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Abstract
Residential solar installations are becoming increasingly popular among homeowners.
However, renters and homeowners living in shared buildings cannot go solar as they
do not own the shared spaces. Community-owned solar arrays and energy storage
have emerged as a solution, which enables ownership even when they do not own the
property or roof. However, such community-owned systems do not allow individuals
to control their share for optimizing a home’s electricity bill. To overcome this
limitation, inspired by the concept of virtualization in operating systems, we propose
virtual community-owned solar and storage—a logical abstraction to allow individuals
to independently control their share of the system. We argue that such individual
control can benefit all owners and reduce their reliance on grid power. We present
mechanisms and algorithms to provide a virtual solar and battery abstraction to users
and understand their cost benefits. In doing so, our comparison with a traditional
community-owned system shows that our AutoShare approach can achieve the same
global savings of 43% while providing independent control of the virtual system.
Further, we show that independent energy sharing through virtualization provides an
additional 8% increase in savings to individual owners.
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Introduction
Advances in technology have led to a decline in the installation costs of solar panels,
and the prices are expected to drop further. The levelized cost of energy (LCOE) is now
12¢ per kWh (When Will Rooftop Solar Be Cheaper Than the Grid? 2016), on par or
less than traditional energy sources. This have fueled the growth of solar installations
worldwide with 512 gigawatts of solar capacity deployed globally in 2018 alone (Growth
of Photovoltaics 2019).
A key challenge arising from the increased penetration of renewable sources is their

intermittent nature. The output of solar arrays varies based on the changing position of
the sun throughout the day as well as effects such as shade from trees and cloud cover in
the sky. Such fluctuations in output, as well as lack of solar production during the night,
complicates management of the grid where supply and demand must be continuously
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balanced. Energy storage in the form of batteries has been proposed as a potential solu-
tion for dealing with this intermittency (McPherson and Tahseen 2018; Irwin et al. 2017;
Zhu et al. 2013). Battery-based energy storage can smooth out fluctuations in output from
solar arrays, while also providing a range of benefits such as exploiting electricity price dif-
ferentials (Daryanian et al. 1989), reducing peak usage (Mishra et al. 2012), providing UPS
backups (Ramamritham et al. 2017) and supporting demand-response (Wang et al. 2013).
Until recently, the high cost of batteries has been a barrier to large-scale energy storage
deployments. However, this is beginning to change with the development of new battery
technologies and falling prices. Today, battery-based systems such as Tesla Powerwall and
others are increasingly deployed in conjunction with solar array deployments.
While large-scale solar array deployments continue to grow rapidly, themajority of solar

installations in North America and Europe continue to be small-scale rooftop systems,
primarily in residential homes. However, not every type of residential building is a suitable
candidate for rooftop installations. Consider, for example, apartment buildings that are
a common form of housing in an urban city. In scenarios where apartment homes are
rented, the residents who do not own the property cannot install solar array themselves.
Even when the apartment homes are individually owned, the building roof is collectively
owned by the residents precluding individual installations. Similarly, a neighborhood of
homes surrounded by significant tree foliage may not be a suitable candidate for rooftop
solar arrays.
Community solar arrays (CSA) have emerged as a solution to these challenges (Augus-

tine and McGavisk 2016; Chan et al. 2017). A community solar array is an array that is
collectively owned by a group of individuals and is deployed in a common location. Each
owner leases or purchases a share of the solar array and is allocated a certain fraction of
the solar array in proportion to their share. The apartment property owners can deploy
CSA and lease it to apartment renters. CSAs can also be installed by a neighborhood of
homes on the suitably located open ground, away from the tree foliage, and shared by all
households in the community. Similarly, community storage systems consist of an array
of energy storage batteries that are collectively owned by a group, with a fraction of the
storage capacity allocated to each owner. While both community solar and community
storage are nascent technologies, the combination of the two opens up new opportunities
for increasing solar penetration and performing various energy optimization.
Community solar and storage (CSS) systems generate energy for all owners as a single

aggregated system and, and unlike dedicated single owner systems, do not permit individ-
ual control of how the output should be optimized based on an individual’s local demand.
In this work, we draw inspiration from how such a problem has been addressed in other
areas of computer science, such as virtualization in cloud computing (Tanenbaum and
Van Steen 2007). In cloud computing, a cloud server is shared by multiple customers of
the cloud platform. Each customer is allocated a virtual server that resembles a physi-
cal server in all respects; multiple virtual servers, each implemented using virtualization,
share the same cloud server, while allowing each customer to independently control their
virtual server (Tanenbaum and Van Steen 2007). Although solar arrays are quite different
from a cloud server, the notion of a virtual resource is applicable to community solar and
storage even though the details of implementing such abstraction will vary. Inspired by
past work on cloud and OS virtualization, including our own (Wood et al. 2007; Sharma
et al. 2016), we propose the notion of providing a virtual solar and battery abstraction to
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each owner of a community solar and storage (CSS) systems. A virtual solar and battery
array will provide the illusion of a dedicated single owner solar array, and importantly,
will enable independent control of the energy resources. Like in cloud server virtualiza-
tion, virtual solar arrays and batteries belonging to multiple customers are mapped onto a
single physical solar array and battery owned by the community. Thus, our virtual abstrac-
tion each user to independently manage their share of solar generation and stored energy
as if the system were a dedicated single owner system.
A second key benefit of virtualization of a community-owned system is that it enables

sharing of electricity generated or stored in batteries by each virtual system. Such energy
sharing, which is not possible in dedicated independently deployed systems, allows a res-
ident to temporarily borrow electricity from one or more neighbor’s shares to provide
capital and operational savings. Thus, an individual can plan howmuch to share based on
their current and future needs. In this paper, we present virtual abstractions for commu-
nity solar and storage and show it can enable flexible sharing algorithms to reduce overall
energy costs. In designing AutoShare, our paper makes the following contributions.

• We propose the virtual abstractions for a physical solar and battery array to support
multiple virtual solar and battery arrays. We design a set of software-defined
mechanisms to enable such virtual abstractions and permit the independent control
of each virtual solar and battery system.

• We present an energy sharing algorithm that enables homes to share surplus solar
capacity and excess stored energy in a virtual battery with households experiencing
energy deficits and discuss monetary incentives for borrowers and lenders to
incentivize such sharing.

