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Abstract 

As wind turbines continue to grow in size, they are increasingly being deployed 
offshore. This causes operation and maintenance of wind turbines becoming more 
challenging. Digitalization is a key enabling technology to manage wind farms in 
hostile environments and potentially increasing safety and reducing operational 
and maintenance costs. Digital infrastructure based on Industry 4.0 concept, such as 
digital twin, enables data collection, visualization, and analysis of wind power analytic 
at either individual turbine or wind farm level. In this paper, the concept of predictive 
digital twin for wind farm applications is introduced and demonstrated. To this end, a 
digital twin platform based on Unity3D for visualization and OPC Unified Architecture 
(OPC-UA) for data communication is developed. The platform is completed with the 
Prophet prediction algorithm to detect potential failure of wind turbine components 
in the near future and presented in augmented reality to enhance user experience. The 
presentation is intuitive and easy to use. The limitations of the platform include a lack 
of support for specific features like electronic signature, enhanced failover, and histori-
cal data sources. Simulation results based on the Hywind Tampen floating wind farm 
configuration show our proposed platform has promising potentials for offshore wind 
farm applications.

Keywords:  Digital twin, Wind energy, Predictive maintenance

Introduction
Wind power is becoming increasingly popular across the world as it plays a vital role 
in both sustainable and emission-free energy production, making it a perfect energy 
resource for reducing carbon footprint and global warming. Wind turbines with modern 
technologies are complex machines combining aerodynamics, mechanics, and electri-
cal with advanced control systems. They continue to grow in size, and they are increas-
ingly being deployed offshore in hostile and operationally demanding environments. To 
ensure the systems are safe, profitable, and cost-effective, it is imperative to implement 
a well-organized operation and maintenance strategy based on a digital solution (Gar-
lick et al. 2009). The ongoing global digital revolution, sparked by the Industry 4.0 ini-
tiative, has brought new concepts and emerging technologies to the fore that can help 
these missions to be accomplished. One of the core concepts of Industry 4.0 is digital 
twin, which can be defined as a digital representation of a physical asset. A digital twin 
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is intended to accurately represent a physical object, based on data and simulation, that 
can be used for forecasting, monitoring, controlling, and optimizing through the entire 
lifespan of the asset. Many applications of digital twins have already been developed, 
including for power generation, manufacturing and processes, building structures, 
meteorology, healthcare systems, education systems, automotive industries, and urban 
planning (Rasheed et al. 2020). This paper introduces and demonstrates the concept of 
predictive digital twin for wind farm operation and predictive maintenance. To this end, 
we develop a digital twin platform based on Unity3D for visualization and OPC Unified 
Architecture (OPC-UA) for data communication. Specifically, our proposed digital plat-
form is used to provide predictive information regarding the potential failures of wind 
turbine components.

Motivation and scope

The wind industry is looking for a way to increase its energy production as the demand 
for renewable energy develops. One way to boost the energy output is by increasing the 
size of the rotor blades. The rising size of the blades can put more strain on the turbine’s 
construction and other components. Lightning strikes, blade icing, material or power 
regulator failure, damage from external objects, and poor design are all contributing to 
blade failure, which can result in costly repairs and income loss if the turbine is standstill 
(Tavner et  al. 2013). Furthermore, the generator, gearbox, and bearing are also prone 
to failure. The main causes for the generator failure can be attributed to wind loads, 
weather conditions, manufacturing or design flaws, incorrect installation, lubricant con-
tamination, and insufficient electrical insulation. Based on historical data and research, 
bearings and gears account for the majority of the gearbox failures (Elasha et al. 2019). 
Unclean lubricant, inaccurate bearing settings, temperature and vibration variations, 
and inappropriate maintenance are just a few of the variables that might cause failure. In 
general, wind turbine failures can be divided into two categories: external and internal, 
as shown in Fig.  1. Electrical failures mostly are caused by moisture and temperature 
inside the converter enclosure. This environmental condition creates a seasonal con-
version climate. Short circuits caused by condensation is also one of the most common 
electrical failures. This usually happens after a scheduled or unplanned shutdown result-
ing in damage to the components, necessitating replacement, and reducing the wind tur-
bine’s lifetime. Mechanical failures inside the nacelle largely occur due to temperature 
problems, moisture reaction with metal parts that weaken and degrade mechanical ele-
ments, problems with the hydraulic and cooling system, blade icing, and erosion.

Due to the nature of the offshore environment, operation and maintenance of wind 
farms can be difficult and expensive. Thus, there is an incentive to plan operation and 
maintenance in safer and smarter ways. Digital twins can be viewed as an enabling tech-
nology for intelligent wind farm operation. A digital twin can be defined as a virtual 
model designed to accurately reflect a physical asset (Jones et al. 2020; Liu et al. 2021). 
Unlike the current practice, which is based on the Supervisory Control and Data Acqui-
sition (SCADA) system, digital twins can be used for prediction and forecasting (Dai 
et  al. 2018). Remark that digital twins are implemented in a software, for which algo-
rithms that can be used for prediction and forecasting are written based on Machine 
Learning (ML) or Artificial Intelligence (AI). In our case, we use the Prophet algorithm, 
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which is a type of ML algorithm. There are many types of digital twin, e.g., monitor-
ing digital twin, imaginary digital twin, prescriptive digital twin, and predictive digital 
twin (Verdouw et al. 2021). The objective of this paper is to design and demonstrate a 
predictive digital twin platform for offshore wind farms based on Unity3D and OPC-
UA, which can be used to predict abnormalities and possible failures in each individual 
wind turbine. Due to the vastness of the subject and the considerable variety of subtop-
ics, we narrow the subject down to mechanical component failures. Having said that, 
the predictive digital twin platform can also be implemented for electrical or control 
system failure prediction. One of the most crucial components of rotary equipment is 
the bearing. The key point to monitor the bearing effectively is the accurate degradation 
process prediction, which helps to prevent total failures and reduce maintenance costs. 
Therefore, the case example selected in this paper is about bearing failures since they 
are a major source of unscheduled maintenance, repairs, and replacements, resulting in 
energy production downtime (Dong et al. 2014).

