., 2021; Voigt et al., 2022). Recent 
studies have developed algorithms to compute opacity-
related scores using deep learning frameworks (Cohen 
et al., 2020; Li et al., 2020), though they have been limited 
by a low number of COVID-19 training or test images 
(up to 300 and 200 images, respectively). Data augmen-
tation (Mutasa et al., 2020), regularization with dropout, 
or weight decay (Yamashita et  al., 2018) and transfer 
learning are commonly used strategies to reduce risk of 
overfitting when using relatively small numbers of train-
ing and testing data. However, to avoid variable gener-
alization of such models (Yamashita et  al., 2018), larger 
numbers of images from a diverse patient population, 
similar to what we showcase in this study, not only help 
with overfitting but reduce the possibility of reflecting or 
enhancing biases (Seyyed-Kalantari et al., 2021).

The choice of convolutional neural network archi-
tectures in radiology machine learning studies is not 
usually accompanied by systematic comparisons of the 
performance of other model architectures on similar 
use cases or similar data. Over 50% of COVID-19 diag-
nostic and prognostic radiology machine learning mod-
els use the ResNet-18, ResNet-50, or DenseNet-121 
architectures (of which CheXNet is an example), with 
a few papers opting for VGG-16 or VGG-19, Efficient-
Net, InceptionNet, custom architectures, or hand-engi-
neered features instead (Roberts et  al., 2021). ResNet 
and DenseNet architectures generally showed superior 

performance over other architectures, though this com-
parison is not comprehensive since these architectures 
were not tested against a single standardized dataset. 
Moreover, similarly important to the choice of the net-
work architecture are strategies on handling imbal-
anced datasets and use of segmentation steps prior to 
training the networks (Johnson & Khoshgoftaar, 2019; 
Malhotra et  al., 2022). In our work, we seek to con-
duct a thorough comparison of these architectures, 
data balancing schemes for handling bias, and image 
preprocessing strategies for ROI extraction using a sin-
gle dataset with extensive cross-validation. Conduct-
ing this exhaustive comparison in a computationally 
effective manner can remove some heuristic aspects of 
selecting network architectures and other preprocess-
ing and training parameters and offers a more rigorous 
and efficient approach to develop such models.

Transfer learning has been an invaluable tool in med-
ical imaging studies that use machine learning methods 
and, specifically, CNNs (Alzubaidi et al., 2021). Trans-
fer learning across multiple domains refers to using a 
pretrained network trained on a different dataset, and 
then using this as a starting point for further training or 
fine tuning with respect to the target task, an approach 
that is very popular in the medical imaging field (Che-
plygina et al., 2019). While our modeling scheme lever-
ages pretrained weights from ResNet-50, CheXNet-121, 
and VGG-16 models, instead of only training the fully 
connected network (FCN), we also train the last ‘N’ lay-
ers (five layers for ResNet-50 and VGG-16 and 15 for 
CheXNet-121) of our CNN. Our results demonstrate 
that this two-stage finetuning scheme, with the first 

Table 8  Performance analysis of best model

The final model was comprised of a fine-tuned ResNet-50 architecture with no ROI segmentation and an undersampling scheme. The performance analysis is 
performed across race, sex and COVID-19 status. Abbreviations used in the table include Pr = Precision, Rec = Recall, F1 = F1 score, and MA-MAE = Macro-averaged 
Mean Absolute Error

Population N Avg MA- MAE Lt MA-MAE Rt MA-
MAE

Avg
F1

Lt
F1

Rt
F1

Avg Pr Lt Pr Rt
Pr

Avg Rec Lt
Rec

Rt
Rec

All Patients 2839 0.4769 0.3855 62.11 65.21 62.24 66.22 63.08 65.41

RACE
  Asian 184 0.3971 0.4536 0.3406 64.25 62.72 65.78 65.56 62.57 68.54 65.76 64.67 66.84

  Black 453 0.4626 0.5408 0.3844 64.34 60.98 67.69 65.54 62.75 68.33 65.45 62.69 68.21

  White 1346 0.438 0.4736 0.4025 64.08 63.34 64.82 64.36 63.26 65.45 64.37 63.96 64.78

  Other 739 0.4196 0.4579 0.3813 62.00 60.37 63.64 63.39 60.83 65.95 62..65 61.43 63.87

  Unknown 117 0.4039 0.4510 0.3569 64.45 60.73 68.16 65.59 61.45 69.73 65.81 62.39 69.23

SEX
  Male 1625 0.4295 0.4937 0.3652 63.16 60.07 66.25 64.03 60.63 67.43 63.75 61.16 66.33

  Female 1214 0.4129 0.4482 0.3775 66.94 65.68 68.20 67.56 65.64 69.48 67.58 66.63 68.53

COVID
  COVID +ve 1513 0.4216 0.4783 0.3649 61.58 55.40 67.76 62.44 69.64 66.32 62.12 55.71 68.53

  COVID -ve 1326 0.4584 0.5262 0.3907 67.44 69.46 65.43 67.98 56.29 68.59 67.87 70.58 65.16
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stage consisting of fine tuning the FCN and the sec-
ond stage consisting of fine tuning the CNN, produces 
superior results, with an increased F1 score of at least 
3–5%, which can be empirically validated.

