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generators of power has the potential to solve the simultaneity problem of power
consumption and optimize the power supply from the superposed grid regarding
different goals. In this paper, we present a multi-criteria extension of a distributed
cooperative load management technique in smart grids based on a multi-agent
framework. As a data basis, we use feasible power consumption and production
schedules of buildings, which have been derived from simulations of a building model
and have already been optimized with regard to self-consumption. We show that the
flexibilities of smart buildings can be used to pursue different targets and display the
advantage of integrating various goals into one optimization process.

Keywords: Multi-objective optimization, Optimization of domestic Loads, Distributed
optimization, Multi-agent systems

Introduction
The use of cost-efficient flexibilities in production and consumption of electrical power
is a key factor in the realization of an energy supply concept based on solar and wind
energy (Elsner et al. 2015). An important element here is the load management of devices
in domestic buildings, which has already been treated in various studies (Maier 2018, chap. 6).
Increasing the potential of this technology in the future is possible due to the increased
use of heat pumps and electric vehicles. However, these devices can also contribute to the
problem of imbalance of generation and consumption as well as of the grid load by the
potentially high simultaneity of consumption (see e.g. (Fernandez et al. 2011)).

Load management of electrical devices in residential buildings can be applied with
different goals in the power grid:

e Cost optimization of households in terms of own consumption in regards to a local
PV system and a local battery storage

e Cost optimization in terms of variable power tariffs

e Reduction of grid load in the low voltage grid

e Minimization of comfort loss for the consumer due to load shift
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The problem of energy management to be solved therefore consists of a multi-criteria
optimizing schedule planning for the flexibilities of the devices (compare (Barbato and
Capone 2014)). In particular, in order to solve the simultaneity problem of power con-
sumption, but also to optimize the power supply from the superposed grid, a smart grid
optimization technology at the level of a low-voltage grid is required (in contrast to local
optimization within a smart building).

In this decentralized technical system of flexible and inflexible consumers and (inflexible)
power generators, a distributed algorithmic approach to optimization makes sense. In
particular, multi-agent systems bring several advantages as robustness and easy expand-
ability and have already been studied with some of the optimization goals mentioned
above (see e.g. (Coelho et al. 2017; Sonnenschein et al. 2015)).

Given the interactive nature of certain goals such as reducing the grid load in the low
voltage grid as well as the fact that consumers vary in their power consumption behav-
ior and in their availability of (low-priced) flexibility, a cooperative algorithmic approach
allows for an optimal co-operation among all participating units. That way, a solution that
constitutes the optimum for all interconnected units can be achieved. In contrast, a com-
petitive approach would lead to locally optimal scheduling for each single unit only, which
is likely to be suboptimal on the aggregated level. Furthermore, it makes sense that all of
the participating units optimize regarding all of the different criteria. That way it can be
assured that no optimization possibilities are lost.

In this paper, we present a multi-criteria extension of a distributed cooperative load
management technique in smart grids based on a multi-agent framework. It integrates
all of the optimization goals mentioned above into one algorithm. Agents represent the
flexibilities of buildings, which in turn have already made an optimization with regard to
self-consumption in case of an existing local PV system and battery storage. This smart
grid optimization technique is used for a future scenario of the electricity supply of the
year 2050, in which different type days for two different low-voltage grids were exam-
ined. The achieved results of this simulation study are discussed in particular with regard
to the benefits of a distributed and cooperative multi-criteria optimization, and thus an
algorithmic integration of the optimization goals. In addition, we discuss the effect of the
number of participating agents on the optimization results.

Related Work

Optimization of modern electrical power systems has been a research topic for a long
time (Kallrath et al. 2009; Zhu 2015) including a great variety of research regarding
the optimization potential of demand side management. Research about demand side
management mainly focuses on the optimization of one single criterion such as shaving
energy usage peaks, reducing the consumers electricity costs or integrating and managing
decentralized energy resources cost-effectively (Esther and Kumar 2016).

The role of household appliances for sustainable user behavior has been discussed
intensively in the last years, e.g. regarding the need for an efficient demonstration of
relevant information to the inhabitants. It has been pointed out that automation is the
key enabler regarding the efficient implementation of incentivation approaches (Gep-
pert and Stamminger 2010). As could be shown in large-scale surveys, monetarization
of this impact is an efficient means to induce behavioral adaptations (Stamminger 2011).
To alleviate sustainable behavior in private households, serious gaming has been an
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important research direction: environmental impact is used measure to adapt usage
behavior (Seebauer et al. 2013).

Many market-based approaches in the field of demand side management and demand
response have been presented that use software agents to represent individual house-
hold preferences. In most approaches, concepts related to behavioral shifting efforts,
like “inconvenience” or “comfort” are measured on a monetary or utility scale (Arias
et al. 2018). While some of the presented approaches examine the overall effectiveness
of agent-based concepts in these scenarios (like the well-known PowerMatcher concept
(Kok et al. 2005)), others focus on the research topic of price models, e.g. to identify
efficient time-of-use prices (Robu et al. 2018). Ramchurn et al. present an agent-based
concept to adapt deferrable loads in private households according to grid prices that
dynamically reflect grid usage and thus maximize social welfare (Ramchurn et al. 2011).
The overall goal of this study — to evaluate the possibilities to both reflect global efficiency
and local comfort preferences using a monetarization modeling paradigm — is similar to
the work presented here. In contrast to this, the agents in the work presented here act in
a competitive environment, while we analyze the effectiveness of distributed cooperative
multi-criteria optimization. It has been highlighted in the introduction why cooperative
multi-agent environments are a relevant research topic in the context of building energy
management.

