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Abstract

Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular
failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative
processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling,
systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic
tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in
vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not
typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method
to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic
medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias,
heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce
pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal
fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can
gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes.
Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an
approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for
unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
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Background
Pulmonary arterial hypertension (PAH) is a rare but se-
vere disease. The estimated prevalence rate is between
6.6-26.0 cases per million, and the estimated incidence
rate is between 1.1-7.6 cases per million adult inhabitants
per year (Badesch et al. 2010; Escribano-Subias et al. 2012;
Humbert et al. 2006; Ling et al. 2012; Peacock et al. 2007).
The mean age of the patients, in the past, was 36 years,
while today the mean age at diagnosis is between 50 and
65 years (Badesch et al. 2010; Foley et al. 2011; Hoeper
et al., 2013b; Rich et al. 1987). In developing countries, the
baseline data of patients with PAH remain largely un-
changed (Jing et al. 2007).

Over the last decades, survival rates of PAH patients
have increased significantly (Thenappan et al. 2007). The
main contributors to this outcome are earlier diagnosis
due to increased awareness of the disease, referral to ex-
pert centers, administration of specific PAH therapy and
improved special support strategies (Benza et al. 2012).
However, the prognosis remains dismal: according to the
REVEAL registry, the median survival of PAH patients is
about 7 years (Benza et al. 2012). The progressive, fatal
nature of the disease, combined with the high cost of
pharmacotherapy and hospitalizations, has led to exten-
sive research efforts focused on the development of new
treatment options (Anand et al. 2016; McLaughlin et al.
2009). The scope of this article is to review the patho-
physiological pathways of PAH, to highlight the existing
treatment options and their limitations, and to discuss
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the potential therapeutic use of a bioelectronic therapy
based on vagus nerve stimulation.

Pathophysiology of PAH
In general, pulmonary circulation is a low pressure, low
resistance system. PAH is defined as mean pulmonary
arterial pressure (PAP) ≥25 mmHg (in the proposed new
definition the cut off for mean PAP is even lower
(>20mmHg)) with pulmonary arterial wedge pressure
≤15mmHg and pulmonary vascular resistance ≥3 Wood
units (Galie et al. 2016; Simonneau et al. 2019). Arterial
abnormalities in PAH cause the increase of pulmonary
vascular resistance, which leads to a restriction of blood
flow (Farber and Loscalzo 2004). The right ventricle
(RV) becomes initially hypertrophic as a consequence of
the increased afterload, which ultimately leads to right
heart failure. The main mechanisms that cause the arterial
abnormalities include vasoconstriction, endothelial-cell
and smooth-muscle cell proliferation, in situ thrombosis,
inflammation and formation of plexiform lesions (Archer
and Rich 2000).
Chronic autonomic imbalance is common in PAH

(Vaillancourt et al. 2017), with increased sympathetic
(Nootens et al. 1995; Velez-Roa et al. 2004) and de-
creased parasympathetic activity (da Silva Goncalves Bos
et al. 2018; Hemnes and Brittain 2018). In addition to,
or perhaps partly because of, autonomic imbalance, the
balance between vasodilators and vasoconstrictors, is
disturbed in PAH (Farber and Loscalzo 2004). The pro-
duction of vasodilators such as prostacyclin and nitric
oxide (NO) are decreased in contrast with the produc-
tion of vasoconstrictors, including endothelin and
thromboxane, which are increased (Christman et al.
1992; Giaid et al. 1993). Furthermore, increased plasma
levels of serotonin (5-hydroxytryptamine) might also
play a role as vasoconstrictor and promoter of pulmonary
artery smooth muscle cell proliferation in PAH (Herve
et al. 1995; McLaughlin et al. 2009). Overexpression of 5-
hydroxytryptamine transporter was associated with the
latter outcome (Eddahibi et al. 2001; Marcos et al. 2004).
Dysfunction of voltage-gated K+ channels lead also to pul-
monary artery smooth muscle cell proliferation as well as
vasoconstriction (Yuan et al. 1998).
Inflammation likely plays an important role in pathogen-

esis and progression of PAH , as well as in the development
of RV failure (Kherbeck et al. 2013; Price et al. 2012;
Rabinovitch et al. 2014; Voelkel et al. 2016). In patients with
PAH, there is histologic evidence of accumulation of in-
flammatory cells and elevated levels of cytokines and che-
mokines (Huertas et al. 2014; Humbert et al. 2019), both
around pulmonary vessels (Nicolls and Voelkel 2017) as
well as in the failing RV (Sun et al. 2017). The elevated
cytokine levels are associated with impaired RV function
(Prins et al. 2018) and reduced 5-year survival (Soon et al.