An important aspect of developing and validating 
machine learning algorithms that use medical images is 
the correct choice of performance metrics (Hicks et  al., 
2022). While binary classifications can be evaluated 
using commonly used metrics such as precision/recall/
F1 score, these are not as effective in cases where ordi-
nal labels indicating progressive lung opacities are seen 
due to pneumonia; new strategies need to be evolved to 
address this use case. In our work, we apply the macro-
averaged MAE, designed specifically to evaluate models 
with multiple ordinal labels as output while also account-
ing for class imbalance in the test sample. Further, we 
account for whether regions that are salient to the mod-
el’s decision overlap with clinically relevant regions using 
the HCS. To create a single quantitative index of model 
performance, our final choice of model is decided based 
on a combination of both the above scores.

Prior studies reported that F1 scores of comparisons of 
COVID-19 versus non–COVID-19 lung images ranged 
from 89 to 97% when evaluated on test sets ranging from 
just 100 test images to 3000 (Roberts et al., 2021). Mean-
while, in a study examining the classification accuracy of 
models for determining presence/absence of pneumonia 
prior to COVID-19, an F1 score of 76.80% was reported 
based on a test set of 420 images (Rajpurkar et al., 2017). In 
our study, our methodology produces an F1 score of 91% 
when testing for presence or absence of opacity (corre-
sponding to presence/absence of pneumonia). In our work, 
the number of test images was higher than all prior stud-
ies mentioned (2839 test images plus 286 for out-of-box 
testing, resulting in 3125 images in total). Further, a study 
aimed at determining the geographic extent of opacities in 
CXR’s of COVID-19 patients showed an R2 score of 0.67, 
which is comparable to the R2 score of our best model com-
pared with expert radiologist at time of testing (0.6769) and 
upon receiving the Xray (0.614). (Cohen et al., 2020).

The algorithm has the ability to detect lung opacities as 
well as grade the severity of those opacities. With valida-
tion, the ability to detect opacities is helpful for clinicians to 
ensure lung abnormalities are not missed and to prioritize 
chest x-rays that need further evaluation. Further, clini-
cal correlation in the setting of these opacities can change 
patient care. The ability to grade degree of opacity needs fur-
ther evaluation to understand its ability to predict key patient 
outcomes and how it can be best used in clinical care.

Our study has some limitations, especially pertaining to 
multiple disease processes. Infections, edema, neoplastic 

processes, and inflammatory conditions can all produce 
lung opacities that clinicians use to both determine the 
extent of the underlying disease and monitor for disease 
course. We do not distinguish between these various dis-
ease processes.

A limitation of the current framework is that the 54 
models being tested in the first stage are not tested 
using multiple cross-validation folds. Due to limitations 
of available computational power, testing in this man-
ner would be beyond the scope of this paper. Also due 
to computational limitations, we chose to use pretrained 
models for classification along with transfer learning 
rather than training from scratch. However, compari-
son of the pretrained models with a model created from 
scratch might also be informative and provide increased 
accuracy.

The degree of opacity on CXRs was determined by 
radiologists in real time, allowing us to quantify a large 
volume of images. However, the fact that this was done 
under the demands of clinical care during the initial wave 
of the COVID-19 pandemic may have limited accuracy. 
To account for this, 286 CXR images were reviewed by 
an expert cardiothoracic radiologist in a research setting. 
Further, CXRs are less accurate than computed tomog-
raphy for determining the presence or absence of lung 
opacities, though they are the most ubiquitous imaging 
test for diagnosing respiratory diseases worldwide and, 
therefore, they need to have their diagnostic capabili-
ties improved (Mettler Jr. et al., 2009). Finally, this study 
was conducted within one, albeit large, health system; 
this potentially limited the generalizability of our ML 
algorithm.

Conclusion
In conclusion, we developed a robust deep learning 
framework to analyze radiographic images and adapted 
it to estimate CXR opacity. The framework tests all com-
binations of several neural network architectures, seg-
mentation, and data balancing strategies in a rigorous 
and computationally efficient manner and selects optimal 
configurations based on the dataset and use case. When 
applied to 38,365 CXR, it performed as accurately as 
experienced radiologists, regardless of COVID-19 status 
or race of the patient. Accurate machine learning charac-
terization of lung opacity on CXR could have numerous 
potential clinical applications. Lung opacity seen in CXRs 
has been shown to predict patient outcomes in entities 
such as COVID-19 and lung edema (Au-Yong et al., 2022; 
Voigt et al., 2022). Further work is needed to determine 
whether our CXR ML algorithm can be used to predict 
patient outcomes.
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