Literature review

Digital twin has various aspects and comes with different definitions. Boschert and 
Rosen (2016) define a digital twin as a description of the physical and functional char-
acteristics of a component, a product, or a system that includes more or less all infor-
mation that can be useful throughout its entire life-cycle. Fuller et  al. (2020) describe 
a digital twin as an integration of data between physical and virtual machines in either 
direction with ease. Glaessgen and Stargel (2012) express that in order to accurately 
reflect the life of a physical asset, a digital twin utilizes the best available physical mod-
els, sensor updates, fleet history, etc., to create an integrated multi-physics, multiscale, 
and probabilistic simulation. Finally, according to Verdouw et al. (2015), a digital twin is 
a digital representation of an object with a unique identification that can be trusted, is of 
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integrity, is immediately available, and can serve its intended purpose. According to all 
mentioned definitions, it can be said that a digital twin provides predictability, control, 
monitoring, and optimization of physical assets by utilizing data and simulations dur-
ing the entire life-cycle of the assets. The aforementioned definitions implicitly underline 
the importance of communication between the physical asset and its digital twin. The 
OPC-UA is an industrial machine-to-machine communication developed by the OPC 
Foundation (Mühlbauer et al. 2020). The OPC-UA is based on commonly used commu-
nication standards like the Hypertext Transfer Protocol (HTTP). Thus, it can be used in 
different operating systems. Because of its flexibility, the OPC-UA has been considered 
as a pillar of representing semantic digital twins (Perzylo et al. 2019). For this reason, we 
use OPC-UA as the communication protocol in our digital twin platform.

Digital twin of wind farms is beneficial for monitoring and operating individual wind 
turbines remotely (Pimenta et  al. 2020). They enable cost-effective maintenance and 
ensure greater reliability of the components used to convert wind energy into electricity 
(Moghadam et al. 2021). Oñederra et al. (2019) outlined development of a digital twin 
for a medium voltage cable prototype in a wind farm which can be used to simulate its 
behavior and increase its lifespan in order to accomplish preventative maintenance. In 
their work, a hybrid model of a dynamic medium voltage cable model and an interpo-
lation technique was created in OpenModelica. Furthermore, as part of a predictive 
maintenance plan, Sivalingam et  al. (2018) provided a unique approach for predicting 
the Remaining Useful Life (RUL) of an offshore wind turbine in a digital twin shell by 
monitoring the turbine conditions. Wang et al. (2021) summarized recent work regard-
ing reliability of offshore wind turbine structures and reviewed some possible damages/
failure. Moreover, they proposed a digital twin concept to monitor offshore wind turbine 
support structures as a solution to some problematic challenges. Botz et al. (2019) con-
ducted research to apply digital twin framework by gathering vital data from attentively 
chosen spots of hybrid wind turbine structure for updating material models of the wind 
turbine in order to improve maintenance and operating parameters and extend the tur-
bine’s useful life. In another publication, Kooning et al. (2021) presented a summary of 
recent research on modelling methodologies to build a digital twin for a wind turbine by 
considering the components, aerodynamics, structural and mechanics, power electronic 
converters, pitch and yaw systems. Furthermore, Pimenta et  al. (2020) created a digi-
tal twin by using SCADA to create a feasible trustworthy numerical model of a floating 
wind turbine.

Applying predictive methodologies into a digital twin platform to estimate failure 
probability provides the ability to schedule on-time maintenance for reducing repair 
time and unplanned maintenance, as well as organize proper spare parts to mitigate 
inventory costs. The prediction of wind turbine failures is mostly conducted based on 
the time scales of short-, medium-, and long-term (Foley et al. 2012). Long-term predic-
tion focuses on estimating the variables over time periods of days, whereas medium-
term prediction examines the variables at hourly intervals, and short-term forecasting 
seeks to estimate the values at 10-s or 10-min intervals. Different prediction meth-
ods have been used to forecast wind turbine components, which can be divided into 
four categories: statistical models, physics-based methods, data mining algorithms, 
and hybrid models (Kusiak et  al. 2013). Statistical forecasting approaches are popular 
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because of their objective in analyzing data and identifying patterns that can be used for 
future forecasts. An example of statistical approaches is the Auto Regressive Integrated 
Moving Average (ARIMA). The ARIMA is a statistical method that uses previous values 
to describe the values of a time series. This method is built on two basic characteristics 
of past values and errors. Furthermore, the method utilizes historical data to determine 
the performance of the model by using estimated errors (Menculini et al. 2021). Phys-
ics-based methodologies are based on the physical models that define and represent the 
behavior of the variables providing more reliable predictions for the future trend of the 
model. In general, the nonlinear part of the data is considered as numerical methods 
concentrate on capturing the linear data. Data mining methodology is used to model 
both linearity and non-linearity of the data. Data mining models are created through 
heuristics and calculations. It first searches for patterns or trends among the provided 
data to create a model. The Neural Network (NN), Support Vector Machine (SVM), 
K-Nearest Neighbour (KNN), and tree-based regression algorithms are examples of 
data mining methods used for prediction. The SVM, in particular, is a prominent super-
vised learning technique that is utilized to solve both classification and regression issues. 
However, it is mostly applied in machine learning for classification problems. This algo-
rithm aims to construct the best line or decision boundary in n-dimensional space that 
can be used to categorize the data easily in the future, which is known as a hyperplane, 
to easily place the new points in the correct category. The SVM creates the hyperplane 
by choosing extreme points. As a result, extremes are called support vectors, and the 
algorithm that employs them is known as a Support Vector Machine (Jose et al. 2013). 
The Auto-Encoder Neural Network (AENN) is a type of unsupervised Artificial Neu-
ral Networks (ANN) to rebuild and decode the data from the compact encoded model 
into a representation close to the original input. It is basically designed to minimize data 
dimensionality by learning how to disregard data noise (Ren et al. 2018).