2010). Another evidence of immune dysregulation is the
lymphoid neogenesis in the lungs of idiopathic PAH pa-
tients (Perros et al. 2012). Lymphoid neogenesis is related
to chronic inflammatory processes, such as autoimmunity
and infection (Aloisi and Pujol-Borrell 2006).
Other pathophysiologic pathways that are involved in

PAH development are the imbalance in antithrombotic/
prothrombotic factors and growth inhibitors/ mitogen
factors (Farber and Loscalzo 2004). Decreased apoptosis
can be evoked due to mutations in the transforming
growth factor-beta receptor pathway, such as in the bone
morphogenetic protein receptor 2 and in the activin
receptor-like kinase 1 and endoglin, which are associated
with familial PAH (Lane et al. 2000; Trembath et al.
2001). Furthermore, the renin-angiotensin-aldosterone
(RAA) system is up-regulated and in specific angiotensin
II type 1 receptors expression and signaling which is in-
creased in pulmonary arteries of patients with idiopathic
PAH, is associated with pulmonary artery smooth
muscle cell proliferation (de Man et al., 2012b).

Current therapies of PAH
Pharmacologic therapies

Calcium-channel blockers Approximately 10% of
PAH patients have a positive acute vasoreactivity test
(Galie et al. 2016). This is defined as a fall in mean pul-
monary artery pressure (mean PAP) of ≥10 mmHg to
≤40 mm Hg, with an unchanged or increased cardiac
output after the administration of inhaled NO or ilo-
prost, or intravenous epoprostenol or adenosine. Those
patients are treated with high dose, progressively ti-
trated, calcium channel blockers (Galie et al. 2016; Rich
et al. 1992). However, if the patient after treatment with
high dose of calcium channel blockers is in World Health
organization (WHO) functional class III/ IV or his
hemodynamic profile does not show marked improve-
ment, initiation of specific PAH therapy is recommended
(Galie et al. 2016). A study of Sitbon et al. showed that
almost half of the acutely-vasoreactive patients were not
long-term responders (Sitbon et al. 2005). Side effects of cal-
cium channel blockers include hypotension, syncope and
acute RV failure (Galie et al. 2016).
For all other cases, specific PAH therapy is followed and

has three main pathophysiologic targets: endothelin, NO/
cyclic guanosine monophosphate (cGMP), and prostacyclin.

Endothelin pathway
Bosentan, ambrisentan and macitentan are endothelin re-
ceptor antagonists. They are beneficial in PAH patients,
improving their exercise capacity, WHO functional class
and their hemodynamics, while slowing disease progres-
sion (Channick et al. 2001; Galie et al. 2008a, 2008b;
Pulido et al. 2013; Rubin et al. 2002) The main adverse
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effects of endothelin receptor antagonists are abnormal
liver function, increased incidence of peripheral edema
and anemia (McLaughlin et al. 2009).

NO/cGMP pathway
Two types of drugs belong to the NO/cGMP pathway:
phosphodiesterase type 5 inhibitors (sildenafil and tada-
lafil), which inhibit the degradation of cGMP, and rioci-
guat, a guanylic cyclase stimulator that enhances cGMP
production (Schermuly et al. 2008). Phosphodiesterase
type 5 inhibitors were shown to improve the exercise
capacity, WHO functional class, hemodynamics, quality
of life, disease progression (Galie et al. 2009; Galie et al.
2005; Ghofrani et al. 2013; Sastry et al. 2004; Singh et al.
2006) and reduced N-terminal pro B-type natriuretic
peptide (Ghofrani et al. 2013). The most common
adverse events were flushing, diarrhea and dyspepsia for
sildenafil and headache and myalgia and flushing for
tadalafil (Galie et al. 2009; Galie et al. 2005; Sastry et al.
2004). Syncope is the most common serious adverse
events of riociguat (Ghofrani et al. 2013).

Prostacyclin pathway
Epoprostenol, iloprost, beraprost, treprostinil and selexi-
pag constitute the category of drugs targeting the prosta-
cyclin pathway. Epoprostenol is administered continually
intravenously, iloprost requires multiple inhalations, usu-
ally six to nine times per day, treprostinil is administered
subcutaneously, intravenously, inhaled and orally, while
beraprost and selexipag is an orally administered selective
prostacyclin receptor agonist. They have been shown to
improve PAH symptoms, hemodynamics and exercise
capacity and delay clinical worsening, while epoprostenol
is the only compound to demonstrate reduced mortality
in PAH patients (Badesch et al. 2000; Barst et al. 1996;
Galie et al. 2002; Olschewski et al. 2002; Rubin et al. 1990;
Simonneau et al. 2002; Sitbon et al. 2015). Common ad-
verse events of prostanoids are headache, flushing, nausea,
diarrhea, skin rash, musculoskeletal pain, jaw pain, infu-
sion site pain for subcutaneous administration of trepros-
tinil, and line infections for intravenous administration of
epoprostenol (McLaughlin et al. 2009).
Regarding inhaled vasoactive intestinal peptide (VIP)

