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Abstract
There has been a large number of contributions on privacy-preserving smart metering
with Differential Privacy, addressing questions from actual enforcement at the smart
meter to billing at the energy provider. However, exploitation is mostly limited to
application of cryptographic security means between smart meters and energy
providers. We illustrate along the use case of privacy preserving load forecasting that
Differential Privacy is indeed a valuable addition that unlocks novel information flows
for optimization. We show that (i) there are large differences in utility along three
selected forecasting methods, (ii) energy providers can enjoy good utility especially
under the linear regression benchmark model, and (iii) households can participate in
privacy preserving load forecasting with an individual membership inference risk
< 60%, only 10% over random guessing.
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Introduction
Smart metering data is said to be useful for improving the load forecasting task of energy
providers (McDaniel and McLaughlin 2009; Li et al. 2010; Ilić et al. 2013; Bao and Lu
2015). With more accurate forecasts, energy providers gain an advantage for trading and
scheduling electricity production and consumption ahead of time. Forecasting errors have
to be compensated by buying control energy for stable electric grid operation. The highly
volatile control energy prices charged for this compensation can be painful for the energy
providers. In Germany of 2017, for example, the average control energy price was 49.67
EUR per MWh, but for 30 min, the price shot over 20,614.97 EUR per MWh.1

On the other hand, monitoring electrical load from individual households incurs vio-
lation of privacy, as private behavior patterns are reflected in the energy consumption2

(McDaniel and McLaughlin 2009; Molina-Markham et al. 2010; Lisovich et al. 2010). The
amount of privacy violation varies depending on themonitoring time resolution of meter-
ing data (Eibl and Engel 2015). Using Differential Privacy (Dwork 2006) as privacy model,
both time granularity and varying levels of the privacy parameters can be used to quantify
and interpret the influence on privacy.
In addition to the privacy issue, the utility of individual data for load forecasting is natu-

rally limited due to the stochasticity of domestic energy usage (Fan et al. 2009). To best of
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our knowledge, no work exists that leverages individual (instead of aggregated) load data
to gain a significant advantage on the domestic load forecasting task. This is why domes-
tic load forecasting is performed using load data aggregated (added together) over large
areas with many households.
In this paper, we investigate whether energy providers can benefit from aggregated

smart metering data which is acquired in a privacy-friendly way. We formulate a privacy-
preserving forecasting process that provides energy producers with forecast utility guar-
antees and households with strong, yet intuitive privacy guarantees, based on Differential
Privacy. We make the following contributions:

• First time to regard energy provider’s load forecasting task based on smart metering
data with prescribed privacy guarantee,

• Practical design and evaluation of Differential Privacy for load forecasting, as well as
comprehensible and interpretable calculation of membership inference risk using
Differential Identifiability,

• Determination of the privacy-utility trade-off on real world data (Hong et al. 2014)
using three realistic forecasting methods, and

• Demonstrating that differentially private load forecasting with a low membership
inference risk ρ < 0.6 and strong utility is especially achievable under the linear
regression benchmark model.

This paper is structured as follows. First, we introduce preliminaries. We
formulate our concept for realizing differentially private load forecasting in
“Differentially private metering and load forecasting” section and present an evaluation in
“Experiments and results” section. Finally, related work is presented before we
conclude with a discussion of practical implications.

Preliminaries
In the following, we provide fundamentals regarding electricity grid metering,
the underlying privacy model of this work in “Differential Privacy” section, and
load forecasting approaches we use for electricity consumption prediction in
“Electric load forecasting methods” section.

Electricity metering process (in Germany)

In this paper, we will discuss our problem setting in the context of the German meter-
ing and balancing process. Although the objective of metering for balancing in an electric
power system is equal around the world, specific details in metering and settlement are
subject to national and regional regulations. That is why we fix our process description to
the well-documented German electrical power market. The relevant sources are the Ger-
man electricity grid access regulation (StromNZV 2017), the German measuring point
operation act (MsbG 2016) and the market rules for the implementation of balancing
group accounting for electricity (MaBiS (Bundesnetzagentur 2011)).
In Europe, the electric grid is partitioned geographically into control areas, each oper-

ated by a transmission system operator (TSO). Every control area is subdivided into
distribution grids operated by a distribution system operator (DSO). Transmission and
distribution grid operators are government-regulated entities who are responsible for sta-
ble and reliable grid operation and non-discriminatory access to electricity production,
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consumption and trading. To accomplish these two goals simultaneously, the TSO dele-
gates the task of balancing supply and demand to the grid participants to some extent by
charging the participants for any imbalance they cause. How imbalance is estimated and
settled is subject to national regulations. (cf. (Commission Regulation 2017a; Commission
Regulation 2017b; Federal Energy Regulatory Commission 2015))
Each control area is virtually partitioned into balancing groups which are basically