The aforementioned methods above are, however, prone to large trend errors when 
there is a change in trend near the cutoff period and they fail to capture any seasonality, 
which underlies the idea of the Prophet prediction algorithm (Taylor and Letham 2017). 
The Prophet fits non-linear trends with annual, weekly, and daily seasonality, as well as 
holiday impacts, to forecast time series data (Jana et al. 2022). It is an open-source soft-
ware developed by Facebook’s Core Data Science team. It is used for time series forecast-
ing with substantial seasonal consequences and chronological data from several seasons. 
Generally, Prophet can handle outliers and missing data and is robust to changes in the 
trend.

Contribution of this paper

The novelty of this paper is the development of a predictive digital twin architecture and 
software for wind farm applications based on OPC-UA and Unity3D. Thus, the contribu-
tion is within the area of system engineering and software development (please refer to 
Fig. 5). All codes are available in this link: https://​github.​com/​hamir​ashkan/​Predi​ctive_​
Digit​alTwin_​WindF​arm. The OPC-UA is a secure and reliable mechanism for informa-
tion exchange between systems (Stojanovic et al. 2021), while the Unity3D is one of the 
most popular game engines in the gaming industry. The proposed digital twin platform 
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is further combined with the Prophet algorithm to predict the component failures in 
individual wind turbines.

The contributions of this paper can be summarized as follow:

•	 Development of a bi-directional digital twin platform architecture for monitoring 
and controlling of wind farms based on Unity3D and OPC-UA. To the best of our 
knowledge, this is the first time such architecture is proposed, developed, and dem-
onstrated for wind farm applications.

•	 Development of a failure prediction method based on the Prophet algorithm for 
component failure prediction in individual wind turbines. To the best of our knowl-
edge, this is the first time the algorithm is used for prediction in wind farm applica-
tions.

•	 Development of augmented reality for interactive visualization in the predictive digi-
tal twin platform.

Outline of this paper

This paper is divided into eight sections. Section  1 provides the introduction. Sec-
tion  2–5 describe the platform development and its related algorithms for prediction 
and visualization tools. Section 6–7 discuss the experimental setup and results. Finally 
Section 8 is the conclusion. The complete outline is given below:

•	 Introduction, which includes motivation & scope, literature review, contribution of 
this paper, and outline of this paper.

•	 Failure prediction in wind turbines, which includes failure prediction procedure, data 
processing & cleaning, and modelling & forecasting.

•	 Digital twin platform development, which includes communication architecture, 
data source, and visualization interface.

•	 Predictive twin algorithms, which includes algorithms for temperature and vibration 
failure prediction.

•	 Augmented reality for interactive visualization.
•	 Experimental setup, which includes data availability and simulation setup.
•	 Result and discussion.
•	 Conclusion.

Failure prediction in wind turbine
Among possible sources of failures in Fig. 1, bearing is one of the wind turbine compo-
nents that is prone to failure (Liu and Zhang 2020). Thus, we use it as a use case. None-
theless, the method presented in this paper can be extended easily for other sources of 
failures. Bearing health status can be measured and monitored based on different var-
iables and parameters. However, temperature and vibration are the two most notable 
indicators of whether bearings are functioning normally or not. Various methodologies 
have been used to evaluate the rolling element of the RUL. Current technologies such as 
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machine learning and artificial intelligence provide accurate results of prediction and are 
being used to monitor and predict asset condition and behavior.

Bearing failure prediction procedure

The normal procedure for bearing health prediction can be seen from Fig. 2 and is elabo-
rated as follows (Jin et al. 2021): 

1.	 Obtaining data from the asset which can be done via various methods such as the 
SCADA system.

2.	 Cleaning and processing the acquired raw data for dealing with missing values, divid-
ing the dataset into dependent and independent variables, and splitting the dataset 
into training and testing sets by applying data processing methodologies to achieve 
an understandable format.

3.	 Defining a performance index based on the related parameters and factors using 
methods discussed in the previous section and setting a threshold to find the outli-
ers.