and tyrosine kinase inhibitors, even though they theoretic-
ally seem promising medical therapies for PAH (Ghofrani
et al. 2005; Leuchte et al. 2008; Nayyar et al. 2014; Petkov
et al. 2003), their role in PAH treatment is controversial
due to the recent negative clinical studies(Frost et al. 2015;
Hoeper et al. 2013a,). Administration of imatinib although
resulted in improved hemodynamics and exercise cap-
acity, it increased significant adverse events and showed
high discontinuation rate (Frost et al. 2015). The results
from a randomized multicenter clinical trial phase II with

subcutaneously administered VIP analogue are anticipated
(NCT03556020).
Given that the PAH-specific therapy targets three differ-

ent signaling pathways, in the case of inadequate treat-
ment response or clinical worsening it is recommended
that therapy is increased with sequential combination
(Galie et al. 2016). Upfront combination therapy in WHO
functional class II or III treatment-naive patients has also
improved clinical outcome and is increasingly used in the
therapeutic strategy in PAH (Galie et al. 2015). The favor-
able clinical results of combination therapy are supported
additionally by the results of recent meta-analyses (Fox
et al. 2016; Lajoie et al. 2016). In this context, it is likely
that new treatment modalities could be considered as part
of combination therapeutic schemes, even in PAH-specific
treatment-naive patients.
Referral for transplantation in PAH patients is now post-

poned due to the wide use of specific PAH therapy, but
when the maximal combination therapy fails and the patients
remain severely symptomatic, transplantation is the only
therapeutic option (Galie et al. 2016) (de Perrot et al. 2012;
Fadel et al. 2010; Taylor et al. 2006; Toyoda et al. 2008).

Drug therapies targeting the autonomic nervous system
Alpha/Beta adrenergic receptor blockers
Several mechanisms of action of beta blockers might
support their use in PH. At the cellular level, beta blockers
decrease RV myocardial hypertrophy and fibrosis, capillary
rarefaction, apoptosis and inflammation (Bogaard et al.
2010; de Man et al. 2012a, 2013; Ishikawa et al. 2009; Perros
et al. 2015). With regards to RV function, beta blockers re-
duce RV hypertrophy, increase RV and LV ejection fraction,
decrease myocardial oxygen consumption and RV afterload
(Perros et al. 2017). However, due to the reduction of heart
rate and cardiac output, as well as the negative impact on
exercise capacity (Bandyopadhyay et al. 2015; Provencher
et al. 2006; Thenappan et al. 2014; van Campen et al. 2016),
current guidelines do not recommend their use in PH pa-
tients except for those with comorbidities such as
arrhythmia, high blood pressure, coronary artery disease and
left heart failure (Galie et al. 2016).

ACE inhibitors/Angiotensin-1 receptor inhibitors/
Mineralocorticoid receptor antagonists
Dysregulation of renin–angiotensin-aldosterone system
contributes to the pathophysiology of PAH (de Man et al.
2012b; Morrell et al. 1995). At a cellular level, this activa-
tion promotes vasoconstriction, cell proliferation,
migration, extracellular matrix remodeling and fibrosis
(Maron and Leopold 2014). Small studies with angiotensin-
converting-enzyme (ACE) inhibitors, such as captopril, had
conflicting results. Some studies had positive results, lower-
ing the mean PAP and increasing the RV ejection fraction
(Alpert et al. 1992; Ikram et al. 1982), but in others
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captopril had no effect in pulmonary circuit (Leier et al.
1983; Rich et al. 1982). Studies with angiotensin-1 receptor
inhibitors were also inconclusive. In animal models, losar-
tan was reported to delay disease progression, decrease RV
afterload and pulmonary vascular remodeling and restore
RV-arterial coupling (de Man et al. 2012b); however, in
other studies failed to prevent or reduce the ventricular
afterload (Cassis et al. 1992; Kreutz et al. 1996). Only one
small clinical study showed that losartan is not inferior to
nifedipine with regards to mean PAP and exercise capacity
(Bozbas et al. 2010). Since aldosterone plasma levels are
high in PAH patients (Maron et al. 2013a) mineralocortic-
oid receptor antagonists were also tested as a possible
therapeutic target (Maron et al. 2012; Preston et al. 2013).
Indeed, in the trials for ambrisentan (ARIES) it was noted
that patients treated with ambrisentan plus spironolac-
tone had a trend toward better functional capacity and
plasma-B-type natriuretic peptide (Maron et al. 2013a).
However, there are not large clinical trials to support
the role of these drugs in PAH patients, data from on-
going clinical trials are going to define their efficacy
and torelability in these patients (Clinical-Trials.gov
Identifier: NCT01712620, NCT03177603).
In general, the several classes of drugs targeting the

autonomic nervous system and the renin-angiotensin-
aldosterone system, albeit the positive preclinical find-
ings, have not shown definite clinical benefit and not
widely recommended in PAH (Table 1).

