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Abstract

Forecasting or modeling the on-off times of domestic appliances has gained increasing
attention in recent years. However, comparing currently published results is difficult due
to the many different data-sets and performance measures employed. In this paper, we
evaluate the performance of three increasingly sophisticated approaches within
a common framework on three data-sets each spanning 2 years. The approaches
forecast the future on-off times of the appliances for the next 24 h on an hourly
basis, solely based on historic energy consumption data. The appliances investigated
are driven by user behavior and consume a significant fraction of the household’s total
electrical energy consumption. We find that for all algorithms the average area under
curve (AUC) in the receiver operating characteristic (ROC) is in the range between 72%
and 73%, i.e. indicating mediocre prediction quality. We conclude that historic
consumption data alone is not sufficient for a good quality hourly forecast.

Keywords: Load forecasting, Shiftable loads, Domestic appliance, Experimental
comparison

Introduction
Forecasting or modeling the expected on-off times of domestic appliances is motivated

from two directions: (i) generation of electrical load profiles and (ii) learning and

predicting user behavior. Artificial load profile generation (Pflugradt 2016) can be help-

ful if large numbers of profiles spanning extended durations are required because their

collection typically involves arduous measurement campaigns. While the precise

prediction of the switch-on/off times is in this case not the main concern, it is an

essential part in applications targeting demand response systems: Learning the usage

pattern of appliances and therefore, knowledge of the user behavior is a vital input to

optimally plan energy usage (Chrysopoulos et al. 2014; Holub and Sikora 2013). While

different prediction approaches have been published (Chrysopoulos et al. 2014; Holub

and Sikora 2013; Truong et al. 2013; Barbato et al. 2011), an outstanding matter in

adequately addressing the forecast of domestic appliance usage is a comparison of the

available approaches: Published results are difficult to compare because of diverse per-

formance metrics, different predicted appliances and the large variety of employed

datasets, either measured at different geographic locations or even simulated. It is
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therefore unclear how well a method generalizes (i) over extended time periods and (ii)

to other datasets with different attributes such as appliances, number of inhabitants,

user habits and behavior.

In this work, we compare published the approaches we are aware of (Chrysopoulos

et al. 2014; Truong et al. 2013; Barbato et al. 2011) and extensions from these on three

datasets measured over 2 years in households located in Switzerland, Canada and the UK.

We implemented these approaches into a common framework and compare their fitness

in predicting the usage patterns of the appliances. In doing so, we focused on appliances,

whose usage is mainly driven by user behavior and whose switch-on time is flexible. In

the relevant literature such appliances are commonly referred to as “shiftable loads”.

Examples for such loads are washing machine, dish washer or tumble dryer. The Python

source code for the experiments can be obtained from the authors upon request.

Algorithms
The following subsections shortly discuss the main characteristics of the three implemented

algorithms. All algorithms have been used to predict the on-off times of appliances with a

resolution of 1 h.

Histogram algorithm

Assuming that household activities follow a weekly pattern, one can build up a

histogram of on-times of an appliance for each weekday based on the training data

(Chrysopoulos et al. 2014; Holub and Sikora 2013). The approach used in this

work is shown in Eq. (1). It conditions relevant day-profiles with a Gaussian

weighting around the time of interest. In this manner we allow on-events in the

past that are not precisely aligned with the time of interest to influence the predic-

tion. Based on the preceding N days each subdivided into T time intervals, the

probability that on day n at time t appliance l is running is calculated as

p xntlð Þ∝
X

m∈N

X
τ ≤T

wnme
t−τð Þ2
2σ2 xmτl ð1Þ

where xmlt = 1 if appliance l was running during the interval τ on weekday m and

xmlt = 0 otherwise. wnm = 1 if n =m, and wnm = 0 otherwise. The variance σ is a

model parameter that was set experimentally, see results section.

Pattern search algorithm

Whereas the histogram-based approaches assume the weekdays to be the governing

pattern defining the weights wnm, see Eq. (1), the approach by Barbato (Barbato et al.

2011) tries to identify these patterns. It does so by relying on the redundancy of vari-

ably sized day-patterns. To this end, one maps the N days preceding the day to be pre-

dicted, n, to a binary array of the form [δn −N, δn − (N − 1),…, δn − 1] of length N with δi = 1

when the appliance was running on day i, and δi = 0 otherwise. The sub-array Sn(i) is

then defined as Sn(i) = [δn − i, δn − (i − 1),…, δn − 1] for a given length 1 ≤ i <N/2. The

occurrences of both the sub-pattern Sn(i) as well as [Sn(i), 1] = [δn − i, δn − (i − 1),…, δn − 1,

1] is counted in the original array and the probability of a pattern of length i followed

by a conjectured on-day is calculated as
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sn i; 1ð Þ ¼
0 if# Sn ið Þ½ � ¼ 1

# Sn ið Þ; 1½ �
# Sn ið Þ½ �−1 else

8<
: ð2Þ

and correspondingly sn(i, 0) for a conjectured off-day (note that sn(i, 1) + sn(i, 0) = 1 by

construction). Now i is increased until either sn(i, 1) or sn(i, 0) equals 1. In the latter

case, a day without any appliance usage is predicted. Whereas in the former, the days

following the occurrences of the pattern Sn(i) define the relevant days used for forecast-

ing. They replace the days with identical weekday as used in the Histogram algorithm.