In this respect, Fioretto et al. present an important similar approach (Fioretto et al.
2017). They formalize the problem of load control in private households as distributed
constraint optimization problem (DCOP), and solve this using a cooperative agent-based
approach. The focus of this work is on the formalization and monetarization of local
and global constraints using real-time energy prices, while the distributed optimization
algorithm is straightforward and only able to identify locally optimal solutions. This
approach implements distributed scheduling of devices but does not take behavioral
adaption costs into account. In the approach presented in our contribution, an abstract
interface between the smart building model and the smart grid optimization is provided,
based on a set of admissible schedules with associated behavioral adaption costs.

Additionally, it has been shown that the application of DCOP algorithms is problematic
in energy scheduling tasks with global constraints due to the fully connected constraint
graph and the resulting complexity (Hinrichs and Sonnenschein 2016). We therefore eval-
uate the applicability of algorithmically distributed optimization heuristics to the task of
smart buildings’ energy scheduling using a monetarization approach to integrate different
optimization goals.

Methodical Foundations

In order to get a well founded data basis for this work, preliminary work has been under-
taken. This applies to the modelling of smart buildings and its flexibilities as well as to
the behavior of the inhabitants including efforts and costs for a behavior adaptation (see
Fig. 1 for a system overview).

Behavior context and shifting effort

User flexibility as part of demand side management approaches is often regarded in
terms of evaluating the potential of variable power tariffs. The estimated potential for
peak load reduction varies greatly between 1.6% and 44% (Maier 2018). Effects of other
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Fig. 1 Data generation and data flow for the simulation of the distributed optimization process

interventions for increasing user flexibility, like providing information and feedback are
also estimated to be small in their effect, lying between 5% to 15% (Schuitema et al. 2017).
Next to the problem of low numbers of participants in demand response programs in
Europe, the problem of user inflexibility or respective, the inelasticity of demand, as it is
studied within economic concepts, has received increasing attention (Torriti et al. 2010).
Suggestions from behavioral science to unlock the potential of smart grid technologies
have addressed these issues of consumer adoption and optimal use. One stated idea is to
increase the effectiveness of applying operant conditioning principles in time-of-use pric-
ing settings by combining them with internal motivators like values (Sintov and Schultz
2015). Staying within the perspective of the theory of operant conditioning and selec-
tion by consequences (Skinner 1981), we suggest, that one important factor, which might
explain the limited effectiveness and large variance of interventions aiming to increase
user flexibility, could be restricting contextual factors of residential user behavior Descrip-
tions of user behavior, when integrated into technical simulations should allow for such
considerations in order to evaluate the theoretical potential of user flexibility in a future
smart grid scenario.

Building a user-model for electrical appliances in residential buildings, we thus
focused first on clustering all activity categories from the German time-use survey for
the years 2012 and 2013 presented in (FDZ der Statistischen Amter des Bundes und
der Lénder 2015). That way, we could identify possible influencing contextual factors
(Wille, F, Eggert, F: Identifying contextual factors influencing behavioural variability
of energy related behaviours in households, in preparation), before coupling certain
activities with electrical behavior of appliances for resulting three weekday clusters
and six weekend day clusters (Reinhold et al. 2018). Secondly, to assess user flex-
ibility for a selection of electrical appliances for which we assumed a direct user
interaction (washing machine, tumble dryer, dish washer, stove, coffee machine, tele-
vision and computer), we conducted an empirical study with a correlational design.
User flexibility is conceptualized as behavioral effort for shifting the time point of

using an appliance away from the preferred time point of usage. The preferred
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time of usage is assumed to be the optimal time point under current behavioral
restrictions. We carried out an online survey assigning participants randomly to either
choose a matching weekday activity profile or weekend activity profile. The chosen profile
constitutes the restricting context for that participant. Criteria are the behavioral effort
for shifting behavior and the preferred time of using an electrical appliance. Behavioral
effort is asked for in Euro on a scale from 0 Euro to 10 Euro in increments of 10 Cents
for the minimal amount necessary to shift the appliance use behavior away from the pre-
ferred time of use for each full hour within 24 h. Since we monetized the indicator for
behavioral effort, we termed it behavioral adaptive cost (bac). For 107 participants we
described bac curves (bac on y-axis and on x-axis positive and negative hourly shifts away
from preferred use point set to zero) by first identifying different curve types relating to
the amount of peaks and width of amplitude. We then aggregated the individual curves
for the different curve types and fitted gaussian peak functions with an acceptable over-
all fit of R = 0.89 to describe the bac curves for the three weekday clusters and six
weekend day clusters for each of the seven appliances. In order to investigate the poten-
tial for user flexibility and integrate a consumer focused optimization criterion within the
multi-objective optimization, this information is integrated into the building model. Fur-
ther details regarding the empirical study and the computation of bac can be found in
((Blaufuf$ et al.), chap. 9.1).