4.	 Building a model to train the data, which is mostly implemented by machine learning 
methods using the healthy part of the data or the healthy index in the previous step 
as the training set and train the model to recognize the normal trend of the working 
condition, and then test the model on the rest of the dataset to check the accuracy of 
the built model and finally find the best model.

5.	 Forecasting the future trend of the data based on the built model using machine 
learning algorithms.

6.	 Recognizing, extracting, and evaluating the outliers and irregularities in order to dis-
cover the possible failure of the working conditions.

7.	 Decision making and solving the problem either by humans or by employing artifi-
cial intelligence to change the potential failure condition into a healthy state.

Data processing and cleaning

Data cleaning is required in order to build a model representing the health status of the 
wind turbine. The wind turbine system performance is based on sensors that collect data 
from the SCADA system. Accordingly, there could be outliers in data or, if the sensors 
malfunction, no data is produced. These errors can occur if sensors are not calibrated 

Decision makingSensor Data Data processing &
cleaning

Building the best
model Perform forecast Anomaly

detection

Defining
Performance

index

Fig. 2  A typical failure prediction procedure
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or if they degrade over time, yielding outliers in the SCADA system. Criteria considered 
and used for primary data cleaning are as follows:

Signal analysis and performance index

Vibration monitoring and analysis in rotating elements provide critical information 
concerning anomalies occurring inside the machinery’s internal structure, as well as 
the ability to plan maintenance actions. Vibration measurement and interpretation are 
both parts of the vibration analysis. The information gained from the vibration signals is 
used to predict failures, increase asset usage and efficiency, extend the life of assets, and 
lower maintenance costs related to the asset health condition. As long as a machine is 
in good condition, its vibration spectrum is modest and steady. When problems occur 
and parts of the machine’s dynamic processes change, the vibration spectrum changes 
as well. Furthermore, there are potential high or low-temperature issues that result in 
failures in bearing. High temperature leads to a decrease in lubricant viscosity, fatigue, 
seals drying and cracking, and weakening retainer and cage. Low temperature causes 
raise the lubricant viscosity, skidding, and increasing torque. Data on the temperature 
time series of the wind turbine bearing have a firm correlation with their historical val-
ues as well as with other related external variables, such as active power, gearbox bearing 
and oil temperature, hub temperature, ambient temperature, rotor RPM, etc. Therefore, 
the prediction of temperature changes is essential for overheating warnings. The vibra-
tion signals are first gathered in the time domain using a vibration sensor, then applying 
vibration processing methods and factors to extract useful information from vibration 
signals in order to forecast the potential failures. There are four indicators/performance 
indices that can be used to detect bearing failures: Root Mean Square (RMS), Kurtosis, 
Skewness, and performance index. While the first three are well-known statistical indi-
cators (e.g., see Lin and Ye (2019); Eftekharnejad et al. (2011)), the performance index 
can efficiently be used to monitor the healthy status of the component and help to find 
proper thresholds in order to extract the outliers and avoid future failures. Finding a cor-
relation between parameters is a way of finding a health index. For example, for bearing 
condition monitoring it can be useful to find the correlation between factors concluded 
in temperature rising such as gearbox bearing and oil temperature, output power, rotor 
RPM, ambient temperature, hub temperature, or correlation between wind speed and 
output energy. Defining the performance index based on the correlation of multi-dimen-
sional variables into one-dimensional can also be useful, as can be seen from Fig. 3. In 
this paper, we define the performance index as the average value of the hub, shaft bear-
ing, and gearbox bearing temperature.

Modeling and forecasting

The Prophet is chosen as the prediction solution in this paper. The reason is not only 
because it can handle large trend errors and take into account seasonality, but also it 

(1)

Delete xi, if xi ∈ timeout ∨ sensor off
xi = xi+1 or xi−1, if xi ∈ loss data
xi = 0, if xi < 0 or xi is null
xi, for others



Page 9 of 26Haghshenas et al. Energy Informatics             (2023) 6:1 	

includes parameters that can be adjusted without any knowledge of the underlying 
model. Furthermore, it has been designed using three-part decomposable time series 
models of trend, seasonality, and maintenance. All of which makes this algorithm 
an ideal prediction solution for maintenance operations and failure forecasting. The 
model is defined as follows:

where g(t) reflects the non-periodic trends in the value of the time series, s(t) indicates 
the periodic variations such as weekly and yearly seasonality, and h(t) refers to the main-
tenance schedule. The error term ǫ(t) is used to refer to any characteristic modifica-
tions, which are not captured by the model, and is modelled as Gaussian distribution. In 
this paper, the trend g(t) is modelled as a linear trend with change points. The reason is 
because our problem does not exhibit saturation growth. The formula is given by

where a(t) ∈ {0, 1} , k ∼ Normal(0, 5) is the growth rate, δ ∼ Exponential(0, 5) is the rate 
adjustment, m ∼ Normal(0, 5) is the offset parameter, and γ is an arbitrary continuous 
function. If the problem exhibits saturation growth, the model can be replaced by the 

(2)y(t) = g(t)+ s(t)+ h(t)+ ǫ(t)

(3)g(t) = (k + a(t)⊺δ)t + (m+ a(t)⊺γ )

Fig. 3  Strong relation between the hub, shaft bearing, and gearbox bearing temperature
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logistic model. The seasonality component s(t) is chosen based on a standard Fourier 
series as follows

where, based on experiment, in our case N = 24 and P = 1 . In this paper, we do not 
consider the term h(t) as it is not relevant for the simulation.