Invasive therapies
Pulmonary artery denervation (PAD) is a clinically-
tested non-pharmacological treatment of PAH. Given

that sympathetic nerve activity in PAH is increased
(Velez-Roa et al. 2004), ablation at the main bifurcation
area of the left pulmonary artery (PAD) has been
attempted as a treatment option in PAH (Chen et al.
2013a). In the preclinical context, PAD induced sympa-
thetic nerve injury, including axon loss, demyelination,
prolonged conduction time and loss of potential ampli-
tude, improved the hemodynamics, reducing the mPAP
and pulmonary vascular resistance and caused pulmon-
ary artery remodeling (Chen et al. 2013b; Rothman et al.
2015; Zhou et al. 2015). In a single-center clinical study
of PAD, favorable outcomes were reported with respect
to hemodynamics, functional capacity and cardiac function
assessed by echocardiography (Chen et al. 2013a; Chen
et al. 2015). In a recent multicenter, randomized study,
PAD improved hemodynamic and clinical outcomes com-
pared to sildenafil in patients with combined pre- and post-
capillary pulmonary hypertension associated with left heart
failure (H. Zhang et al. 2019).
Even though the results of these non-controlled trials

should be interpreted with caution, the effectiveness of
PAD in PAH suggests that targeting the autonomic ner-
vous system (ANS) in PAH via an invasive method could
be a viable therapeutic strategy. Sympathetic ganglion
block is an experimental therapy that, like PAD, also tar-
gets the over-activation of the sympathetic nervous sys-
tem. Superior cervical ganglion or stellate ganglion block
using local injections of an anesthetic agent have been
tested in rodent models of PAH, with encouraging re-
sults (Na et al. 2014). Finally, catheter-based renal artery
denervation, an intervention that targets the activation
of the sympathetic nervous system and the RAA system,

Table 1 Pharmacological and invasive therapies targeting the autonomic nervous system in pulmonary arterial hypertension

Therapy Mechanism of action in PAH Drawbacks Recommendation

Alpha/ Beta blockers Reduction in:
- Right ventricular myocardial
hypertrophy and fibrosis

-capillary rarefaction
-apoptosis
-inflammation

Reduction in heart rate, cardiac output and
exercise capacity

PH patients with
comorbidities (arrhythmia, high
blood pressure, coronary artery
disease, left heart failure)

Renin-angiotensin-aldosterone
system inhibitors

Reduction in:
-vasoconstriction
-cell proliferation
-extracellular matrix remodeling
-fibrosis

No beneficial effect in some studies More clinical data needed

Sympathetic ganglion block Suppression of activation of
the sympathetic nervous
system (SNS)

-Non-specific
-Invasive
-Not readily reversible
-No clinical data

More data needed

Renal artery denervation Suppression of activation of the
SNS and renin-angiotensin-
aldosterone system

-Non-specific
-Invasive
-Irreversible
-No clinical data in PH

More data needed

Pulmonary artery denervation Suppression of activation of
the SNS

-Non-specific
-Invasive
-Irreversible

Being tested clinically
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has been tested in a canine (Qingyan et al. 2015) and a
rodent (Liu et al. 2017) model of PAH, again with en-
couraging results.
Drawbacks of these invasive approaches is that they

are non-specific, since the ablation or block takes place
without targeting specific branches or fiber types of the
neural structures and that they are completely or par-
tially irreversible (Table 1). This raises the possibility
that a targeted, reversible method for modulating auto-
nomic tone may be another viable, perhaps preferable,
therapeutic approach in PAH.