Building Model
The interface between the user-behavior model and the distributed optimization strategy
is the building model, which is embedded in the modular simulation environment eSE
(elenia Simulation Environment) (Reinhold and Engel 2017). A building is composed of
a number of electrical and thermal load and generation plants (e.g. photovoltaic system,
storage system or household appliances), which are modeled energetically in their plant
behavior with a bottom-up approach. The devices and control systems exchange infor-
mation with each other via time-dependent information and power flows. Each building
can be flexibly parameterized and assembled via distribution functions and external data
sets. A user model is used to investigate flexibility potentials through behavioral changes.
This model includes the parameterization of the user, the clustered behavior patterns and
the dependencies of the behavioral adaptive costs. The time-dependent behavior of the
users and the interaction possibility with electrical appliances is realized in the form of an
algorithm for the determination of activity profiles, appliance activity profiles and appear-
ance profiles (Reinhold et al. 2018).

For day-ahead real power planning in a decentralized controllable distribution grid with
a large number of power plants, a number of feasible schedules of the individual units is
required. In this study, the number of schedules offered by each building is set to 30. This
enables the use of control options and flexibility potentials of a building and its systems
from higher-level control systems. In order to determine a reference schedule, we first
forecasted the behavior of the users and the devices for a period of 24 h, considering the
local control of the devices by a home energy management system with an integrated self-
consumption optimization. For this investigation, we used an ideal forecast in order to
rule out disturbance influences on the control system due to forecast variances. Based on
this, device-specific feasible schedules were generated and then aggregated to 30 feasible
schedules per building.
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Especially for user-driven appliance classes (e.g. washing machine, television), the time
shift of the preferred time of use is assumed to come in hand with an adaptational effort of
users’ behavior and is hence priced with the indicator behavioral adaptive costs, which we
down scaled by the factor 100 to make it a viable criterion within the building model opti-
mization. For each appliance schedule, these costs were aggregated to one per building
schedule.

Technical Foundations

In the following section, we describe the technical foundations for this work. These
comprise the distributed optimization heuristic COHDA, which is used to solve the opti-
mization problem at hand. Furthermore, the multi-agent system ISAAC is described,
which is used to simulate the distributed optimization process.

COHDA
In this work, the distributed optimization heuristic COHDA (Combinatorial Optimisation
Heuristic for Distributed Agents) is applied in order to solve the optimization problem
at hand. COHDA is a fully decentralized optimization heuristic that uses self-organizing
mechanisms to optimize a common target. The heuristic is presented by Hinrichs and
Sonnenschein in (Hinrichs and Sonnenschein 2016). The key concept of the heuristic is
an asynchronous and iterative best-response behavior of distributed agents, where each
agent represents a distributed energy resource (DER). Each agent knows the set of feasible
schedules of its unit and is only allowed to change the power schedule of its own unit.
Furthermore, each agent has a working memory that is exchanged with other agents. The
working memory contains the global target function, the most up to date information
about the planned energy consumption of all agents in the system and a solution candidate
to the optimization problem. The solution candidate comprises a collection of schedules
for each agent, which constitutes the currently best known combination of schedules with
respect to the target function. For each unit, the set of feasible schedules is regarded as
private information and is not part of the working memory.

The algorithmic approach can be described in three steps:

1. Perceive: When an agent receives a message from one of its neighbors, it updates
information about the planned energy consumption of other agents and replaces
the existing solution candidate, if the new candidate contains more elements or
yields a better rating.

2. Decide: The agent then searches for the best of the feasible schedules of its unit
taking into account the information about the planned energy consumption of
other agents and the global target. If the resulting system state yields a better rating
regarding the global target than the current solution candidate, a new solution
candidate is created, which replaces the old one.

3. Act: If any component of the working memory has been modified, the agent sends
its working memory to its neighbors.

Following this behavior, for each agent its observed information about other agents as
well as its solution candidate are empty at the beginning, will be filled successively and
will finally represent valid solutions for the given optimization problem. Eventually the
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heuristic terminates in a state where the working memories are identical for all agents and
represent an at least local optimum.

COHDA offers important properties for the predictive scheduling of DERs. First of
all, COHDA ensures convergence and termination even in case of single communication
faults, which is an important aspect in a critical infrastructure such as the energy sys-
tem. However, fast convergence depends on massively parallel communication. If applied
to the real world, long-term-evolution (LTE) standards such as 3G, 4G or DSL are thus
recommended as communication technologies (Holker et al. 2017). Furthermore, privacy
constraints are considered by leaving information regarding the set of feasible schedules
of the energy unit private to the associated agent. However, during the optimization pro-
cess the currently chosen schedule is communicated to other agents. Finally, autonomy of
the individual energy unit is preserved, as the decisions regarding the selection of power
schedules can only be made by its associated agent.