time-dependent accounts for electric energy. An electricity customer (i.e., her grid con-
nection point) is associated with exactly one balancing group which corresponds to
the energy service provider and possibly to a specific tariff chosen by the customer.
(cf. Sections 4, 5 StromNZV)
Before the roll-out of smart metering, residential electricity meters of customers with

low or normal annual consumption were only read out annually or during the change of
energy provider or tenant. Customers with an annual consumption above 100,000 kWh
are subject to real-time load profile measurements which collect average and peak loads
in quarter-hour intervals. With the roll-out of smart metering, additionally, customers
with an annual consumption between 10,000 kWh and 100,000 kWh may be subject to
load profile metering with quarter-hour resolution. (cf. Sections 55, 60 MsbG)
Figure 1 shows the essential roles and information flows as well as our envisioned

privacy-preserving information flow in the metering and balance settlement process.
Usually the TSO is the balancing group coordinator being responsible for determining
the virtual balance of each balancing group and for charging them for imbalances. As the
balancing group may be physically scattered among different distribution grids, the TSO
needs to aggregate the information about the energy flows in the distribution grids from
several DSOs. However, the DSO can not measure every grid connection point in real-
time which is especially true for residential grid connection points. Therefore, the DSO
estimates the residential loads either by using the synthetic or the analytical method (Step
1 and 2 in Fig. 1). The synthetic method uses parameterized standard load profiles which
are scaled by a forecasted annual energy consumption of each customer. For the analytical
method, the DSO subtracts the real-time metered load profiles and estimated transmis-
sion losses from the overall load profile of its distribution grid. The remainder is the load
profile of the non-metered residential grid connection points, which is then attributed
according to a forecasted annual energy consumption of each customer (Step 3 in Fig. 1).
(cf. Section 1.2MaBiS (Bundesnetzagentur 2011) and Section 3.8 of the Distribution Code
2007 (Epe et al. 2007))
The TSO finally aggregates the load profiles from all DSOs to determine the load pro-

file of each balancing group (Step 4 in Fig. 1). This overall ex-post balance in each group
is used to settle the costs for the actual imbalance during the grid operation. The party
responsible for the balancing group whose imbalance helps compensating the overall
grid imbalance, is being paid for the grid support. All balancing group parties receive
their corresponding load and balance measurements in order to retrace the bill and to
improve on the load predictions (Step 5 in Fig. 1) (cf. Section 2 MaBiS). We envision that
after the smart meter rollout, the aggregate consumption for each zone of each balancing
group can be obtained using a privacy mechanism (Step (2b)) and used for improving the
forecasting of the balance group.
Technically, the current metering process is not differentially private as the aggre-

gated load of a balancing group is not perturbed. However, the current metering process
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Fig. 1 Essential roles and information flows in the current metering process (solid black arrows) and in the
proposed differentially private process for privacy-preserving forecasting (dotted blue arrows). For simplicity,
we omitted the role of the metering point operator who is currently responsible for step 1

based on non-smart meters is generally not considered as serious privacy violation since
residential electricity measurements are read out only once per year.

Differential Privacy

Differential Privacy, originally proposed by (Dwork 2006), is the current gold standard for
data privacy. It is achieved by perturbing the result of a query function f (·) s.t. it is no
longer possible to confidently predict whether the result was obtained by querying data
set D1 or some other data set D2 differing in one individual. Thus, privacy is provided to
each participant in the data set as their presence or absence becomes almost negligible
for computing perturbed query results. To inject noise into the result of some arbitrary
query f (·),mechanisms Kf are utilized. Mechanisms add noise sampled from a probability
distribution to f (·) and are differentially private if they fulfill Definition 1.
Definition 1 (Differential Privacy). A mechanism
Kf : DOM → R is (ε, δ)-differentially private if for all data sets D1,D2 ⊂ DOM differing
in only one individual and for all possible outputs S ⊆ R :

Pr[Kf (D1) ∈ S]≤ eε ∗ Pr[Kf (D2) ∈ S]+δ . (1)