Digital twin platform development
In this section, we describe the communication architecture, data source, and visualiza-
tion tools that are used to develop the digital twin platform. The software and hardware 
used to build the platform are open source. From software development perspectives, 
the functional and non-functional requirements for the digital twin platform includes:

•	 Functional requirement

–	 The functionality to switch between various data sources (cf. Figs. 3 and 10). This 
requirement is to ensure the platform can accommodate different data sources, 
either static data, live data, simulated data, or historical data.

–	 Support for both 2D (dashboard), 3D (Unity), and augmented reality user inter-
face (cf. Figs. 5, 7, and 14). This requirement is to ensure the platform can be pre-
sented in different visualization types.

–	 Role-based user functionality (modes) (cf. Figs. 7 and 9). This requirement is to 
accommodate different user inputs and configuration. For example, the turbine 
specification can be defined manually by the users.

–	 Support for Functional Mockup Unit (FMU) and Functional Mockup Interface 
(FMI) (cf. Fig. 10). This requirement is to ensure the platform can accommodate 
co-simulation based on the FMU/FMI standards.

•	 Non-functional requirement

–	 Support real-time data acquisition (cf. Figs.  3 and 10). This requirement is to 
ensure that the platform enables real-time data streams from the real asset to the 
digital model.

–	 Based on OPC-UA (cf. Fig.  5). This requirement is to ensure the platform is 
secure, reliable, and follows the International Electrotechnical Committee stand-
ard (IEC 62541).

–	 Protect sensitive data (secure) and reliable [OPC-UA is a secure and reliable 
mechanism for information exchange between systems (Stojanovic et al. 2021)].

–	 Compatible with existing operating systems (Unity3D can be installed in Win-
dows, macOS, and Linux). This requirement is to ensure the platform can be 
used in different system environments.

We use the Hywind Tampen floating wind farm configuration as a case study. The 
reason for using the Hywind Tampen wind farm is not only because it became the 

(4)s(t) =

N
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symbol for energy transition in the North Sea, but also it became a test bed for fur-
ther development of floating wind, installation methods, and simplified mooring sys-
tem. The Hywind Tampen is a 94.6 MW floating wind farm developed by Equinor 
ASA (see Fig.  4) and is designed to provide power for the Snorre and the Gullfaks 
offshore oil and gas platforms located at the Norwegian Continental Shelf (NCS). 
The aim of the wind farm is to eliminate 200,000 tons of CO2 and 1000 tons of NOx 
emissions per year. Upon its completion, the Hywind Tampen is the world’s biggest 

Fig. 4  The left figure shows the Hywind Tampen project developed by Equinor ASA, while the right figure 
shows its digital twin representation in Unity3D

UI Dashboard Arduino Board

Augmented Reality

OPC UA Server

Unity3D Visualization

USBInternet

OPC UA

Fig. 5  Communication architecture based on the OPC-UA for connecting digital twin components
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floating wind farm and the first wind farm to supply electricity for offshore oil and gas 
platforms (Tenggren et al. 2020).

Communication architecture

Figure 5 shows the communication architecture of our proposed digital twin platform. The 
OPC-UA is used as the communication backbone to realize horizontal and vertical com-
munication between subsystems in the field layer and the entities of the upper layers. The 
OPC-UA is a key component of Industry 4.0, which enables devices and cyber-security sys-
tems to be accessed in a common way and data can be exchanged across them in a similar 
manner regardless of the manufacturer. In this paper, authenticated communication has 
been used to provide connection between server and clients. The OPC-UA servers can be 
created through the UaExpert application or other platforms offering this service and all 
clients can be connected to the available servers from different devices.

The platform is also utilizing Node-RED, which is an open-source Application Program-
ming Interface (API) platform developed by IBM’s Emerging Technology Services team, 
providing a broad range of online services for connecting physical and digital assets. The 
Node-RED and serial port data can be synchronized with the OPC-UA Server namespaces. 
Sensor data is connected to the digital platform by using the OPC-UA and serial commu-
nication blocks from the Node-RED. Local sensors are connected to the digital platform 
via Arduino UNO WiFi Rev.2 board which is an IoT hardware used for creating sensor 
networks. It transmits the sensor data through serial communication which is accessible 
through cloud platforms and WiFi devices. In this paper, all sensors are connected to the 
Arduino board, and they send the data to the PC via serial communication port and conse-
quently, can be transferred through the Node-RED platform by adding a serial port block.

Data source

The digital twin platform uses a variety of data sources, which enable different options 
depending on the application and requirement, as described in Fig. 6. The data can be clas-
sified as:

•	 Static data: which includes data created by the user in the 3D platform to conduct vari-
ous experiments and what-if scenarios.

•	 Live data: which includes data received from the physical asset through sensors like 
wind speed, direction, and temperature.

•	 Historical data: which are used for simulating semi-realistic scenarios to conduct pre-
diction and processing procedures.

•	 Simulated data: which are created with physics-based software such as Matlab and 
imported with the FMI plug-in into the system from more complex physical models.