ISAAC

ISAAC! is an energy unit aggregation and planning software based on the heuristic
COHDA. 1t is presented by Niesse and Troschel in (Niefie and Troschel 2016). ISAAC
encompasses a multi-agent system (MAS) based on aiomas?, a lightweight MAS frame-
work written in python that supports the implementation of distributed systems like
MAS. Main use cases of ISAAC are the aggregation of DERs for virtual power plants as
well as smart control in distribution grids.

In ISAAC, each unit agent represents a single energy unit (in our case generally smart
buildings), from which it knows the capabilities and flexibilities. Unit agents implement
a modified version of the COHDA algorithm. They are connected through a small world
overlay network. However, the topology management is a module that allows for choosing
different types of overlay communication networks.

In order to prevent undesired behavior, ISAAC is embedded into a observer / controller
architecture (see Fig. 1). In this setting, there are two new types of agents present in the
MAS. The controller is able to receive optimization targets and communicate them to the
MAS. The observer agent monitors the self-organized behavior of the MAS during run-
time and passes information to the controller agent, if necessary. The controller agent may
also perform control actions to alter the optimization process, e.g. assuring termination
of a negotiation within a desired time. Generally, the observer / controller architecture
combines the benefits of self-organized system behavior with the possibility of avoiding
unwanted behavior.

Flexibility is represented by a number of different feasible schedules for each unit. Each
schedule covers a fixed period and consists of a number of power values for a defined
interval length. In our case the period is set to 24 h and the interval length to 15 min,
leading to 96 power values per schedule.

Building Agents and Battery Agents

In our work the energy units under consideration are smart buildings. Some of the smart
buildings include battery storages. The flexibility of such storages is usually very high
compared to the aggregated flexibility of all other electrical devices in smart buildings.

Lhttps://github.com/mtroeschel/isaac
2https://aiomas.readthedocs.io
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To account for this difference, we integrated two unit agents into ISAAC for all buildings
including a controllable battery storage: one agent that controls the battery storage only
and one agent that controls all other electrical devices of the smart building. While build-
ing agents receive a set of 30 feasible schedule from the building model, the battery agent
only receives the reference battery schedule that is optimized regarding self-consumption.
The battery agent then uses this reference schedule and creates various alternative
schedules. However, certain restrictions exist for the alternative schedules:

e The physical constraints of the battery must be respected.

e Alternative schedules must be balance-neutral in that the state of charge at the end of
the simulation must be equal to the reference schedule.

e The optimization regarding self-consumption must not be violated. If charging or
discharging of power is scheduled in the reference schedule, this cannot be
overwritten within the alternative schedule.

e Additional cycle costs of the alternative schedule must be displayed.

On the basis of these restriction, a battery agent may create thousands of alterna-
tives schedules, which can then be used within the optimization process. Within the
optimization process, battery agents and building agents behave equally again.

Multi-objective optimization of scheduling power consumption

In this work, the scheduling of the power consumption of smart buildings has been
optimized regarding multiple optimization goals. According to (Logenthiran et al.
2012), there are several possible objectives of demand side management: maximiz-
ing the use of renewable energy resources, maximizing the economic benefit, min-
imizing the power imported from the main distribution grid or reducing the peak
load. The following high level optimization goals have been included in the work at
hand:

Cost optimization in terms of own consumption
e Minimization of the peak load

e Minimization of electricity costs

e Minimization of behavioral adaptation efforts

From a mathematical point of view, the set of Pareto optimal solutions constitutes the
solution to a multi-objective optimization problem. Determining the set of Pareto optimal
solutions is complex, as usually no closed form description exists for individual con-
straints of the different buildings. One approach can be found in (Bremer and Lehnhoff
2018), in which the authors use a support vector based constraint modeling technique in
order to approach the set of Pareto optimal solutions. However, such an approach is not
sufficient in this setting, as one solution must be picked at the end. The typical approach
to solve such problems is by scalarization, which then involves formulating a single objec-
tive function (Ehrgott 2005). Picking one out of the set of Pareto optimal solutions usually
involves a decision maker, which expresses preferences on the criteria. This can be done
by ordering or weighting the single criteria or by defining additional constraints (e.g.
“criteria x must exceed value y”). However, as the objective criteria may have different
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magnitude, normalization of objectives is required to get a solution that is in accordance
with the weights of the decision maker (Grodzevich and Romanko 2006).

As the design of the heuristic COHDA allows a distributed optimization of a sin-
gle objective function, we transformed all objectives to one scale, using a monetization
approach. Using a monetary scale for non-monetary values has received criticism (e.g. in
(Silvertown 2015)). However, in our case, we consider a cooperative bottom-up approach,
in which interconnected buildings collectively optimize their scheduling in order to
achieve a common goal. In this regard, the common goal of maximizing the monetary
return (or minimizing the costs) seems adequate. Another advantage of the monetization
approach is that we can make use of existent functions that map e.g. the peak load to a
monetary value. In this way, we can implement the necessary normalization of the single
objectives.