Bioelectronic medicine and its cardiovascular applications
Principles of bioelectronic medicine therapies
Placement of neurostimulation probes in contact with
nerves of the ANS to deliver therapeutic neuromodula-
tion in diseases or conditions in which the ANS is impli-
cated is a relatively new family of interventions, for
which the terms “electroceuticals”, “bioelectronic medi-
cine” (BEM) (Famm et al. 2013) or “autonomic regula-
tion therapies” (Dicarlo et al. 2013; Premchand et al.
2014) have been used. The basis of BEM therapies is that
up- or down-modulation of the tone in specific parts of
the ANS can have predictable effects on the afferent
(sensory) information that is conveyed to the brain and
on the efferent (motor) commands modulating the func-
tion of innervated organs. These effects can be acute or
chronic, and typically involve alterations in the function
of several organs and systems, depending on which
nerve targets and fibers are stimulated, which autonomic
reflexes are recruited by stimulation and which physio-
logical adaptations occur in response to neurostimulation.
BEM leverages these principles to develop neurostimulation
therapies that target specific mechanisms and neural cir-
cuits that are affected or implicated in different diseases.
Targeting nerves with electrical stimulation to treat dis-

eases has two major advantages over pharmaceutical ther-
apies. First is specificity with regards to the targeted organ
system: placing the probe on a specific nerve and using
fiber-selective electrical stimulation waveforms can deliver
the therapy specifically to the affected organ while en-
gaging only the relevant autonomic fibers (Birmingham
et al. 2014). Drugs, on the other hand, are delivered sys-
temically and affect receptors on all tissues and organs.
Second is specificity with regards to time: the timing of
delivery of neurostimulation can be tightly controlled,
even triggered by specific events or physiological states
and not by others, i.e. only when therapy is needed and
not continuously (Zanos 2018). Pharmaceuticals have typ-
ically sustained presence in the organism, determined by
pharmacokinetics with time course that in not under our
control once the drug is delivered. The cardiovascular
system is controlled by many autonomic nerves and fibers
and, in addition, has a highly dynamic physiology. For

these reasons, cardiovascular diseases like PAH are, in
principle, good candidates for BEM therapies.
The vagus nerve is a major autonomic nerve with in-

creased therapeutic potential, for 2 reasons: first, because
its afferent and efferent arms are involved in the sensory
and motor innervation of practically all organs and, sec-
ond, because its surgical approach at the cervical region
is well-established, relatively easy, can be performed as
an outpatient procedure.

Bioelectronic medicine therapies of cardiovascular
disorders
The heart and vessels are heavily innervated by the ANS,
both its sympathetic and parasympathetic arms. The
autonomic innervation is involved in the continuous
physiological control of cardiovascular function (Armour
2004; Hanna et al. 2017) and is implicated in the acute
and chronic adaptive and maladaptive pathophysio-
logical responses to diseases affecting the cardiovascular
system (Armour 2004). As a result, targeting the auto-
nomic innervation of the cardiovascular system using
neurostimulation has been one of the first applications
of the BEM approach, aimed at disorders like hyperten-
sion, heart failure and cardiac arrhythmias (Horn et al.
2019). For example, electrical stimulation of the carotid
sinus nerve via an implantable device reduces blood
pressure in some patients with drug-resistant hyperten-
sion by modulating the tone of the baroreflex (de Leeuw
et al. 2017; Scheffers et al. 2010). Device-based interven-
tions that target the cardiac vagus or the cardiac sympa-
thetic nerves have successfully suppressed or prevented
atrial and ventricular arrhythmias, both in animal models
and in clinical trials (Waldron et al. 2019; Zhu et al. 2019).
More specifically, the therapeutic effects of VNS in ex-

perimental models of heart failure is of relevance to its
potential use in the context of PAH. Stimulation of the
cervical vagus in animal models of heart failure reduced
heart rate, improved the systolic and diastolic function
of the left ventricle, reversed left ventricular hyper-
trophy, and reduced the frequency of arrhythmias and
sudden cardiac death (Sabbah et al. 2011); favorable ef-
fects were also documented in a clinical trial (Pre-
mchand et al. 2014). Some of these effects were
independent of the VNS-induced reduction in heart rate
(Y. Zhang et al. 2009); instead, several neural mecha-
nisms, at multiple levels of the cardiac autonomic ner-
vous system, have been implicated in these actions of
VNS, including activation of the baroreflex (Y. Zhang
et al. 2009) and modulation of intrathoracic cardio-
cardiac and central reflexes (Hanna et al. 2018). In
addition, VNS may favorably affect cellular and struc-
tural markers of remodeling in the failing left ventricle
(Beaumont et al. 2015; Sabbah et al. 2011). There is evi-
dence that VNS might exert such actions through
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increased production of nitric oxide in the myocardium,
down-regulation of gap junction proteins, changes in
neural excitability in the intrinsic cardiac nervous system,
in the metabolism of cardiomyocytes and apoptosis-
related proteins (Sabbah et al. 2011).

The rationale for a bioelectronic treatment of pulmonary
hypertension
A BEM therapy of PAH, more specifically a therapy based
on vagus nerve stimulation (VNS), would in principle
target several major pathogenetic and pathophysiologic
mechanisms, namely, pulmonary vasoconstriction, right
ventricular dysfunction and systemic inflammation, as well
as chronic autonomic imbalance (Fig. 2).