• We demonstrate the efficiency of our approach using electricity demand from real
homes and solar generation traces from actual installations. We compare AutoShare
to non-virtualized community-owned solar that implements a single global policy for
all homes and to dedicated individual installations with no sharing capabilities. Our
results show the benefits of allowing local control as well as energy sharing.
Specifically, AutoShare can reduce solar array size by 14.6% and battery capacity by
75% compared to a dedicated system. Further, we show that energy sharing gives an
additional 8% increase in savings while providing monetary benefits to borrowers and
lenders.

Background and overview

Our work assumes a community solar and battery array that is collectively owned by
a group of residents. Each resident is assumed to own a certain fraction of solar and a
certain battery share of the community solar and storage system. Consequently, the cor-
responding share of solar output and stored energy is assigned to each owner. We assume
that each community owner can use their portion of the solar array and battery in any
manner to perform energy optimization or reduce energy bills.
This is done by exposing a virtual solar and battery abstraction to each community

owner. The capacity of the virtual solar and battery array is determined by the fractional
share of the physical solar array and battery assigned to each owner. Each virtual solar
array and battery appear, in all regards, as a physical array and battery, and all virtual
arrays aremapped onto (multiplexed onto) the underlying physical solar and battery array.
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As noted earlier, this is analogous to server virtualization in cloud computing, where vir-
tual machines belonging to multiple cloud users are multiplexed onto a physical server
and resources of the physical server are sliced (i.e. partitioned) across co-resident virtual
machines.
A non-virtualized community-owned system does not allow independent control of the

output in the shared system (see Fig. 1(a)). Energy output from the solar and battery is
used to meet the aggregate energy demand across all homes, prohibiting individual own-
ers to decide on how to use their share of energy. On the other hand, dedicated systems
allow independent control but are more expensive or may be infeasible in many residen-
tial locations (see Fig. 1(b)). In contrast, the notion of virtual solar and battery arrays
provide multiple benefits. First, such abstractions can provide the illusion of a dedicated
physical array and battery that can be utilized and managed independently of other vir-
tual solar arrays and batteries. This allows each owner to make the “optimal” decision of
how to utilize their virtual solar array and batteries independently of what other owners
decide at each instant. For example, one owner may be using their share of solar output to
power their loads, while another owner net-meter their share to the grid. Such local con-
trol is not possible in a non-virtualized community system, which is forced to implement
a single global policy on behalf of all homes.
Second, the virtual abstraction gives each owner an illusion of ownership of the unit,

even though the group collectively owns the physical resources. In some sense, the virtual
solar and battery arrays act like N independent smaller array and battery installations
— while being cheaper to install due to economies of scale of installing a single large
solar and battery array over N smaller ones. Also, many components like inverters can be
shared rather than duplicated.
Third, a virtual solar array and battery system can be utilized for many differing energy

optimizations. In scenarios with time-of-use pricing with different pricing slabs, surplus
solar production during off-peak or mid-peak price periods can be stored in the battery
for later use, such as peak price periods to maximize cost savings. During peak periods,

Fig. 1 Energy use in a non-virtualized community-based and a dedicated solar and battery system
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the system prioritizes the use of solar production and stored energy in the virtual battery
overdrawing power from the grid. Finally, if there is surplus solar production after serving
local loads and charging the battery, this excess energy can be net-metered to the grid to
earn revenues (which offset changes in the monthly electricity bill).
In our paper, we also assume that each owner can share electricity from their virtual

solar or battery array with their neighbors. For example, rather than net-metering sur-
plus electricity to the grid, it is also possible to sell (or lend) this surplus to a neighbor
who has high current demand (and is drawing electricity from the grid). Similarly, it is
feasible to sell or lend stored energy from a virtual battery to others, such sharing in the
form of lending and borrowing provides both capital and operational cost benefits — it
allows a community owner to provision a smaller virtual solar and battery system than
dedicated setup and borrows from others during peak periods. It also provides additional
operational benefits by increasing cost savings from a solar and battery system.
Virtual abstractions simplify the implementation of energy sharing. Analogous to how

virtual machines can be resource multiplexed onto a physical machine and flexibly allo-
cate resources, virtual solar and battery system can be used to dynamically allocate
more electricity or more stored energy from the underlying community solar and battery
system.
Our work also assumes an energy sharing pricing model. Currently, utilities purchase

any surplus solar energy at retail prices from users (via net metering). However, when the
wholesale price (cost to sell power to the utility) is same as the retail price (cost to pur-
chase power from the utility), selling energy to the grid or the neighbor does not provide
any additional cost benefits to a user. Cost benefits from sharing energy arise when the
wholesale price is less than the retail price. Instead of selling electricity at wholesale price
to the utility, a user can earn a profit by selling energy to its neighbors at a rate higher than
the wholesale price. Similarly, in this scenario, borrowing energy at a rate lower than the
retail price yields cost benefits to both the borrower and the lender. Increased solar pene-
tration have impacted the grid (i.e., wholesale prices turned negative (California is getting
so much power from solar that wholesale electricity prices are turning negative 2017),
and with more solar adoption, utility companies will have to rethink how they purchase
electricity from distributed sources. We assume that, in the future, utilities will purchase
power at a lower rate than retail price, which will enable borrowing and lending of energy.
Below, we present an algorithm and a system to virtualize a community solar and battery
array. We also present “smart” algorithms that maximize the benefit of energy sharing
with the overall goal of maximizing electricity bill savings due to the use of solar arrays
and batteries.

AutoShare design
In this section, we first present key primitives to provide the abstraction of a virtual solar
and battery array system and then show how these primitives can be used to implement
algorithms to control the energy generated and stored in each virtual array.