The following function ¢ was used as the objective function for the optimization
problem. It describes the costs of an aggregated schedule s of all interconnected smart
buildings and consists of four elements:

t(s) =€) —@(s) +y(s) +al(s) (1)

€(s) describes the costs at the electricity market, ¢ (s) depicts the payments due to feed-
in to the grid, y (s) describes the costs of the grid usage and in «a(s) the behavioral adaptive
costs are computed. In the following, we will explain each of the four sub-functions in
detail.

In €(s) the costs for the electricity taken from the superposed grid are computed. Since
a variable pricing approach is assumed, fluctuation of market prices had to be included.
Based on historical data of the German spot market for the period 2015 to 20183 the
average price development of a working day, a Saturday and a Sunday for the different
seasons Summer, Winter, Transition was derived®.

In ¢ (s), the payments due to feed in are computed. We assume no subsidizes for feed-in
for DERs and hence the feed-in payment is based on calculations at (Faulstich and et al.
2016) regarding the electricity generation cost, which is assumed to be 8.3 cent/kWh.

y (s) describes the fees for the grid usage. The function is inspired by the cost function
of the grid charge in Germany for users with power measurement. The costs are based on
two positions: the overall consumed energy within one year (in kWh) and the maximum
load within one year (in kW). For the maximum load we considered positive and negative
load, meaning that feed-in into the grid is charged, if its value is higher than the maximum
positive load. The prices for each of these positions were set based on fees of a regional
utility’. However since we simulate single days, the fees were scaled down from one year
to one day*.

Finally «(s) describes the behavioral adaptive costs. They are computed in the smart
building model and assigned to each schedule. In «(s) the individual behavioral adaptive
costs are summed up for all buildings and remain unchanged within the target function.

By using this target function, all high level optimization goals mentioned above are
included in the optimization process. Since payments for the feed-in of power are always
lower than the costs of electricity, cost optimization of households in terms of own

3Data source: “Bundesnetzagentur” (German Federal Network Agency), www.smard.de

4The electricity price data and the implementation of the network fees are available at https://github.com/mnebel-
wenner/Data-multi- objective-scheduling

5 https://www.ewe- netz.de/~/media/ewe- netz/downloads/2018_04_03_ewe_netz_nne_strom_2018.pdf
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consumption is implicitly included in the target function. The peak-load and electricity
costs as well as the behavioral adaptive costs are explicitly included. Since the target func-
tion describes costs, the optimization goal for the interconnected smart buildings is to

minimize £(s).

Results

Single day simulations

Simulation setup

In order to execute simulations with well-funded input data, preliminary work has been
conducted regarding the behavioral adaptation of users as well regarding the compo-
sition and aggregation of numerous smart devices into one smart building model (see
“Methodical Foundations” section). These models include photovoltaic systems and bat-
tery storages, as well as charging stations for electrical vehicles. The findings derived
from the research about users behavior and its adaptational efforts served as input for
the parameterization of the smart building model. The smart building model was then
directly coupled with the multi-agent System ISAAC, using the co-simulation platform
mosaik®. The data flow in this setting is unidirectional: For every simulated day, each
smart building model sends one default schedule and 29 alternative schedules to ISAAC.
For each of the alternative schedules, a monetary value is provided, which indicates the
resulting behavioral adaptive costs for the users of the smart building.

To account for seasonal and daily variations, different simulations have been executed
including varying parameter settings. Detailed information about the scenario definition
as well as the parameter setting for the simulated year 2050 can be found in ((Blaufufs et
al.), chap. 9.5) and (Blank et al. 2019). Nine different days have been considered in this
study: a working day, a Saturday and a Sunday during each of the seasons summer, winter
and a transition phase (spring or autumn). Additionally, two example grids have been con-
sidered: one represents a rural setting, the other one represents an urban setting. In each
of the grids, different housing units exist: single-family houses, apartment buildings with
more than one residential unit, commercial buildings and agricultural farms (in the rural
grid). For the simulated year 2050, the rural grid consists of 97 units from which 32 are
controllable, whereas the urban grid grid consists of 64 units from which 30 are control-
lable. Various different devices have been simulated within the building model. Regarding
PV systems we assumed a penetration of 59% in the rural grid and 53% in the urban grid.
Battery storages were assumed to be applied only in combination with PV systems. In
our scenarios 48% of the buildings with a PV system had a battery storage. Moreover, we
assumed 47% of all vehicles to be electrical vehicles, while the number of vehicles per
household depended on the size of the household, ranging from 0.63 in single households
to 1.82 in a five-person household. Using this setting, 18 simulations have been executed,
each of which simulates the load development for one day (precisely 24 h beginning at 6 a.m.)
in one specific grid at the year 2050. Given the computational intensive simulations for
each day (besides the optimization process, several smart buildings have been simulated
including various devices), only one simulation per scenario has been executed. We note
however, that the behavior of inhabitants is partly modelled stochastically and hence our
presented result constitute exemplary results for the given days.

Ohttp://mosaik.offis.de/
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Simulation results
As described above, different simulations including varying parameter settings have been
executed.