Targeting pulmonary vasoconstriction and right
ventricular dysfunction
Vasoconstriction is one of the pathophysiological mecha-
nisms of PAH. It is well-established that the autonomic
nervous system is regulating pulmonary vascular tone
(Farber and Loscalzo 2004; Hemnes and Brittain 2018;
Mouratoglou et al. 2016). The respiratory track receives
sympathetic innervation from neurons whose cell bodies
reside mainly in the stellate ganglion and thoracic sympa-
thetic chain ganglia T2-T5 (Kummer et al. 1992). The dens-
ity along with the vascular reactivity to neurotransmitters
decrease towards the periphery (Kummer 2011). The sym-
pathetic nervous system causes vasoconstriction in lung
vasculature and the responsible post-ganglionic neurotrans-
mitter, norepinephrine, is reported to decrease compliance
and increase resistance in pulmonary vascular bed (Knight
et al. 1981). Both decreased compliance and increased re-
sistance play a role in the development of PAH (Saouti
et al. 2010). Intrapulmonary vessels are also innervated by
parasympathetic neurons, which originate mainly from
nucleus ambiguus (Hadziefendic and Haxhiu 1999) and
provide cholinergic innervation through bronchopulmonary
vagal branches (Fig. 1). Similarly to the sympathetic, the
density of the parasympathetic fibers in the lung decreases
towards the periphery; in addition, parasympathetic innerv-
ation is sparser compared to sympathetic (Kummer 2011).
Stimulation of the efferent vagal nerve releases acetylcho-
line, which through a nitric oxide-dependent mechanism,
causes dilation to the pulmonary vascular bed (McMahon
et al. 1992). Acetylcholine can also downregulate the release
of norepinephrine, acting on adrenergic terminals (Knight
et al. 1981).
VNS could exert its protective effects by altering the

function of the right ventricle (RV). VNS has been shown
to increase RV contraction and relaxation (Henning et al.
1996). In a preliminary study in a rodent model of RV pres-
sure overload, a condition that mimics RV dysfunction and
the progressive development of RV failure in the presence
of pulmonary hypertension, VNS normalized several

indices of RV systolic function (Yoshida et al. 2018a). Some
of those indices, for example RV end-systolic elastance, are
independent of RV afterload, suggesting that VNS may be
directly benefiting RV compensation to increased pressure
in the pulmonary artery.
Along with pulmonary vasodilation and a direct effect on

RV function, another potential, hemodynamically beneficial
effect of VNS is suppression of supraventricular arrhyth-
mias, with are most common in PAH patients (Y. Zhang
and Mazgalev 2011; Zhu et al. 2019). Such a protective
effect of VNS has been documented in post-operative
patients receiving low-level VNS (Stavrakis et al. 2017) and,
recently, in a population of patients newly diagnosed with
atrial fibrillation (Stavrakis et al. 2019).

Targeting systemic inflammation
One of the well-established effects of VNS is down-
modulation of the immune response to an acute inflam-
matory challenge, like the injection of lipopolysaccharide,
a response that initiates in the spleen and includes coordi-
nated production of inflammatory cytokines (Pavlov et al.
2018). A series of studies established a neuro-immune
reflex, the inflammatory reflex, with an afferent and an
efferent arm (Fig. 1). Briefly, the afferent arm starts with
the axons of afferent neurons innervating the viscera;
these neurons respond to noxious stimuli, fragments of
pathogens and cytokines released by immune cells. Vagal
sensory neurons have cell bodies in the nodose ganglion
and project to the nucleus of the solitary tract in the
brainstem. The efferent arm starts in the dorsal motor
nucleus of the vagus, in the brainstem, continues with the
efferent vagal fibers and synapses in the celiac ganglion;
from there, noradrenergic neurons project to the spleen,
where release of norepinephrine activates the release of
choline acetyl-transferase (ChAT) positive CD4+ T-cells.
In turn, these ChAT cells release acetyl choline, which
acts on macrophages and other immune cells through α7
nicotinic receptors, resulting in suppression of proinflam-
matory cytokine production.
Since production and release of cytokines are central in