It turns out that for the investigated data, patterns are not as obvious as in (Barbato

et al. 2011), i.e. there is typically not an optimal pattern length i resulting in either sn(i,

1) or sn(i, 0) being 1. We therefore extended the original approach as can be seen in Eq.

(3). Day n is predicted by the sum of the K most probable patterns weighted with the

probabilities sn(i, α).

p xnltð Þ∝
X

i;α
sn i; αð Þδα1

X
m∈Ni;s≤T

e
t−sð Þ2
2σ2 xmsl ð3Þ

where ∑i, αgoes over the K most relevant patterns. The Kronecker Delta δα1 leads to a

zero contribution of the patterns predicting a day with no appliance usage.

Bayesian inference algorithm

The third investigated method (Truong et al. 2013) uses Bayesian inference, which differs

fundamentally from the previous approaches. It uses a Markov-Chain Monte-Carlo ap-

proach to sample the posteriori distribution of the model parameters. The key elements

of the model are the latent day-types k. They are used to create day profiles and to record

correlations between the use of individual appliances. In summary, the probability p(xnlt)

of appliance l running at time t on day n is calculated as

p xnltð Þ∝
X

K
p k∣nð Þμkl tð Þ ð4Þ

where k goes over all K day-types and p(k| n) is the probability of day n being described

by day-type k. One of the advantages of this approach is that it infers the parameters

for each appliance l from the data of all appliances resulting with an effective training

set of N · L data points, L being the total number of appliances.

Data and methods
Test data

Various datasets containing electrical consumption data of individual households are

available (Murray et al. 2017). The three datasets employed in this investigation are

GH9, collected by the authors, AMPds2 (Makonin et al. 2016) and REFIT, House 5

(Murray et al. 2017). They all cover at least two continuous years of data records from

a single-family house, stem from Switzerland, Canada and UK respectively, and include

sub-metered data for dishwasher, washing machine, and tumble dryer. In order to

produce hourly on- and off-times off the appliances, the measurement data was prepro-

cessed by imposing i) minimal on- and off-times i.e. removing noise spikes and pre-

venting double-counting due to intra-cyclic pauses, ii) as well as a minimal power

levels. It was then downsampled to hourly intervals.
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Performance metric

Binary classifiers can be assessed with a variety of performance metrics. We compare

the predictive quality of the tested algorithms on the basis of the so called

ReceiverOperator-Characteristics (ROC) curves because of their independence from

the relative weight of the ground-truth’s classes. The ROC method is well suited for a

posteriori measure of the prediction quality but for an actual predictive algorithm a sin-

gle working point along the curve (i.e. a single fixed threshold) must be chosen in

advance. To average the ROC curves over individual samples each predicting the on-off

behavior of an appliance during 1 week and estimate the resulting statistical variance,

methods described in (Macskassy and Provost 2004) are employed. To allow for simple

comparison with other experiments, the ROC curve is integrated, resulting in the area

under curve AUC.

Results
Where not otherwise mentioned, results stem from an average over 90 samples, where

each individual sample predicted on-off behavior of an appliance during 1 week based

on the eight preceding weeks, hence covering in total roughly 2 years of data.

Histogram algorithm

The basic histogram method was tested on all three datasets with the model parameter

σ (variance) varying between 0 and 2. Overall best performance with respect to AUC

was achieved with σ = 1.3 which was used for all further experiments. The average per-

formance improves by increasing the training window, i.e. increasing the individual

train-sets, but saturates for lengths above about 3 months. As a trade-off between pre-

diction quality and a quickly increasing computational effort for the more elaborate

algorithms, a training window of 8 weeks was chosen to ensure comparability of the

results. Table 1 summarizes the results. The algorithm generally performs in a medium

quality range with AUC-values around 0.7. Differences in the AUC of different

Table 1 Area Under Curve for predicting 1 week based on the preceding 8 weeks. The results are
averaged over 2 years (90 samples) with corresponding standard deviation

Histogram Pattern Search Bayesian Inference

GH9

Dish-Washer 0.64 ±0.15 0.72 ±0.10 0.72 ±0.10

Tumble Dryer 0.74 ±0.21 0.78 ±0.14 0.71 ±0.08

Washing Machine 0.84 ±0.10 0.75 ±0.09 0.73 ±0.08

AMPds2

Dish-Washer 0.68 ±0.12 0.66 ±0.10 0.74 ±0.08

Tumble Dryer 0.72 ±0.11 0.73 ±0.08 0.77 ±0.09

Washing Machine 0.63 ±0.17 0.81 ±0.08 0.73 ±0.10

REFIT

Dish-Washer 0.79 ±0.14 0.72 ±0.15 0.72 ±0.06

Tumble Dryer 0.76 ±0.14 0.66 ±0.13 0.69 ±0.07

Washing Machine 0.74 ±0.09 0.68 ±0.10 0.77 ±0.08
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appliances and datasets are large but are not significant due to the large uncertainty as

illustrated in Fig. 1.