Figure 2 and Fig. 3 show the development of the aggregated load of all controllable smart
buildings before and after optimization for the simulated days within the two different
grids. Table 1 and Table 2 show the effect of the optimization regarding the different
optimization goals in further detail.

It becomes apparent that the optimization of the scheduling leads to a decrease in the
maximum load taken or feed-in to the grid in all simulations. Overall, load peaks can
be observed within different periods of the day. In summer days, a negative load peak
is observable between 12:00 and 14:00, due to an excessive feed-in of photovoltaic sys-
tems. Some simulated days during winter show a peak load in the morning hours due to
the electrical demand of heat pumps (e.g. the working day in winter in the urban grid).
However, most of the time the most prominent load peak occurs between 18:00 and
23:00. The time and load structure of the households indicate that such peaks stem from

charging processes of electrical vehicles.
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Fig. 2 Simulation results of the aggregated load of 32 interconnected units within the rural grid for 2050
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Fig. 3 Simulation results of the aggregated load of 30 interconnected buildings within the urban grid for 2050

The reduction of the load peaks works differently well, depending on the type of the
peak. Negative load peaks due to the feed-in of photovoltaic systems can hardly be
reduced. The reason for that is that there is usually only little flexibility available during
the period of feed-in within the smart buildings. Additionally, the existing flexibility is
often associated with high adaptational effort and hence very costly. Another reason for

Table 1 Effect of the optimization regarding the multiple objectives for the different simulated days
in the rural grid

Weekday Season Peak Load Electricity Costs Adaptation
abs. rel. abs. rel. Costs
Winter -56.8 kW -39.4% -9.30 EUR -3.7% 0.86 EUR
Working Day Transition -56 kW -43.5% -560 EUR -3.6% 1.90 EUR
Summer -5.36 kW -4.4% -7.11 EUR -11.2% 1.26 EUR
Winter -41.72 kW -30.5% -4.24 EUR -1.9% 1.00 EUR
Saturday Transition -92.42 kW -54% -494 EUR -2.9% 1.55 EUR
Summer -26.19 kW -18.6% -4.22 EUR -7% 1.22 EUR
Winter -547 kW -5.9% -4.51 EUR -1.8% 142 EUR
Sunday Transition -7.75 kW -9.8% -5.37 EUR -3.8% 1.85 EUR

Summer -32.21 kW -29.9% -5.78 EUR -4.6% 1.84 EUR

Page 12 0of 19
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Table 2 Effect of the optimization regarding the multiple objectives for the different simulated days
in the urban grid

Weekday Season Peak Load Electricity Costs Adaptation
abs. rel. abs. rel. Costs
Winter -8.86 kW -7.2% -5.54 EUR -1.5% 0.29 EUR
Working Day Transition -55.84 kW -47 4% -5.33 EUR -2.8% 122 EUR
Summer -6.87 kW -7.8% -6.53 EUR -11.6% 0.85 EUR
Winter -47.88 kW -44.3% -3.37 EUR -2% 0.76 EUR
Saturday Transition -57.96 kW -49.5% -3.83 EUR -2.9% 1.7 EUR
Summer -16.94 kW -17.2% -4.54 EUR -84% 1.24 EUR
Winter -1.15 kW -1.3% -2.83 EUR -1.6% 0.75 EUR
Sunday Transition -5.77 kW -9.4% -148 EUR -1.5% 123 EUR
Summer -8.76 kW -9% -2.54 EUR -2.2% 224 EUR

the poor performance regarding the reduction of the negative peaks lies in the fact, that
the battery storages within the buildings are run in an immediate charging mode for their
reference schedule. Within days of high solar radiation, most of the storages are hence
already fully charged in the morning hours. In this case, the storages cannot absorb any
more load during the period of the highest solar radiation and the load is directly fed back
into the grid.

However, the distributed optimization can lead to a significant reduction of the peak
load that arises in consequence of the charging processes of electrical vehicles. If uncon-
trolled, the charging processes usually overlap leading to highly simultaneous energy
consumption of the different buildings (compare e.g. (Putrus et al. 2009)). After optimiza-
tion, the charging processes are more evenly spread throughout the possible charging
period and hence the peak load can be reduced.

While table 1 and Table 2 show that the peak load is reduced in all simulated days, there
is a high variance in the amount of this reduction. The main reason for that is that the
reduction of negative load is less successful than the reduction of positive load. Therefore,
the effect of the optimization regarding the reduction of the peak load is less promi-
nent in summer days, when the main grid usage is determined by the negative load due
to the feed-in of photovoltaic systems. Another reason for the variance is that the refer-
ence schedules for all buildings are based on the behavior of the house inhabitants, which
is partly stochastic. Therefore, in some days a higher simultaneity in charging electrical
vehicles can be observed (e.g. working day transition in the urban grid) than in other
days (e.g. Sunday transition in the urban grid). The collective optimization can lower the
simultaneity of energy consumption and hence the optimization effect is more prominent
during days of highly simultaneous energy consumption.