AutoShare virtualization mechanisms

Consider a community solar array consisting of P panels with a capacity Csolar . The sys-
tem also consists of a community battery array of B battery cells with a total capacity of
Cbatt . We assume the community-owned system is collectively-owned byN residents, and
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allocate each user a virtual share of the solar and battery array. Suppose that the ith owner
is allocated a fraction Si of the solar array and a fraction Bi of the battery array, where
∑N

i=1 Si = 1 and
∑N

i=1 Bi = 1, 0 < Si < 1 and 0 < Bi < 1. This implies that Si · Csolar
capacity of the aggregate solar array and Bi · Cbatt capacity of the aggregate battery array
is allocated to owner i.
From a virtualization standpoint, the system presents the illusion of N smaller solar and

battery arrays of the corresponding size, each of which appears as a dedicated system to
its owner (see Fig. 2). That is, owner i sees a virtual solar array of size Si · Csolar , a virtual
battery of size Bi · Cbatt and a virtual controller (e.g., a virtual inverter) to determine how
the solar and battery array output is used at each instant. Virtualization allows each owner
to make independent decisions on how to use the system, regardless of how others use
their system. The N virtualized systems are “multiplexed” onto the underlying physical
solar and battery array, and the overall behavior of the system at any instant represents
the aggregate decisions made by each individual virtualized system.
To implement this abstraction, AutoShare exposes a set of virtualization primitives that

can be controlled by software algorithms in each virtual controller. Let us assume that the
array uses a virtual or physical sensor to monitor the solar output, the energy stored in the
battery and the electricity demand of each owner. Let solari(t), batteryi(t) and demandi(t)
represents the electricity output of virtual array i, energy stored in virtual battery i and
electricity demand of home i at time instant t. To enable an owner to control their virtual
system based on these monitored values independently, the physical controller exposes
these following software-defined primitives to each virtual controller:

• chargei(t), which specifies the rate at which the virtual battery should be charged
using the output of the virtual solar array at time t

• dischargei(t), which specifies the rate at which the virtual battery should be
discharged to meet a portion of demandi(t)

• send_to_gridi(t) which specifies the rate at which surplus solar electricity should be
transmitted (net metered) to the electric grid at time t

• draw_from_gridi(t) which specifies the rate at which electricity should be drawn
from the electric grid to meet a portion of demandi(t)

Together these primitives enable each virtual controller to implement flexible software
algorithms to control how the solar output and energy storage in the virtual solar and

Fig. 2 AutoShare architecture diagram
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battery array should be used. Each virtual controller can implement its own decisions
regardless of how other owners behave.

AutoShare virtualization algorithm

We now present the AutoShare virtualization algorithm that uses the above primitives
to implement software control of the virtual solar and battery system within the virtual
controller. For home i, let us assume the solar output of virtual array is solari(t) and
demand is demandi(t); the AutoShare algorithm can determine if the current solar output
is adequate to satisfy the demand. If so, the net surplus is computed as:

surplusi(t) = max (solari(t) − demandi(t), 0) (1)

If not, the net deficit is computed as:

deficiti(t) = max (demandi(t) − solari(t), 0) (2)

In the event of a surplus, after first using the solar output to satisfy the entire demand,
the controller needs to determine how to utilize the remaining surplus. In this case, if the
virtual battery is not fully charged, the surplus is first used to charge the battery at the
max charging rate as follows:

chargei(t) = min(max_charge_rate, surplusi(t)) (3)

If the battery is full, chargei(t) is set to zero. If there is additional solar output left after
charging the battery at max rate, the rest is net metered to the grid as follows:

send_to_gridi(t) = solari(t) − demandi(t) − chargei(t) (4)

Conversely, in the event of a deficit, the controller must determine how to satisfy the
portion of the demand not met by the virtual solar array. In this case, the decision will
depend on the current electricity prices. If off-peak pricing is in effect at time t, then it is
better to conserve battery energy for peak periods and satisfy the current deficit from the
electric grid:

draw_from_gridi(t) = deficiti(t) (5)

If peak prices are in effect and the battery is not empty, the controller first draws power
from the battery i.e.

dischargei(t) = min(deficiti(t),max_discharge_rate)

so long as batteryi(t) > low_threshold. If the stored energy in the battery is below
the low_threshold, then dischargei(t) is set to zero. Any unsatisfied demand beyond the
maximum discharge rate from the virtual battery is met from the grid.

draw_from_gridi(t) = max(demandi(t) − solari(t)

− dischargei(t), 0)
(6)

Thus, the AutoShare algorithm within each virtual controller can make independent
decisions based on the solar output, battery level and demand of each home. Further,
using the virtualization primitives, AutoShare enable software-driven algorithmic control
of the virtual system.
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Mapping virtual controller decisions to a physical system

The physical solar and battery controller aggregates all of the decisionsmade by individual
virtual controllers to implement physical control as follows. If the total charge rate of
all virtual batteries is greater than the total discharge rate, then the physical battery is
charged at a rate

charge(t) =
N∑

i=1
chargei(t) −

N∑

i=1
dischargei(t) (7)

In contrast, if the total discharge rate across all virtual batteries is greater than the total
charge rate, then the physical battery is discharged at the rate of

discharge(t) =
N∑

i=1
dischargei(t) −

N∑

i=1
chargei(t) (8)

Similarly, if the total power transmitted to the grid by all virtual solar arrays is greater
than the total power drawn from the grid, the physical solar array will perform overall
net-metering at the following rate:

send_to_grid(t) =
N∑

i=1
(send_to_gridi(t)

− draw_from_gridi(t))

(9)

If the opposite is true, no power is net-metered, since all of the solar output is used to
satisfy the local demands of all homes and to store energy in the battery.

Energy sharing in AutoShare
We now discuss how AutoShare’s virtualization mechanisms can be employed to permit
flexible energy sharing. The energy sharing algorithm aims to maximize the energy cost
savings across homes while incentivizing borrowers and lenders.