Visualization

The 3D visualization is implemented in Unity3D, an interactable open-source plat-
form that allows users to drag-and-drop assets from an inventory to the scene and 
set up various scenarios by changing internal and external factors. We use Unity3D 
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instead of Unreal Engine because it is widely regarded as the most accessible game 
development platform due to its usage of the C# programming language. Unreal 
Engine, on the other hand, is written in C++, which is a more difficult language to 
master. Except for the wind turbine and oil rig, which are free 3D models, the setting 
was entirely developed from scratch. A realistic ocean has been created using water 
textures and shaders to simulate waves, foam, and movement in response to wind 
speed and direction, which can be enhanced in the future by adding hydrodynamic 
models. The scene contains wind turbines and oil rigs to mimic the Hywind Tampen 

Data Resources

Static data Live data Simulated data Historical data

Created by the user in 3D
platform

Experiments 
What-if scenarios

Capturing from physical twin
by sensors

Conducting realistic scenarios 

Imported from simulated
models via FMI

Conducting semi-realistic
scenarios 

Downloaded from actual wind
turbines

Conducting semi realistic
scenarios 

Fig. 6  Different data resources and their use for conducting diverse scenarios

Fig. 7  Control and visualization of desired scenario in Unity3D platform including asset inventory and UI 
indicators



Page 14 of 26Haghshenas et al. Energy Informatics             (2023) 6:1 

floating wind farm. Users are able to access the user interface in two different modes: 
operator mode and editor mode, based on their permission levels. Operators can con-
trol and set the wind farm and wind condition by using the available panels, sliders, 
input fields, and buttons as shown in Fig. 7.

The user interface contains widgets utilized for the dashboard such as sliders, input 
fields, buttons, toggles, charts, etc, while the 3D models used in the inventory panel 
are wind turbines and oil rigs, as can be seen from Fig. 8.

Users can adjust the turbine geometry as well as the wind speed and the wind direc-
tion to conduct interactive simulation, as can be shown in Fig.  9. Furthermore, the 
users have the ability to switch instantly among four separate data resources. Each 
data resource can be accessed through a different switch button, as can be seen from 
Fig.  10. The first mode is Unity3D static data, which contains user-defined param-
eters in Unity3D that can be utilized and adjusted directly from the user interface and 
editor to determine the desired output and situation. The second mode is the FMU 
data, which is the simulated data imported from Matlab Simulink or other simulation 
applications using the FMI plugin that allows the users to conduct more complicated 
experiments based on the complex imported models and consequently visualize in 
the Unity3D platform. The third and most practical technique is the OPC-UA mode, 
which provides a two-way communication data transferring from the physical asset 
to the digital asset, allowing the user to conduct diverse experiments and what-if sce-
narios based on the real-time data and give the command to the physical asset simul-
taneously that is presenting the main concept of the digital twin. The last mode is the 
actual data related to actual wind farms’ historical data imported from the CSV files 
to operate semi-realistic scenarios and investigations.

Inventory

Turbine
Oil Rig
Wind Farm
Solar panels
Vessels
...(3D model)

Tag Label
Blade Length
Yaw Angle
Pitch Angle
Mechanical Loss %
Electrical Loss %
Wake Loss %
Power Coefficient
Tip Speed Ratio
Output Power
....

Wind Turbine/Farm DataDashboard Widgets

Slider
Filed Input
Button
Toggle
Plot
Charts
Gauges
Map
Image
....

User Interface platform Property

Fig. 8  The components used to implement the User Interface and configuration settings
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The editor mode provides more configurations and abilities to change the param-
eters which can give a higher level of access to the user based on the hierarchy. The 
available editor mode can be seen in Fig. 11.

To represent output power of each wind turbine, a bar indicator of the turbine has 
been designed to show the current power generation in a green to red colour gradient 
showing the minimum to maximum power. The bearing vibration and temperature 
are also shown on small panels on the top of each turbine, showing the current value 
and the minimum and maximum range of the values, which can be seen from Fig. 12.

In the 3D visualization, the condition indicator panel located on the top of each 
wind turbine includes the temperature or vibration values, a small cylinder bar shows 
the value and the colour transitioning from green to red represents the minimum to 

Fig. 9  User ability panels. The left panel is inventory which is used for adding new assets to the scene, the 
middle panel is the wind controller used for setting the wind conditions, and the right panel is the turbine 
modification setting which is used to change the turbine’s parameters

Fig. 10  Data resource switch buttons are shown in the figure for (a) Unity data (b) FMU data (c) OPC-UA (d) 
Live (actual) data
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maximum value, respectively. If the temperature or vibration value exceeds the mini-
mal/maximal thresholds, then the turbine blades colour turns to red in case of pass-
ing the maximum value and an alarm sign will appear on the top of the turbine, or 
blue if it goes beneath the minimum value, as can be seen in the Fig. 13.

Predictive twin algorithms
In this section, we describe the algorithm for bearing failure prediction based on tem-
perature and vibration data. The algorithm follows the procedure presented in the previ-
ous section. To this end, the Prophet prediction algorithm is used to forecast the bearing 
condition.

Temperature failure prediction

Algorithm  1 uses historical temperature data to predict the future trend, and hence 
bearing failure in the future. First, the data is cleaned according to the rules presented 
in the previous section. Afterward, a performance index is defined from the historical 
dataset. In this case, the performance index is computed as the average of the gearbox 
bearing temperature, bearing shaft temperature, and the hub temperature. Once the 

Fig. 11  The editor mode of the user interface used to access more configuration settings based on the user 
access

Fig. 12  The left figure shows the power output indicator, the middle one shows the bearing temperature 
indicator, and the right one shows the bearing vibration indicator
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performance index is defined, a machine learning method is used to build a model for 
prediction. The Prophet is used to forecast the future trend of the temperature. Once 
an anomaly is detected, the algorithm can inform the operator to perform preventive 
maintenance.