Concerning the objective of reducing the maximum load, the benefit of a collective opti-
mization becomes apparent. Only if there is a collective goal and knowledge about the
scheduled power consumption of other buildings, agents can schedule their power con-
sumption accordingly. An optimization of the peak load at the single building level would
perform worse in this regard, as the load peaks of different buildings do not necessarily
overlap.

Figure 2 and Fig. 3 additionally indicate that the overall electricity costs €(s) — ¢(s)
are reduced after optimization. In almost all simulations, a significant amount of load
is shifted towards the times with rather low electricity costs (between 0:00 and 5:00).



Nebel-Wenner et al. Energy Informatics (2019), 2(Suppl 1): 28 Page 14 of 19

Table 1 and Table 2 show that this indication is true. However, there is less variance
in this effect between the simulated days. This is due to the fact, that the main benefit
regarding electricity costs can be derived from shifting positive load from the evening
period towards the early morning period which can be done independently of weather
conditions.

v (s) is implemented such that only the maximum load taken from the grid or fed into
the grid is charged. If there is a certain maximum load value that cannot be reduced
(or reducing it is too costly), y(s) cannot be reduced any further. In these cases, the
other subfunctions of the target function (e.g. €(s)) play a more dominant role. This
can be seen for example in the working day in summer for the rural grid (Fig. 2). In
this simulation, the maximum grid usage is determined by the feed-in of the photo-
voltaic systems at around 13:00. Because of this, creating another peak that does not
exceed this value would not raise the costs of y(s). Accordingly, after optimization we
can see a new peak regarding the positive load in the early morning hours, where elec-
tricity prices are low. However, the absolute value of this new peak does not exceed
the maximum absolute value of the negative load caused by the photovoltaic systems.
Such optimization strategies are another example for the benefit of a collective opti-
mization. At a single building level, there would be no information about the collective
negative peak during the day and hence those buildings without a photovoltaic sys-
tem could not optimize their scheduling regarding the variable electricity prices as
effectively.

However, the underlying flexibilities of the buildings are not sufficient to success-
fully match generation and consumption of electricity. That becomes apparent in
simulations, where a high feed-in appears during the day due to the photovoltaic
systems. There is not enough flexibility to shift a significant amount of load to
such periods. One reason for that is that the major power consumer - the electri-
cal vehicle - is usually not present at the smart building during the day (and hence
it cannot be charged). Another reason is that the user-driven electrical loads are of
rather small amount and they are costly to shift as they involve behavioral adaptation
efforts.

Regarding the adaptation costs, we can see that the savings of electricity costs always
exceed the amount of behavioral adaptation costs. As it is the case with all objectives,
this holds for the aggregated view of all interconnected buildings and not necessar-
ily at the single building level. As we assume that all agents act on a cooperative
basis and solely try to maximize the global target function, an agent would always
choose the schedule that is most beneficial for all interconnected buildings, even if
the adaptational costs for its building exceeded its individual benefit. A compensa-
tion payment between buildings of different owners could be an approach to solve this
problem.

Overall, the results show that the distributed multi-objective optimization of the flex-
ibilities of smart buildings lead to a significant decrease of the peak load as well as of
electricity costs. This is particularly successful and necessary when there is a high simul-
taneity in the charging processes of electrical vehicles. In all simulations, the aggregated
adaptation costs that arise for the users are lower than the aggregated monetary benefits.
Hence, the implemented multi-objective optimization result in an aggregated net benefit
for the interconnected smart buildings.
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Simulations with varying number of controllable buildings

Simulation setup

Investigations regarding a varying number of controllable buildings have been performed.
For this, configurations for one of the above mentioned simulations has been fixed (the
urban grid at a working day in autumn). Using the corresponding parameter set, we exe-
cuted numerous simulations with a varying number of controllable buildings. For this
we grouped the smart buildings on the basis of their flexibility profile. For each smart
building, we calculated the area of the flexibility band as follows:

1. Determine the maximum and the minimum possible power output of the building
for each 15-min interval.

2. Calculate the spread of the maximum and the minimum load for each interval.

3. Sum up all these spreads for the whole day.

On the basis of these calculations, we clustered the buildings into four different flexibility
groups: buildings with no flexibility, buildings with low flexibility, buildings with medium
flexibility and buildings with high flexibility.

We then simulated different scenarios, which differed only in the number of controllable
buildings included in the optimization process. In each scenario, the number of control-
lable buildings was fixed, as well as the corresponding flexibility groups from which the
buildings were picked. However, the particular buildings that were chosen from each flex-
ibility group was determined randomly and hence we executed 10 simulations for each
scenario with varying random numbers. Non-controllable buildings were assumed to
realize their default schedule with no adaptation costs. In the last simulations, all building
in the grid (102 buildings) were assumed to be controllable and hence all buildings were

included in the optimization process.