AutoShare energy sharing algorithm

AutoShare’s virtualization algorithm allows each owner to operate their virtual solar and
battery array independently of others. In this case, each virtual system is isolated from
others, and there is no direct interaction between them. However since all virtual arrays
are multiplexed onto a common physical solar array, there are opportunities for the vir-
tual systems to collaborate with one another. One form of collaboration is energy sharing
where virtual systems with a surplus solar generation or surplus stored energy shares
it with virtual systems that have a deficit. Such sharing further reduces reliance on the
grid, since some or all of the demand of a home is met from other neighboring virtual
systems with surplus capacity. In practice, opportunities for energy sharing arise since dif-
ferent homes have different demand profiles. Some homes with daytime occupants will
see higher peak usage during day hours, while homes with working occupants will see
low usage during day hours with peak solar generation. The latter homes can lend surplus
electricity that would otherwise be net-metered to the grid to the former homes. Simi-
larly, during evening peak periods, demand from homes may peak at different times (e.g.,
homes with evening peak versus those with late night usage). In such cases, virtual bat-
teries with surplus stored energy can lend it to others if it is not being used locally for any
reason.
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Energy sharing makes economic sense only under certain types of electricity pricing
schemes. In scenarios where the cost at which grid purchases electricity is the same as
the retail cost of buying electricity from the grid, energy sharing provides no monetary
benefit. A virtual system can then sell any surplus to the grid via net-metering and neigh-
bors with deficit can buy it back from the grid at the same price, requiring no direct
cooperation between virtualized systems. However, in scenarios where the grid purchases
net-metered electricity at wholesale generation prices and sell it to homes at retail prices,
direct lending without grid involvement provides monetary benefits. In this case, rather
than purchasing electricity from the grid at a retail price, a virtual system can procure
this electricity from a neighboring virtual system with surplus electricity and do so at a
price that is higher than the wholesale price but lower than the retail prices. This incen-
tivizes systems with a surplus since they can sell the surplus at a rate higher than the grid’s
wholesale prices, while homes with a deficit can purchase this surplus at a price that is
lower than the grid’s retail rate.
From a virtualization standpoint, energy sharing relaxes the assumption of strict iso-

lation between virtualized systems. It allows a virtual solar array or a virtual battery to
increase its capacity by borrowing from surplus homes temporarily. This is analogous to
virtual machines that temporarily use unused physical CPU capacity that is allocated to
other virtual machines but not currently used.
To implement such energy sharing, AutoShare virtual inverters need two additional

virtualization primitives.

• borrowi(t) which specifies the amount of power that home i needs to borrow from
any other virtual solar or battery system at time t

• lendi(source, t) which specifies the amount of surplus power that home i will lend
from the specified source at time t. The source can be solar, in which case surplus
power is lent from the virtual solar array, or battery, in which case power is drawn for
energy stored in the virtual battery.

These primitives enable a virtual controller to implement any energy sharing algorithm
that is best suited to its needs. For our current work, we design a AutoShare energy
sharing algorithm that is directly based on the AutoShare virtualization algorithm pre-
sented in the previous section. Our energy sharing algorithm is an enhancement to the
basic virtualization algorithm as follows (see Fig. 3). First, the algorithm determines if
the current home should become a borrower, a lender, or neither, at time t. A home is a
candidate for lending electricity if its virtual solar array has surplus power that it would
have net-metered to the grid. In this case, all of this surplus power becomes available for
lending to other homes rather than being net-metered. A home is also a candidate for
lending electricity if its virtual battery has a high charge level (above a high watermark
threshold) and is willing to share some of the stored energy with others. Specifically, if
solari(t) − demandi(t) − chargei(t) > 0 then the home has surplus power it would have
previously net-metered and the virtual controller indicates it is willing to lend this power:

lendi(solar, t) = solari(t) − demandi(t) − chargei(t) (10)

Further, if the battery has a high charge level indicated by batteryi(t) > high_threshold
and the battery power is not being consumed at the maximum discharge rate, the surplus
can be drawn as follows:
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Fig. 3 A flow chart of AutoShare’s energy sharing algorithm

lendi(battery, t) = min(max_discharge_rate

− dischargei(t), 0)
(11)

Conversely, a home becomes a candidate for borrowing electricity if it has a deficit that
would normally require drawing power from the grid. In this case, the home can first
request surplus power from other virtual systems, and only request grid power if its deficit
cannot be fully met by other lenders. That is, if demandi(t)− solari(t)−dischargei(t) > 0
the home has a unmet deficit and it can make a borrow request as follows:

borrowi(t) = demandi(t) − solari(t) − dischargei(t) (12)

In all other cases, lendi and borrowi are set to zero. Note that it is possible for a home to
neither be a lender not a borrower at time t, a scenario that occurs if it has zero deficit (i.e.,
has no need to borrow) but can not lend either since all solar electricity is being directed
to the virtual battery, which itself has a low charge level (and thus has no solar or batter
capacity to lend).

Mapping virtual sharing requests onto the physical system

Both lendi and borrowi indicate the maximum amount of power that each virtual con-
troller i wishes to lend or borrow based on its current generation and demand. The actual
amount of power that is lent or borrowed must then be computed by the physical con-
troller bymatching borrowers and lenders. To do so, the physical controller first computes
the total borrowing needs as;

borrow(t) =
N∑

i=1
borrowi(t) (13)

The solar capacity available for lending is the:

lend(solar, t) =
N∑

i=1
lendi(solar, t) (14)
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If the solar lending capacity lend(solar, t) exceeds the borrowing demand borrow(t), then
all of the borrowing needs can be met from the surplus solar capacity that is available.
Each lender can lend an equal amount to meet the total borrowing need or lend in pro-
portion to its solar share Si. If the total borrowing demand exceeds the total solar capacity,
any unmet borrowing need can be lent from stored battery energy that can be lent. The
maximum battery power that can be lent is:

lend(battery, t) =
N∑

i=1
lendi(battery, t) (15)

Finally, if the borrowing need is still not satisfied by the lending solar and battery capacity
(that is, borrow(t) > lend(solar, t) + lend(battery, t)), the rest must be drawn from the
grid.

draw_from_gridi(t) = borrowi(t) − borrowed_poweri(t) (16)

Conversely, if all of the borrowing needs are met by surplus solar energy, any remaining
solar can be net metered to the grid as follows

send_to_gridi(t) = lendi(solar, t) − lent_solari(t) (17)

where send_to_gridi(t) is zero if there are no surplus solar energy, and borrowed_poweri(t)
and lent_solari(t) are amount of power borrowed or lent by home respectively,