Vibration failure prediction

The vibration failure prediction is done in the same way as the temperature predic-
tion. The only difference is when determining the performance index, instead of 

Fig. 13  Condition monitoring of the turbine. If the bearing temperature or vibration exceeds the healthy 
boundary, the turbine colour turns to red with a warning sign on top of it
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taking an average of temperatures inside the nacelle, the algorithm uses indicator 
such as the RMS, Skewness, and Kurtosis, described in the previous section, as can 
be seen from Algorithm 2. In this case, as we will see in the next section, the RMS 
provides faster detection.

Augmented reality for interactive visualization
The proposed solution is equipped with augmented reality in order to improve and 
facilitate user interaction and abilities. The concept of augmented reality involves 
blending the digital world with the physical world. This is accomplished by using spe-
cialized software to visualize and combine them together, providing a platform for 
which users can interact more easily. This option enables users to directly access their 
digital assets via smartphones for obtaining useful data or adjusting physical assets 
using technologies such as IoT without requiring special hardware or tools. The PTC 
Vuforia plugin for Unity3D has been used to implement augmented reality. To acti-
vate the augmented reality, users need to hold their smartphone or tablet and focus 
on the image target, which can be a graphic, QR code, or 3D object. Furthermore, a 
3D model pops up on the mobile devices and provides augmented reality interaction. 
The augmented reality platform works simultaneously with other visualization plat-
forms. The implemented augmented reality can be seen in Fig. 14.
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Experimental setup
Data availability

As mentioned in the previous section, there are several data sources that we can use in 
the digital twin platform. For condition monitoring of the wind farm, real-time data can 
be obtained directly from the sensors. For forecasting, since we want to test the predic-
tive algorithm, the temperature and vibration data are obtained from Kaggle, an online 
data repository to test machine learning algorithms. The temperature data used to find 
the performance index and to predict the failure are obtained from a real data set from 
a wind farm located in Gansu Province in China (Zhang 2003). In this case, a SCADA 
system measures 21 parameters at 10-min intervals. The power rate of each wind tur-
bine is 1800 KW. The key parameters considered in this study are active power, ambient 
temperature, bearing shaft temperature, gearbox bearing temperature, gearbox oil tem-
perature, generator RPM, generator winding temperature, hub temperature, main box 
temperature, rotor RPM, and wind speed. The machine learning model will be trained 
using algorithms to build a relation between the inputs and outputs. Consequently, the 
quality of the data needs to be tested to ensure that the model accurately represents the 
system condition. Anomalies in data must be removed from the model to prevent the 

Fig. 14  The augmented reality-based visualization of a digital twin of a wind farm
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model from interpreting system performance incorrectly. The vibration data is obtained 
from NASA dataset (NASA 2022). The dataset consists of four individual files with each 
containing 20,480 data points with a sample rate set at 20 kHz. According to data gath-
ered after 1 week, a defect in the outer race of bearing 1 was observed at the end of the 
failure test.

Simulation setup

Real-time data which include wind speed and temperature are collected from the local 
sensors connected to the Arduino board. The board is connected to a PC by serial ports 
to send the measured data to the system. The received real-time data is transferred to 
Unity3D through the OPC-UA protocol using Node-RED. In the Node-RED, a serial 
port block is added to receive the collected data from the Arduino board and send it 
to the OPC-UA client block which is connected to the main OPC-UA server. This data 
can be transferred and used by other OPC-UA clients. There are two clients employed 
to transfer data among the available platforms. The first one is the client made in Node-
RED used to receive the sensor data and communicate to the 2D GUI dashboard. The 
second one is the client created in C# in Unity3D used for communication to the 3D vis-
ualization and Augmented reality platforms. The schematic diagram of the experimental 
setup is presented in Fig. 15.

Simulation of the real-world wind turbine scenarios is done through the wind energy-
related functions in the Unity3D C# scripting. The data is received by the OPC-UA cli-
ent in Unity3D and it is injected into the defined wind energy functions and converted 
to the variables which are used for configuration and adjusting the desired scenario. To 
provide the natural wind farm scenario, the historical data is read from the CSV files to 
make the artificial presentation of the bearing temperature and vibration of the wind 
turbines. Each wind turbine has its own temperature and vibration changing per time 

OPC UA Server

wind speed
sensor

wind fan

work station

Client 1Server Client 2 Client 3

Wind Turbine 1 Wind Turbine 2 Wind Turbine 3

Physical twin

wind turbine

Temperature
sensor

Tablet devices

Digital twin - Unity3D Digital twin - Augmented Reality

Tablet MobileWindowsWindows

Arduino UNO

Arduino UNO

Vibration
sensor

Mobile devices
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direction
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Wind Direction Sensor

Vibration Sensor

Temperature Sensor

Wind Speed Sensor

Client 4 Client 5

Digital twin - Node-Red GUI
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OPC UA Client (AAS)
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Windows
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OPC UA Client (AAS) OPC UA Client (AAS)

USB Cable Network
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Fig. 15  The schematic diagram of the experiment
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interval set by the user. By starting the Unity3D, the system starts to read the bearing 
temperature and vibration data from the CSV files and sets it for each turbine. Moreo-
ver, a realistic system will be provided to apply different what-if scenarios and prediction 
methods showing the wind turbine bearing condition and other desired information.