Simulation results

Figure 4 shows the results of simulations with a varying number of controllable build-
ings. It becomes apparent that increasing the amount of smart buildings that are part of
the multi-objective optimization process leads to a reduction of the peak load and to a
decrease of electricity costs for the whole grid, while the adaptation costs increase. The
course of this effect is linear. Interestingly, the results for the peak load show the highest
standard deviation. This indicates that there are certain buildings with critical schedules,
which - if uncontrolled - lead to a high peak load. Regarding the development of electric-
ity costs and adaptation costs there is less variation. However, on average an increase of
the share of controlled buildings in the grid does lead to an average net benefit for both
scales. Therefore, the share of controllable buildings remains a critical parameter when
analyzing the effect of the optimization for a whole grid, in which not all buildings are
controllable.

Conclusion, Discussion and Outlook

In this work we presented a novel approach for a distributed cooperative multi-objective
optimization of power consumption scheduling for smart buildings. We integrated goals
regarding the cost optimization for buildings, regarding peak load reduction as well as
regarding the minimization of behavioral effort for users’ load shifting. In order to run
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Fig. 4 Results of simulations with a varying number of interconnected buildings regarding the maximum
load, the electricity costs and the adaptational costs. For each setting, 10 simulations with different
controllable buildings have been executed. The shaded area displays the standard deviation

simulations with a well-funded data basis, we carried out intensive preliminary research
about the users behavior and its adaptational efforts as well as about the modelling of
smart buildings and its flexibilities of electricity consumption.

We showed that the given flexibilities of smart buildings can be used to pursue all tar-
gets. Furthermore, we displayed the advantage of integrating the different goals into one
optimization process. If for example a certain peak load cannot be reduced any further,
this peak can be seen as a limit. The remaining flexibilities can then be used to shift a
large amount of load towards times of low electricity prices as long as any new peak does
exceed the existing one. Another advantage of integrating multiple criteria into one opti-
mization process lies in a more complete cost-benefit analysis of the given flexibility. An
optimal decision can be made only if the aggregated net benefit of a certain schedule
including all optimization goals is evaluated. Certain flexibility may be too expensive to
justify its use solely for peak load reduction or electricity cost reduction. However, this
may change, when the aggregated benefits for both targets are taken into account.

In order to integrate the different objectives into one target function, we chose a
monetarization approach. This seems justifiable, given that the use case under investi-
gation describes a rather bottom-up approach, in which interconnected smart buildings
optimize their electricity consumption in order to get a monetary benefit.

However, converting any criteria to a monetary scale is not without limitations. In our
case, we faced the challenge to assign a monetary cost value that indicates the behav-
ioral efforts for inhabitants due to the shift of appliance use behavior. We presented an
approach to monetize behavioral efforts in order to integrate a theoretical meaningful
conceptualization of user flexibility into the multi-objective optimization process. How-
ever, we want to stress that an interpretation of behavioral adaptive costs in terms of their

absolute monetary values is problematic.
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Regarding the simulated load curves, it becomes apparent that, if the number of electri-
cal vehicle increases massively, the corresponding charging processes play an important
role in a future electricity grid. Our simulations confirm that, if uncontrolled, the con-
current charging of electrical vehicles produces high load peaks. This can be significantly
reduced by a control mechanism which spreads the charging processes throughout a
longer time span.

In our work, the potential of battery storages is not included in its full extent, as we
assumed battery storages to run in a grid-unaware mode. Because of that, the battery stor-
ages in our simulation do hardly contribute in reducing negative peaks. However, massive
feed-in of photovoltaic systems may play a prominent role in a future energy system. It
can be assumed that this problem can be reduced, if battery storages reserved a certain
share of their capacity for times with high feed-in of photovoltaic systems. However, as
the flexibility of battery storages is generally a lot greater compared to the flexibility of
domestic load, we implemented a separate battery agent, which calculates the flexibility
of battery storages in a more suitable manner.

Regarding the investigated time period we chose to simulate nine different days includ-
ing different characteristics regarding the weekday and the season. However, simulations
still remained in an 24 h frame, which leads to a limited representation of the flexibility.
This can be seen when looking at the flexibility of electrical heat pumps. In reality heat
pumps are flexible to shift part of their needed electricity consumption in order to fulfill
the thermal demand towards earlier times. However, this is not included in our simula-
tions as all simulations start at 06:00. In future work, simulations of longer periods must
be executed to see, if these load peaks of electrical heat pumps can be reduced.

In this work we have solely used COHDA as the underlying optimization heuristic.
Comparing the presented results to simulation results with another distributed optimiza-
tion heuristic using the exact same setting would certainly be interesting. However, due to
the enormous simulation effort we had to forgo additional simulations. In (Hélker 2018),
the three distributed optimization heuristics COHDA, PowerMatcher and PrivADE (see
(Brettschneider et al. 2017) for more details about PrivADE) are compared. As no signif-
icant differences between the three heuristics regarding the quality of the results could
be identified, we do not expect the choice of the distributed optimization heuristic to be
critical for this work.

Overall, we presented a novel approach for a distributed cooperative optimization of the
scheduling of power consumption for smart buildings on the basis of multiple criteria. We
showed that our approach leads to a net-benefit for the interconnected smart buildings
regarding all included criteria. We additionally displayed possibilities for further investi-
gation and improvement of the presented approach and hence provided a valuable basis
that can be used for further research regarding a cost-efficient use of flexibilities in the
consumption of electrical power.
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