Surplus energy prediction

The above algorithm assumes a simple threshold-based approach to determine when
stored energy can be shared with others. A fixed threshold-based approach to determine
the amount of energy to lend does not consider the owner’s future electricity demands.
In practice, the threshold should not be a fixed value. In scenarios where the owners are
away from home, the threshold should be set lower to enable more energy sharing and
increase their benefit. Similarly, if there is a higher demand the following day, the thresh-
old should be set higher to reduce energy sharing to draw from the grid. Accurate future
knowledge will help in deciding how much excess energy is available to share. To han-
dle such dynamic mechanisms, we design a machine learning-based approach to predict
future energy demands and estimate the surplus energy that can be lent from the battery.
For simplicity, our work assumes each owner uses a greedy policy to share surplus energy.
That is, it lends its surplus energy with others only when future demand is also met.
To determine the surplus energy to lend, we first build a demand model of the home to

learn the energy usage behavior. The model is then used to predict the electricity needs
of the home for the following day. We explore two techniques: Autoregressive Integrated
Moving Average (ARIMA) and Support Vector Machines (SVM) with different kernel
functions. ARIMA is a popular model used for time series prediction. It uses the AutoRe-
gressive (AR), Integrated (I) and Moving Average (MA) components to predict future
points. The autoregressive part is a linear combination of their own lagged values. The
moving average part captures the regression error as a linear combination of the past
error term. Finally, the integrated part indicates whether the data is differenced to make
data stationary. Together, it forms a linear equation that uses past values and errors to
determine future points.
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In contrast, SVM is a supervised regression technique that can use exogenous infor-
mation such as weather, along with past energy usage to predict energy usage for the
following day. We use multiple features as inputs to the SVMmodel: day of the week, day
of the year, outside temperature, humidity, heating and cooling degree days, past power
consumption, weekday or weekend information, and holidays. Since the day of the week is
cyclical, i.e., repeats every seven days, we encode it by transforming the day into an angle
(in steps of 2π/7) and use the sine and cosine values as input feature vectors. We use a
similar approach to encode the day of the year. Further, we use one-hot encoding, a stan-
dard machine learning technique for encoding categorical labels, to encode weekday or
weekend data, before using it as input features. For other data points, we use raw values
as inputs. In summary, the above features are used as input to solve a regression problem,
where we predict the future energy demand at a given resolution.
To train our models, we use the dataset described above that has energy demand of

homes at a 30-minute resolution. We use one year of the dataset in 2014 for training and
the next year (2015) for testing. To train the ARIMA model, we perform a grid search on
the parameters and select the parameters with the lowest mean absolute percentage error
(MAPE). Figure 4 shows the medianMAPE value of different prediction models across all
homes. As seen, the SVM-rbf model has a median MAPE value of 31%, and is the lowest
among all the models used. Since SVR-rbf performs better than other techniques, we use
it to predict the future surplus energy available for sharing.
Determining the surplus energy to lend also requires predicting the solar output for

the following day. We use the technique discussed in Iyengar et al. (2014) to predict the
solar output for the next day. Themethod takes into account irradiance and other weather
parameters as features to accurately predict future solar production. By combining the
future solar output, future electricity demands generated from the model, and the current
battery capacity, a candidate home can estimate the amount of energy to borrow from the
virtual battery. Specifically, the surplus energy is defined as

surplus_energyi(t) = max(future_solari(t) + chargei(t)

− future_demandi(t), 0)
(18)

Fig. 4 MAPE values for predicting the electricity usage during peak periods



Lee et al. Energy Informatics            (2021) 4:10 Page 13 of 24

where future_solari(t) and future_demandi(t) are the future predictions for the next 24
hours. Amount of energy to lend, when surplus_energyi(t) > 0, is defined as

lendi(battery, t) = min(surplus_energyi(t),

max_discharge_ratei − dischargei(t))
(19)

Thus, each home independently calculates how much to lend based on predicted future
demand, generation and available battery capacity.

Evaluation
We focus on evaluating the potential benefit of AutoShare using trace-driven simulations.
To do so, we use real electricity load dataset from 50 homes over two years between
2014 to 2015. The electricity dataset was gathered from the New England region of the
United States and consists of energy consumption information at a resolution of 30 min-
utes (Iyengar et al. 2016). We construct different demand profile mixes of 20 homes each
from these 50 homes to generate the diversity of homes in a building. To construct the
demand profile mixes, we separate the homes into day and night demand profiles. We
define day profile homes as homes that have most of their energy demand during the
peak pricing hours, i.e., peak to off-peak energy usage is higher than one. In contrast,
night profile homes use energy mostly during the off-peak pricing period. Next, we ran-
domly select houses belonging to either of the demand profiles proportionately and ran
our experiment multiple times to report the overall savings.
We use Wisconsin electric’s time-of-use (TOU) prices as a representative pricing

model (Wisconsin Electric Rates 2017). However, we also use other pricing models, which
we present in our results. Wisconsin’s peak pricing periods are between 7 a.m to 7 p.m,
while the off-peak periods are from 7 p.m. to 7 a.m. Typically, wholesale prices are 30%
to 50% of the retail price (Wholesale Electricity Price in the US 2017). We assume the
wholesale electricity rates to be 40% of the retail price, but also evaluate the effect of other
wholesale prices on cost savings. For simplicity, we assume that the apartments use the
average of wholesale and retail price to sell their energy to others but sell the electricity to
the grid at wholesale price. Note that the residents share only their portion of the commu-
nity solar or battery energy. The share of solar and battery for each home is determined
based on their energy consumption in the previous year, i.e., we assign a solar and battery
proportionate to their overall yearly load.
We also require weather data for predicting future electricity usage of a home and its

solar generation output. The weather data is available at a one-hour granularity, which
we gather from the Weather Underground website (Weather dataset API 2017). We
resample the weather dataset to 30-minute resolution, before running the prediction algo-
rithms. The decision on when and the amount of energy to share is determined using the
prediction output, as described in “Energy sharing in AutoShare” section.

Experimental results
In this section, we describe the effects of energy sharing within a community sharing solar
energy and battery.
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Energy sharing benefits

We first analyze the cost benefits of using dedicated community solar and battery system
and compare it to the energy sharing scenario using AutoShare. Figure 5(a) shows the
median energy cost savings of a home for both dedicated and the energy sharing scenario.
With 40 kW solar array, a dedicated system achieves 43% of energy cost savings and yields
8.8% higher savings when coupled with an 80 kWh battery. We see higher energy cost
savings when we share energy. In particular, energy sharing provides an additional 8%
increase in cost savings. This is because, rather than net metering to the grid at wholesale
prices, users can sell surplus electricity at a higher rate to its neighbors, benefiting both
the borrower and the lender.
We now examine the capital expenditure (CapEx) savings achieved through energy