Pattern search algorithm

Whereas the Histogram algorithm and the Bayesian Inference algorithm can ‘predict’

arbitrarily far into the future, the Pattern Search algorithm adapted from (Barbato et al.

2011) is only able to predict the day immediately following the training set. Thus for

the latter, the window of training- and validation-set was not shifted by intervals of a

week but day by day. Seven day-predictions were then summarized to a 1

week-prediction. Barbato’s approach has been modified to include the K most relevant

patterns. Experimentally we found that K = 14 leads to satisfactory performance. As can

be seen in Table 1, the AUC values are around 0.7 as for the Histogram algorithm but

the standard deviation for the Pattern Search algorithm is mostly reduced.

Bayesian inference algorithm

In contrast to the results discussed so far, results from the Bayesian Inference algorithm

originate from averaging not only over 90 samples i.e. validation weeks, but in addition

each sample was obtained by averaging the prediction of ten independent Markov

Chains. Tests showed a fast convergence of the individual Markov Chains independent

of the initialization. With a burn-in period of 500 steps, the individual prediction was

calculated by averaging over 2000 Gibbs iterations. Results are summarized in Table 1.

Fig. 1 AUC of the Histogram algorithm plotted over a 2 years horizon illustrating the large variations of the
mean values in table 1 for all three datasets. The black curve is averaged over appliances, whereas the colored
lines depict the individual appliances’ performance. Red: tumble dryer, blue: dishwasher, green: washing machine.
Interruptions in the lines result from a lack of sufficient values to confidently assess an AUC value for certain
validation periods
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Discussion and conclusions
The results summarized in Table 1 lead to the following observations: i) The overall per-

formance of the three algorithms is essentially the same: averaging all appliances in all

houses leads to the following values: 0.72 for Histogram and 0.73 for both Pattern Search

and Bayesian Inference algorithms. ii) With increasing complexity of the algorithm not

only the variances over 2 years decrease, but also the prediction quality across appliances

and data-sets becomes more similar. iii) An algorithm’s (relative) performance for a given

appliance and data-set does not necessarily relate to another algorithm’s performance on

the same data-set. That is, an algorithm performing particularly well on a given appliance

of a given data-set does not necessarily imply other algorithms to perform similarly, i.e.

the governing reason for the large differences does not seem to be the underlying data. iv)

Similarly, no statement is possible about certain appliances performing markedly worse or

better across all datasets for a specific algorithm, i.e. no particular algorithm is especially

good at predicting a certain appliance. As discussed above the results imply that the mean

predictive performance is not affected by the choice of the employed model. Because of

the complexity of the implementation and computational considerations this would favor

the Histogram algorithm over the two others. It performs at least 2–3 orders of magnitude

faster than the algorithm based on Bayesian inference. For most real-world applications, it

is, however, not the mean performance that counts most but a reliable performance on any

given data. Here the reduced variance of the Bayesian algorithm with respect to

the Histogram and Pattern Search approach speaks in favor of the former.

From our viewpoint, a limitation of the Bayesian algorithm in its current form is the

fact that it strongly relies on weekly patterns despite its introduction of the latent

day-types. This could be addressed by making minor changes to include more data

such as weather or schedules (Truong et al. 2013). An alternative could be to combine

the Bayesian and the Pattern Search algorithms so that day n would also be predicted

based upon the inferred day-types of the immediately preceding days.

One aim of this study was to investigate if the on-off times of domestic appliances

can be predicted solely based on electrical usage data. From our results, we tend to

negate this hypothesis: On a coarse-grained timescale of 1 h, we achieved on average

a mediocre prediction performance with a large variance. However, we believe that

for domestic load optimization an improved performance and, in particular, a smaller

variance of the prediction would be desirable if not necessary. Our choice of algo-

rithms is far from exhaustive and one can think of various improvements of the

examined algorithms. Nevertheless, from our point of view, the presented results

based on 2 years of data from three different households reflect a general limit for

the hourly predictability of an individual household’s electrical appliances. We con-

clude that taking solely electrical data of a single family into account, every

stochastic approach must suffer from a lack of information, independently of its

complexity.
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