the development of the acute and chronic inflammatory re-
sponse, the physiologic and pathophysiologic role of the
vagus in inflammation has been studied extensively (Pavlov
et al. 2018). Activating the vagus system via VNS results in
suppression of the release of tumor necrosis factor, interleu-
kin1beta and other cytokines, and amelioration of the clin-
ical and pathological consequences of inflammation. This
has been successfully tested in animal models of endotoxe-
mia (Borovikova et al. 2000), hemorrhagic shock (Guarini
et al. 2004), sepsis (Huston et al. 2006), arthritis (Levine
et al. 2014) and other autoimmune diseases (Tracey 2007),
heart failure (Y. Zhang et al. 2009) etc. Suppression of the
inflammatory reflex using VNS is explored as a therapeutic
modality in clinical trials in patients with rheumatoid
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arthritis (Genovese et al. 2019; Koopman et al. 2016), lupus
(Aranow et al. 2018) and inflammatory bowel disease (Bonaz
et al. 2016).
In the context of PAH, suppression of systemic inflam-

mation by VNS could ameliorate the pathological inflam-
matory process in the pulmonary vessels, slowing down or
reversing vascular remodeling (Nicolls and Voelkel 2017),
and in the right ventricle, protecting it from hypertrophy
and maladaptive remodeling (Sun et al. 2017).

Targeting autonomic imbalance
In addition to the “direct” actions of VNS on pulmonary
vasoconstriction and systemic inflammation, chronic VNS
may gradually improve the imbalance between the sympa-
thetic and parasympathetic tone which may contribute to,
or be caused by, the inflammatory and hemodynamic

aspects of PAH pathogenesis (Ameri et al. 2016) (Fig. 2).
In a recent study in a rodent model of PAH, it was shown
that VNS for several weeks attenuated pulmonary vascular
remodeling, preserved RV function and improved survival
(Yoshida et al. 2018b); it accomplished that by chronically
“re-setting” the balance between sympathetic and para-
sympathetic reflex circuits in the periphery and in the cen-
tral nervous system (Kingma et al. 2018).

Challenges for a bioelectronic treatment of pulmonary
hypertension
The direct, motor component of vasodilatory and anti-
inflammatory effects of VNS is primarily mediated by pre-
ganglionic, efferent, B-type, cholinergic vagal fibers. There-
fore, a VNS-based treatment of PAH shouldprimarily target

Fig. 1 Schematic diagram of the main central and peripheral components of the motor and sensory vagus. The vagus nerve includes sensory
(afferent) and motor (efferent) arms, both of which are represented in the cervical region, where vagus cuffs are typically implanted. The sensory
vagal pathway, shown in green, originates with general sensory receptors (i.e. nociceptors) in visceral organs, including vessels, the lungs, the
heart, the gastrointestinal tract, the liver, lymph nodes etc. They convey information about mechanical parameters, e.g. increased wall tension in
vessels in high blood pressure or in lung alveoli during inhalation, or biochemical events, e.g. presence of bacteria or inflammatory cytokines at
an injured site. Afferent fibers from these receptors synapse at sensory neurons in the nodose ganglion of the vagus, located at the height of the
transverse process of the first cervical vertebra. Axons of those sensory ganglionic neurons project to the nucleus of the solitary tract (NTS), in the
brainstem. The motor vagal pathway, shown in red, originates in the motor nuclei of the vagus in the brainstem, the dorsal motor nucleus (DMN)
and the nucleus ambiguous (NA). Peripheral axons of those cells go through the cervical vagus, and either innervate laryngeal muscles, or
synapse on neurons in parasympathetic ganglia, close to organs like the heart, the lungs, the intestine, the pancreas, etc. An important target of
the motor vagus is the spleen; in this case, motor vagal fibers synapse at the celiac ganglion, from which adrenergic fibers project to the spleen
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cholinergic B-type fibers, ideally those innervating the pul-
monary vessels and the spleen. Such an approach would
have to overcome several challenges.
First, large, myelinated efferent A-type vagal fibers,

some of which innervate muscles of the larynx and phar-
ynx, have lower activation thresholds that the efferent,
parasympathetic B-type fibers. Activation of those larger
fibers gives rise to adverse effects like coughing, voice
hoarseness, nausea etc., and frequently limits the inten-
sity of cervical VNS to levels that are sub-therapeutic
with regards to B-fibers. A potential solution could be to
deliver stimulation to the cervical vagus that spares A-
type and only targets B-type fibers using appropriate
electrodes and stimulation waveforms, an area of active
preclinical investigation (Guiraud et al. 2016; Musselman
et al. 2019; Patel and Butera 2018).
Second, activation of large, myelinated afferent A-type

fibers by VNS, again with lower activation thresholds
than B-type fiber, may induce a reflexive decrease in
parasympathetic tone and increase in sympathetic tone
(Ardell et al. 2017). In addition, there is a small number
of B-type, sympathetic, catecholaminergic fibers in the
human vagus (Seki et al. 2014), and their activation by
VNS could in principle directly enhance the sympathetic
tone to the heart and vessels or stimulate sympathetic
reflexes. Whatever the mechanism, a VNS-induced increase
in sympathetic tone might exacerbate the pathophysiology
of PAH. Therefore, it is important for a cervical VNS ther-
apy to exert precise control over the relative amounts of the
afferent and efferent parasympathetic and sympathetic acti-
vation, both direct and reflexive. Such cardiovascular control