sharing. Clearly, dedicated solar arrays and batteries for each home cost more, assuming
it is feasible to install one in a community area, simply because we cannot get economies
of scale. On the other hand, a virtual community-owned solar and battery arrays do not
require additional inverters, separate wirings, and thus cost less. In our analysis, we use
the reduction in solar arrays and batteries as a proxy for the reduction in CapEx costs.
Figure 5(b) shows the reduction in solar array size (CapEx) of a home if we want to achieve
higher energy cost savings. The figure shows that to achieve higher cost savings will
require bigger solar panels. In other words, as energy cost savings increase, the percent-
age reduction in solar array size decreases. This is because, with larger solar installations,
most homes will have surplus energy to lend, which will reduce the need to borrow energy
from others. We note that a virtual community-based system can reduce its solar array
size by 14.6%, through energy sharing, to achieve 60% energy cost savings compared to a
dedicated system. This is equivalent to 8.6 kW reduction in absolute values. We observe
that a higher reduction in solar arrays can be achieved when batteries are installed. Using
a battery capacity of 80 kWh, which is roughly 4 kWh per home, we note a virtual system
can achieve a 23.5% reduction in solar array size, which is 13.8 kW reduction in absolute
values.
Summary: AutoShare achieves 43% energy cost savings while providing each user with
independent control over the virtual system. Moreover, a virtual community system can
reduce the size by 14.6% compared to a dedicated system through energy sharing.

Fig. 5 (a) Median energy cost savings from AutoShare using 40 kW and 80 kWh battery. (b) Reduction in solar
capacity through sharing energy to achieve similar cost benefits compared to a dedicated solar and battery
system
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Impact of solar arrays

We analyze the impact of different solar array sizes on energy cost savings using
AutoShare. Intuitively, larger solar arrays generate more solar energy, which in turn
reduces the reliance on the grid and minimizes energy costs. However, it is not evident
a priori how much cost benefits sharing energy provides. Figure 6(a) shows the median
energy cost savings across homes using a 40kW solar array. As expected, the graph shows
that with an increase in solar array size, the median energy cost savings of a home
increase.Moreover, the energy cost savings is higher with energy sharing than the no shar-
ing scenario. Since some occupants during the day may not use their share of solar energy,
instead of net metering, the surplus solar energy can be lent to other homes to achieve
higher cost savings. Thus, the variations in demand profile among homes allow the shar-
ing of energy. In particular, we observe that the median energy cost savings for a home is
43% with a 40 kW solar array size and increases to 51% when energy is shared. Moreover,
an 80 kW solar panel can yield energy cost savings of up to 85% using AutoShare.
Summary: Sharing energy increases the energy cost savings from 43% to 51% for a 40 kW
solar installation.

Impact of energy storage

We now study the benefits of employing energy storage. The cost savings from batter-
ies arise due to two primary reasons. First, batteries reduce the amount of energy net
metered by storing surplus energy. The energy stored can then be used during peak pric-
ing hours to increase cost savings. Second, sharing any surplus stored energy with others,
especially during peak pricing periods, also increases cost savings. Figure 6(b) shows the
median energy cost savings for different battery sizes and solar array size of 40 kW. The
graph shows that as battery capacity increases, the energy cost savings increase. With a
small battery size of 40 kWh, which is roughly equivalent to 2 kWh of battery per home,
AutoShare can increases energy cost savings from 43% to 50%. The energy savings further
increases by an additional 5.6% when energy stored in the battery is shared with others.
This is because the discharge rate of any battery is limited. Even if the battery has sufficient
energy to meet local demands, it may not be possible for a battery to fulfill all of the local
energy needs as its maximum discharge rate may limit how much local demand it can
satisfy. Since homes may not need to draw energy from batteries at all times, owners can
allow energy discharge from their share to fulfill part or all of the local demand, thereby

Fig. 6 Median energy cost savings with varying sizes
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reducing energy costs. Unsurprisingly, we observe diminishing returns with an increase
in battery capacity. Since the solar output is finite, there are fewer price differentials to
exploit.
We observe that sharing energy also provides battery CapEx savings, i.e., a dedicated

system will require a smaller battery size to achieve similar savings compared to the shar-
ing scenario. As seen in Fig. 6(b), a battery capacity of 80 kWh is required to achieve
51.8% of cost savings. On the other hand, when energy stored in the battery is shared,
AutoShare achieves 54.2% energy cost savings with a battery capacity of 20 kWh— a 75%
reduction in battery capacity yielding significant CapEx savings. Since AutoShare allows
energy sharing, it achieves higher cost savings from a solar and battery system compared
to a dedicated system for each home.
Summary: Energy cost savings increase an additional 5.6% with energy sharing compared
to a dedicated system. Moreover, sharing provides CapEx benefits and can reduce the
battery capacity of a dedicated system by 75%.

Effect of energy pricing models

As mentioned earlier, energy cost savings is sensitive to the pricing model. Pricing mod-
els such as TOU pricing allow smart algorithms to exploit the price differential between
peak and off-peak periods to achieve higher savings. So far, we used Wisconsin’s time-
of-use pricing model, wherein the off-peak to peak ratio is roughly 1:2. We now analyze
how a change in different off-peak to peak ratio impact energy cost savings. Figure 7(a)
shows the impact on energy cost savings for varying off-peak to peak ratio from a 40 kW
solar array size. Clearly, when peak and off-peak prices are similar, there will be no price
differential to exploit, and the energy savings will be small. With higher off-peak to peak
ratio, we will see more cost savings. As expected, the graph shows that as the difference
between peak and off-peak price increases so does the cost savings. While an off-peak
to peak ratio of 1:2 gives 43% in energy cost savings. Further, as off-peak to peak ratio
decreases, the energy cost savings increases to 50.8%. Similarly, in the sharing scenario,
the energy cost savings increases from 51% to 58.7%. Separately, using 80 kWh battery,
the energy cost savings increases from 56.1% to 62.6% with energy sharing. Since batter-
ies play the role of shifting the solar energy to generate cost savings, it has more potential
to exploit the price differential in the TOU pricing model.