Result and discussion
To predict the bearing condition of each individual wind turbine in the current scenario 
running in Unity3D, a forecast button is available on each wind turbine setting panel, 
which can be pressed by the user to start predicting the bearing temperature or vibra-
tion by considering the current situation and historical data. By pressing the forecast 
button, Unity3D triggers the Python script which runs the prediction methods for that 
turbine and starts to train the machine learning model based on the data collected on 
each turbine and represents the output forecast in a chart, as can be seen from Fig. 16, 
along with the healthy thresholds. All the prediction calculations and output charts are 
presented by Python scripts.

Observing the result of the vibration predictions, it is apparent that either the RMS, 
Kurtosis, or Skewness show an abnormal state before a serious bearing problem occurs. 
The RMS function appears to be the most accurate and sensitive. It indicates bearing 
anomaly for more than one day before the actual failure, while the Kurtosis and Skew-
ness reveal the abnormal distribution in less than one day, as can be seen from Fig. 17. 
Therefore, the RMS function has been selected as the main vibration performance index 
in this paper. The process is first by calculating the RMS value for a specific time interval 
of the historical healthy data, then find the acceptable variance and set the minimum 
and maximum thresholds. Afterward, the real-time data collected from the sensors are 
directly used by prediction algorithms to be evaluated against the healthy data and check 
if they are within the healthy thresholds. The RMS of data was calculated by using a per-
centage interval which was set at 5% of the length of the whole sample. Consequently, 
regardless of the size of the data set, the system calculates the RMS value of the bearing 
vibration data at any time interval, regardless of how much data is available.

Fig. 16  The system predicts the bearing condition based on the collected data from each wind turbine once 
the forecast button is pressed, and displays the results on the screen
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For the temperature prediction, the performance index was selected based on the val-
ues that are most correlated, which are the gearbox bearing temperature, bearing shaft 
temperature, and hub temperature. Each of these temperatures correlates with the vari-
ables of the wind energy system. The gearbox bearing temperature, for example, cor-
relates strongly with the power output, wind speed, rotor speed, and oil temperature, as 
can be seen from Fig. 18. Basically, the system computes the average of the correlated 
values per day, clears the outliers, normalizes the result, and assigns that value to rep-
resent a healthy index. It is beneficial to take the daily average temperature since the 
method works better for a daily interval and produces more useful results than conduct-
ing the forecast in smaller time intervals. The prediction result is shown in Fig. 19. As 
can be seen, the future trend (blue line) is upward, and the actual values are increasing 
towards the end of the simulation, indicating that the forecast was correct, and that the 
failure can be predicted before it occurred.

The main purpose of this paper is to create a predictive digital twin platform that can 
be used for real-time predictions and to schedule adequate maintenance to mitigate 
risks and costs associated with the downtime. The implemented prediction techniques 
are based on the best available solutions and methodology, and they work well in the 
proposed predictive digital twin platform. However, all the prediction methods can be 
improved in the future by including more robust solutions.

Conclusion
In this paper, a predictive digital twin platform for wind farms is proposed. The strik-
ing feature of the digital twin platform compared to the SCADA system is the ability 
to predict failure. In this case, we have added the Prophet prediction algorithm for 
wind turbine component failures. The platform allows users to collect, visualize, and 
analyze data in real-time to improve predictive capabilities, enable better decision 

Fig. 17  The comparison between the RMS, Kurtosis, and Skewness
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making, reduce potential failures, and improve reliability. The proposed platform is 
based on the OPC-UA and Unity3D and commences by collecting real-time data from 
sensors. Different result presentations are offered through 2D and 3D visualization, 

Fig. 18  The correlation diagram of the gearbox bearing temperature to the most related parameters

Fig. 19  The failure prediction based on temperature measurement
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and augmented reality, which can be chosen depending on the desired objectives and 
requirements. To test the digital twin platform, we consider failure predictions of the 
wind turbine bearings. To this end, we use the configuration of the Hywind Tampen 
floating wind farm. In this case, the platform, which is equipped with the Prophet 
prediction algorithm, utilizes vibration and temperature data to monitor and predict 
the failures. The prediction method yields decent results by employing performance 
indices obtained from experiments and research studies.

Since the platform is developed based on the OPC-UA, it can be adopted and inte-
grated directly by energy companies in their existing system. Indeed, the Norwegian 
energy company Equinor ASA, for example, has been looking into this solution (see 
funding information). Furthermore, currently the platform is used in teaching and 
research at the Department of ICT and Natural Sciences NTNU. The proposed frame-
work can be enhanced in terms of efficiency and robustness by adding and imple-
menting calculations for other components of the wind turbine. Limitations of the 
platform include: (i) a lack of support for specific features like Electronic Signature, 
Enhanced Failover, and historical data sources, and (ii) The Unity 3D has poor source 
control integration and large team tools. Improving the forecast results can be done 
by updating the prediction algorithms and finding a good performance index based 
on the correlations of the variables. There is room to improve its capability by fine-
tuning different parameters in the framework to obtain optimal parameters for vari-
ous settings. Furthermore, it is possible to design a customized interface to improve 
the quality of the visualization and to provide a better user experience.
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