has been demonstrated experimentally in the cardiac vagus
by fine-tuning specific VNS parameters, pulse width, inten-
sity and pulsing frequency, according to the “neural ful-
crum” hypothesis (Ardell et al. 2017).
Third, even if preganglionic, cholinergic fibers are suc-

cessfully targeted, many of them innervate the heart.
Cholinergic B-type fiber-specific VNS at the cervical
level could have negative chronotropic, dromotropic and
inotropic cardiac effects (Coote 2013), compromising
the hemodynamic condition of patients with PAH who
are sensitive to drops in cardiac output. A potential solu-
tion could be to use stimulation probes that specifically
target fibers that innervate the lungs and/or the spleen.
That could be attained, in principle, by implanting the
probes closer to the end-organs, rather than at the cer-
vical level. However, that would require more invasive
surgery, as implanting a stimulation probe at the bron-
chial branch, or branches, of the vagus would require a
thoracotomy, whereas implanting it at the splenic nerve
would require a laparotomy. Thoracoscopy or laparos-
copy could in principle be used instead. Alternatively, a
cervical vagus electrode that specifically targets the pul-
monary or splenic fibers could be used. That would require
detailed knowledge of the branching pattern and radial dis-
tribution of pulmonary and splenic fibers at the level of the
cervical vagus (Hammer et al. 2015), and fabrication of
multi-contact, high-resolution stimulating electrodes that
could target this kind of anatomical organization (Plachta
et al. 2014).
Finally, activation of C-type afferent fibers by VNS

might produce respiratory abnormalities (Coleridge and

Fig. 2 Potential actions of VNS on different pathogenetic mechanisms involved in PAH. Pulmonary arterial vasoconstriction, right ventricular (RV)
dysfunction and systemic inflammation are core mechanisms in the pathogenesis of PAH. They may be related to autonomic imbalance that is
common in PAH, with an increased sympathetic and decreased parasympathetic tone. Vasoconstriction, RV dysfunction and inflammation lead to
remodeling in the RV and pulmonary vessels, which eventually exacerbate the pathophysiology of PAH. In principle, VNS could target
therapeutically these mechanisms in the following ways: VNS produces NO-mediated vasodilation in the pulmonary circulation via vagal
bronchopulmonary branches. VNS renormalizes RV function via efferent and possibly afferent cardiac vagal fibers. VNS down-modulates cytokine-
mediated immune response via branches that terminate in the spleen. VNS chronically restores autonomic imbalance, possibly via re-setting
vagal and non-vagal autonomic reflexes between the brain and periphery

Ntiloudi et al. Bioelectronic Medicine            (2019) 5:20 Page 8 of 13



Coleridge 1984) including alterations in the breathing
rhythm, bronchial mucus secretion, bronchoconstriction
and cough (Undem and Kollarik 2005), and possibly
changes in local bronchial and pulmonary neuroimmune
and inflammatory reflexes, with unknown functional and
clinical significance (Adriaensen and Timmermans
2011). However, activation of C-type fibers happens at
much higher current intensities than those of B-type fi-
bers (Heinbecker 1930) and can easily be avoided by
calibration of VNS intensity (McAllen et al. 2018).

Conclusions
PAH is a lethal disease of the pulmonary circulation and
the right heart. Its complex pathophysiology involves,
among others, chronic autonomic imbalance, in particular
reduction of the parasympathetic tone, pulmonary vaso-
constriction, chronic inflammation, and vascular remodel-
ing. A bioelectronic medicine therapy, by stimulating the
vagus nerve, can target several of these processes, as VNS
produces pulmonary vasodilation, suppresses inflamma-
tion and restores autonomic balance. Preliminary studies
in preclinical animal models of PAH point to potentially
therapeutic effects of VNS and warrant further investiga-
tions. Physiological studies of the hemodynamic and anti-
inflammatory effects of VNS in conditions and models
that mimic PAH will help us understand the therapeutic
potential of such an approach and drive patient selection
criteria. Neurophysiological and biophysical studies in
fiber-selective neurostimulation will result in modes of
stimulation that recruit fibers in a desired manner, avoid-
ing unwanted effects. Finally, anatomical and neural tra-
cing studies of the organization of the vagal innervation of
the lung vessels and the spleen in small and, primarily, in
large animal models will guide the fabrication of more ef-
fective and selective stimulation probes for humans.
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