Fig. 7 (a) As off-peak prices approach peak prices, smaller price differential reduces energy cost savings. (b)
As wholesale electricity approaches retail rate, the incentive to share energy reduces
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Next, we examine the impact of wholesale prices (i.e., the price at which electricity is
sold to the grid) on energy cost savings. Intuitively, if the wholesale price is the same as
the retail price, it is more beneficial to net meter the surplus energy to the grid than share.
This is because storing energy for later use may result in loss of power due to battery inef-
ficiency, thereby impacting cost savings. However, we observe that sharing is beneficial
even when there is battery inefficiency as long as there is some price differential to exploit
between wholesale and retail prices. Figure 7(b) illustrates the energy cost saving with dif-
ferent wholesale to retail price ratio from a solar array size of 40 kW. As wholesale price
increase and approaches the retail price, the energy cost savings increase. This is because
of the increase in profit by selling electricity to the grid at a higher rate. However, in the
sharing scenario, this increase in profit is marginal as the surplus energy is already is sold
at a higher rate than wholesale prices to others. As expected, the energy cost savings from
AutoShare equals the sharing scenario as the wholesale price approaches retail price.
Summary: As off-peak to peak ratio decreases, energy cost savings in the sharing scenario
increases from 51% to 58%.

Effect on demand profiles

We now examine the effect of our energy sharing algorithm on different demand profiles.
Figure 8 illustrates the energy distribution of a home for a day and compares energy shar-
ing to a non-virtualized setup. The figure shows that without virtualization, any surplus
energy is net-metered to the grid. However, with energy sharing, surplus energy is first
lent, and the remaining energy is net metered. Further, when energy demand rises late
afternoon, and local solar output is insufficient, energy is borrowed from others. Figure 9
depicts the normalized cost distribution of two homes with day and night demand pro-
files, with median energy cost savings in their respective cohort. We normalize the cost
with its final cost. Note that the energy costs from the grid are higher for night profiles
than day profiles. Since solar energy is only available during the day, most of the solar
output is either net-metered or lent, resulting in a higher profit than day profile homes,
and higher grid costs. In contrast, day profile homes tend to net meter less energy to the
grid, with lower net meter cost, but also have to borrow more power during the daytime,
resulting in higher borrow costs. It is important to note that while all homes use the same

Fig. 8 Energy breakdown of a home’s demand profile with and without energy sharing
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Fig. 9 Example cost distribution of homes for day and night demand profiles

energy sharing policy, a virtual controller can have its own sharing policy, which may
impact the energy and cost distribution of a home.
Finally, we examine the different mix of demand profiles in a building and their impact

on the overall cost savings. The overall cost savings is computed by summing the final
energy cost of all homes and the original cost. As discussed in “Evaluation” section, the
day profile homes have high energy demands during peak hour periods, while night pro-
file homes have high energy demands during off-peak periods. Figure 10 illustrates the
impact on cost savings as the demand profile mix varies for a 40 kW solar array size. We
compare the overall cost savings with solar only versus having both solar and battery. The
graph shows that the overall cost savings are higher for profile mixes where the number
of day profile homes is more than the night profile homes. Since the peak pricing period
occurs during the daytime, most day homes can exploit the price differential and bene-
fit from it. In contrast, homes with night demand profile, do not have high energy usage
during the day to exploit the price difference. In particular, overall cost savings vary from
43.6% to 39% as the number of day demand profile decreases compared to night demand
profiles. As expected, an addition of an 80 kWh battery increases the overall cost savings
as it shifts the surplus solar energy to other periods, and provides an additional potential
to exploit price differential.
Summary: An increase in the day profile homes increases cost savings as more homes can
leverage the price differential.

Fig. 10 Impact of demand profile mixes on cost savings using a 40kW solar and 80kWh battery
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Discussion and future work
There are several design considerations for realizing a virtual abstraction for energy shar-
ing. First, our approach assumes homes have smart electric meters to monitor local
demand (demandi) at an appropriate time granularity (e.g., every few minutes). Second,
our approach assumes that in addition to paying monthly electricity bills for drawing
power from the grid, homes will make or receive micro-payments for borrowing or
lending electricity to or from other community homeowners. The information on the
amount of electricity borrowed or lent must be tracked by the physical controller (i.e.,
inverter) and periodically “settled” via actual payments. Third, modern inverters for non-
virtualized community solar and battery arrays (e.g., Schneider inverters (Schneider Solar
Hybrid Inverter Systems 2017) provide configuration controls on howmuch to net-meter
and how much or when to charge the battery. Such an inverter can be easily enhanced
to support AutoShare’s virtual abstraction. AutoShare can be implemented as a software
layer on top of these configuration controls. Specifically, the software layer would expose a
controller with AutoShare’s abstraction primitives to each homeowner. This provides the
illusion of independent control of each system. However, in practice, the software abstrac-
tion layer takes the decisions from the virtual controllers, aggregates them and directly
exercises the aggregate decision on the physical configurations exposed by the inverters.
This makes it appear as though each user owns a dedicated system making independent
judgments. Although, in practice, the decisions are “multiplexed” onto the physical solar
and battery. As explained in the previous section, the abstraction layer exposes the API
described in Table 1 to each virtual controller to support such energy sharing mechanism.

Billing and reconciliation

We also assume that we can net meter and share energy with others. In practice, bor-
rowing and lending of energy require a bill reconciliation infrastructure to account for
the micro-payments between homes. Smart meters available today are capable of report-
ing the local energy consumption of a home. A billing infrastructure can be implemented
using smart meters and AutoShare primitives, wherein energy consumption information
of each home can be logged along with energy borrowed or lent between homes. Sep-
arately, we require a billing agreement among homes to determine the costs of energy
borrowed or lent.

Other benefits

There are two key benefits of our approach over multiple dedicated individual-owned or a
non-virtualized community-owned system. A dedicated solar and battery systems may be

Table 1 Summary of the virtual abstraction API primitives AutoShare exposes to a virtual controller

Name Description

charge(t) charge rate of the virtual battery

discharge(t) discharge rate of the virtual battery

send_to_grid(t) amount of energy virtual inverter sends

to the grid

draw_from_grid(t) amount of energy virtual inverter

draws from the grid

borrow(t) amount of energy to borrow from others

lend(source, t) amount of energy to lend to others from

solar or battery
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infeasible inmost cases. Even if the installation was feasible, sharing is not possible as each
installation will be on separate circuits. On the other hand, a non-virtualized community-
owned installation allows sharing but do not provide individual control of the system. So
the total bill across all homes is reduced, but it does not minimize the bill of each house. In
contrast, AutoShare allows each home to minimize their local bills rather than the overall
bill across all households. Another key benefit of AutoShare is users can design their own
optimization policies. The virtualization primitives AutoShare enables powerful enough
to implement other algorithms. For example, in our energy sharing algorithm, users first
use surplus energy locally (i.e., satisfy local demand and charge batteries) and then share
remaining energy or net meter. However, a range of algorithms is possible. A user can first
share surplus energy, and then use the remaining power to store in batteries or net meter.
Separately, instead of minimizing energy bills, other policy objectives can also be imple-
mented. A user may have shiftable loads that they can directly control, and thus might
define a policy for their virtual battery in conjunction with their controllable background
loads.

Future work

For simplicity, our pricing model assumes the wholesale price (i.e., selling price of energy)
is at a fixed percentage of the retail price. That is, if the retail price fluctuates, the whole-
sale price will also vary as a fixed percentage. However, it is possible that the wholesale
prices may be very different from the retail prices. In this case, to maximize user profit,
energy sharing will need to be based on the wholesale price signals. Users can take advan-
tage of price differentials in wholesale price and sell their surplus energy (from solar or by
discharging the battery) when the prices are higher to maximize expected revenue. Since
many factors affect market pricing (Yu et al. 2019), to maximize expected revenue, uncer-
tainties in load, solar, and market pricing need to be modeled and can be explored as part
of future work.

Related work

Our work is related to these areas: energy systems, economics, and energy sharing in
smart grids.

Energy systems

Recent work has looked at providing abstractions to physical resources to control and
improve energy efficiency in buildings (Agarwal et al. 2011; Dawson-Haggerty et al. 2013;
Lam et al. 2014; Keshav 2016; Karmakar et al. 2015; Wei et al. 2016; Pan et al. 2015).
BOSS (Dawson-Haggerty et al. 2013) andMicrosoft HomeOS (Dixon et al. 2012) provides
service abstractions of shared physical resources. These abstractions connect different
physical systems and allow the development of applications that enable energy optimiza-
tion, such as HVAC or electrical lighting control. Also, there are studies on developing
systems to control HVAC systems in buildings (Agarwal et al. 2011; Weng and Agar-
wal 2012; Karmakar et al. 2015). There has also been designing metadata schema for
representing building applications and capture relationships between sensors and vary-
ing subsystems within a building (Balaji et al. 2018; 2016). However, prior works do not
propose abstractions for solar or battery arrays for designing energy-efficient systems.
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Energy economics

Numerous studies have focused on the use of renewable energy and its impact on the
grid (Mishra et al. 2013; Carpenter et al. 2012; Narayanaswamy et al. 2012; Pan et al. 2013;
Keck et al. 2019). Since electricity from renewable sources such as solar is highly intermit-
tent and unreliable, intelligent use of batteries can minimize reliance on grid electricity
without impacting daily usage patterns (Mishra et al. 2013). Studies show the benefits of
energy storage with renewable for different market paradigms and power grid configura-
tions (McPherson and Tahseen 2018). Also, energy cost savings achieved with batteries
may be sensitive to certain pricing schemes (Carpenter et al. 2012), batteries are profitable
when combined with demand response programs (Exarchakos et al. 2009). A significant
amount of work has also focused on designing algorithms to reduce energy consumption
in buildings (Doukas et al. 2007; Mishra et al. 2013). There are also studies on designing
grid networks using solar and storage to manage their local power needs (He et al. 2008).
Our work is built on previous work, where we leverage the variation in demand profiles
of homes to optimize the use of solar and batteries.

Energy Sharing

There has been work in pricing and incentivizing energy trading in a microgrid sce-
nario (Zhong et al. 2014; Thakur et al. 2014; Wang et al. 2015; Gregoratti and Matamoros
2015; Huang et al. 2016; Liu et al. 2017; Liu et al. 2017). For example, (Zhong et al. 2014)
proposes a novel pricing model to incentivize energy sharing. Further, energy trading
between microgrids is shown in Gregoratti andMatamoros (2015), while the energy shar-
ing model with a price-based demand response is proposed in Liu et al. (2017). Other
incentives include energy sharing to mitigate privacy leakage (Huang et al. 2016). In con-
trast, our work is complementary and focuses on the systems issues of virtualizing solar
and battery sharing. Some of the pricing incentives discussed in prior work can be used in
conjunction with our approach. Recent work has also studied bill reconciliation in energy
trading (Mnatsakanyan and Kennedy 2015; PowerLedger: Peer to peer energy trading
2018; LO3 Energy: Brooklyn micro-grid 2018). PowerLedger, an energy startup company,
uses a distributed ledger to enable a bill reconciliation platform for energy trading (Pow-
erLedger: Peer to peer energy trading 2018). Again, their work is complementary to ours
as they provide a platform for tracking energy usage, and do not provide mechanisms for
controlling solar or battery arrays. Previous approaches have also studied energy sharing
in microgrids (Han et al. 2016; Zhu et al. 2013; Wu et al. 2016). Zhu et al. designed an
energy matching algorithm to minimize energy loss via energy sharing (Zhu et al. 2013).
Much of the work on community shared solar on designing programs to improve afford-
ability and access (Chan et al. 2017; Awad and Gül 2018; Hoffman and High-Pippert
2015; Chwastyk and Sterling 2015; Augustine and McGavisk 2016). These studies focus
on understanding the barriers and implementing community solar and storage (CSS) pro-
grams to improve solar adoption among consumers. Since policies may differ from one
state to another, it is essential to understand the driving factors in CSS participation.
Recently, studies focused on solar energy trading and the benefits of CSS over individual
ownership (Kasaei et al. 2017; Yu et al. 2019; Hafiz et al. 2019). For example, (Gai et al.
2019) proposes a privacy-preserving algorithm to prevent data leakage on energy traded
and stored on a blockchain. Separately, fairness issues have also been in solar energy trad-
ing, arising from varying energy generation rates across different solar sites (Bashir et al.
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2017; Feng et al. 2020). However, our work is complementary as we look into the systems
aspects and focuses on providing control to a shared community solar and storage system.

Conclusion
In this paper, we proposed AutoShare — an energy sharing mechanism for community-
owned solar and battery, wherein each virtual solar and battery can be assigned to an
owner and controlled independently, regardless of others. To show AutoShare’s potential,
we implemented an energy sharing algorithm that enables energy sharing to minimize
their local electricity bill. We compared AutoShare to a dedicated community-owned sys-
tem and showed energy savings could increase the energy cost savings. Moreover, we
showed that energy sharing also provides CapEx savings and requires a smaller solar array
and battery compared to dedicated systems.
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