The additive δ is interpreted as the probability of protection failure and required to
be negligibly small ≈ 1

|D1| . We refer to (Dwork and Roth 2014) for the proof. Another
commonly used, more strict definition calls a mechanism ε-differentially private if it
is (ε, 0)-differentially private. Differential Privacy has the appealing property that it
holds independent of any side knowledge of the adversary. Therefore, an adversary may
know everything but not whether S was computed using D1 or D2. We call a data set
differentially private if it has been obtained by a differentially private mechanism.
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The query is further specified as a series of k identical aggregate queries fi with co-
domain R = R each. The added noise must hide the influence of any individual in the
original result of the composed query f = (

f1, . . . , fk
)
. The maximum influence of an

individual on f (·) is the global sensitivity �f = maxD1,D2 ‖f (D1) − f (D2)‖1.
A popular mechanism for perturbing the outcome of numerical query functions is the

Laplace mechanism, proposed by (Dwork et al. 2006). It adds noise calibrated w. r. t. the
global sensitivity by drawing a random sample from the Laplace distribution with mean
μ = 0, scale λ = �f

ε
according to Theorem 1.

Theorem 1 (Laplace Mechanism). Given a series of k identical numerical query functions
f = (

f1, . . . , fk
) ∈ R

k, the Laplace Mechanism

KLap(D, f , ε) := f (D) + (z1, ..., zk) (2)

is an (ε,0)-differentially private mechanism when all zi with 1 ≤ i ≤ k are independently
drawn from the random variable Z ∼ Lap

(
z, �f

ε
, 0

)
.

Again, for proof, we refer to (Dwork et al. 2006). To apply Theorem 1 to smart metering,
i.e., a distributed setting, we use the gamma distribution suggested for distributed noise
generation by Ács et al. (Acs and Castelluccia 2011). The following Lemma 1 leads to the
generation of gamma noise that satisfies the Laplace mechanism. We use this divisibility
to formulate a distributed differentially private metering process in “Differentially private
metering process” section.
Lemma 1 (Divisibility of Laplace distribution (Kotz et al. 2001; Acs and Castelluccia
2011)). Let Z(λ) denote a random variable from a Laplace distribution with density
f (x, λ) = 1

2λe
|x|
λ . Then the distribution of Z(λ) is infinitely divisible. This means that for

every integer n ≥ 1 it can be represented as a sum of n random variables Z(λ) =
n∑

i=1
Xi.

Here, each Xi = G1(n, λ) − G2(n, λ). G1(n, λ) and G2(n, λ) are i. i. d. random variables
having gamma distribution with density g(x, n, λ) = (1/λ)1/n

�(1/n)
x

1
n−1e−x/λ defined for x ≥ 0.

When a function is evaluated multiple times an overall privacy loss occurs. Under worst
case assumptions, the sequential composition theorem of Differential Privacy states that a
series of k evaluations of any (ε, δ)-differentially private mechanism Kf on the same set
of individuals results in (kε, kδ)-Differential Privacy. However, recent results by Dwork
et al. (Dwork et al. 2010) and Kairouz et al. (Kairouz et al. 2017) prove that actually sub-
linear increases in ε are achieved under k-fold composition when allowing a small δ̃ under
Theorem 2.
Theorem 2 (k-Fold Adaptive Composition for Homogeneous Mechanisms). For any ε >

0 and δ ∈[ 0, 1], and δ̃ ∈ (0, 1] the class of (ε, δ)-differentially private mechanisms satisfies
(ε̃δ̃ , 1 − (1 − δ)k(1 − δ̃))-Differential Privacy under k-fold adaptive composition, for

ε̃δ̃ = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

kε
(eε−1)kε
eε+1 + ε

√
2k ln

(
e +

√
kε2
δ̃

)

(eε−1)kε
eε+1 + ε

√
2k ln

(
1
δ̃

)
. (3)

When operating in high privacy regimes (ε 
 1), the term (eε−1)kε
eε+1 ≈ kε2 illustrates the

sub-linear loss of privacy under k-fold composition. Even though composition allows to
determine the privacy decay by growth in ε over a series of queries, a rational explanation
for the actual choice of ε is missing. To the best of our knowledge, there is no approach
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for giving concrete guidance on choosing ε. Nonetheless, we are convinced that providing
a more comprehensible interpretation of ε and the corresponding guarantee is crucial for
acceptance of Differential Privacy in practice.
Consequently, we apply a belief model in this work to give smart metering users a bet-

ter understanding of their protection guarantee ε. The foundation of this model led (Lee
and Clifton 2012) to define Differential Identifiability, a privacy notion slightly differ-
ing from Differential Privacy. For convenience, we restate the definition of Differential
Identifiability in Definition 2.
Definition 2 (Differential Identifiability). Given an original data set D, a random-
ized mechanism K satisfies ρ-Differential Identifiability if among all possible databases
D1,D2, ...,Dm differing in one individual w. r. t. D the posterior belief P, after getting the
response r, is bounded by ρ:

P(Di|K(D) = r) ≤ ρ . (4)

ρ-Differential Identifiability implies that after receiving a mechanism’s output r the
true data set D can be identified by an adversary with confidence ≤ ρ. Findings by
(Li et al. 2013) show that Differential Privacy and Differential Identifiability are actually
equal whenm = 2 since Differential Privacy considers only two neighboring data setsD1,
D2 by definition. If this condition is met, according to (Li et al. 2013), the relation between
ρ and ε is:

ε = ln
(

ρ

1 − ρ

)
and ρ = 1

1 + e−ε
>

1
2

. (5)

Consequently, the confidence ρ provides a simplified interpretation of the actual mem-
bership inference risk when applying (ε, 0)-Differential Privacy. When δ > 0, we define
that the confidence of ρ holds with probability 1 − δ. We use this method to substantiate
our results in “Application of differential privacy” section.

Electric load forecasting methods

Three different forecasting methods are used within this work. The first method is
the benchmarking forecasting model of the 2012 Global Energy Forecast Competition
(GEFCom 2012). The other two methods, CountingLab’s forecasting method and Lloyd’s
forecasting method, were the two highest ranked forecasting methods of the competi-
tion. For the first time, the impact of Laplacian noise for differential privacy on realistic
forecasting methods is studied (“Experiments and results” section).

Global energy forecast competition 2012 (GEFCom 2012)

In 2012, an electric load forecasting competition (GEFCom 2012) (Hong et al. 2014) was
conducted. Here, the time span of the given historical load data of an ISO in the USA was
approximately 4.5 years in hourly readout intervals from 20 zones. Additionally, historical
temperature data of 11 nearby weather stations were given, but there was no informa-
tion about the association between weather stations and zones. For the forecasting time
period, the temperature data was not given and needed to be forecasted, too. A limited
amount of tuning was possible due to allowing multiple submissions and directly showing
the resulting score.
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The statistics of the historical load data are plotted in Fig. 2. Zone 4 is the smallest zone
with a mean load of only 0.575 MW. In the right panel it can be seen that Zone 9 exhibits
outliers with low consumption values which indicates metering issues or local blackouts.

Benchmark forecastingmodel of GEFCom 2012

Hong (Hong et al. 2014) provided a linear regression model as a benchmark for GEFCom
2012 competition. A linear regression model for load forecasting has the general form

Fz,t = β0 +
p∑

j=1
βjxt,j + et , (6)

where Fz,t is the forecast of the aggregate energy consumption of zone z in time slot t, βj
are the parameters of the model, xt,j are the independent variables, et is the residual error
which cannot be explained by the model.
The 20 benchmark models (one per zone) consider a total of p = 313 explanatory tem-

perature and calendar variables xt,j or cross-effects which are described in the GEFCom
2012 paper (Hong et al. 2014). For each zone, only one of the 11 weather stations is chosen
to provide the temperature values for the linear model. The choice was made by fitting
the model for each of the weather stations and choosing the one with the smallest train-
ing error

∑k
t=1 |e(t)| where the errors are summed up for all time points. Using that final

model, a forecast for the week following the given historical data was to be estimated.
While the explanatory calendar variables can be easily obtained, no forecast for tempera-
ture Ts of the weather stations was given. The benchmarkmodel constructed temperature
forecasts by “averaging the temperature at the same date and hour over the past four
years” (Hong et al. 2014).

CountingLab’s forecastingmethod

Among the forecastingmethods referenced in theGEFCom2012 paper (Hong et al. 2014),
CountingLab (Charlton and Singleton 2014) achieved the best test score in the compe-
tition. As the benchmark model, it relies on multiple linear regression (6). However, in
contrast to the benchmark model, not 20 single forecasts are obtained (one per zone) but
3,840 forecasts Fz,h,S,w for each combination of zone z, hour of the day h, season S and
day type. As a benefit the number of independent variables is much smaller than for the
benchmark model: only nine parameters (interactions of temperature, day number and
day number within the season) must be fit per linear model.

Fig. 2 Statistics of the 20 zones of the GEFCom 2012 data set
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The needed temperature forecast is the mean of historical temperatures. In order to win
the competition the authors spent additional effort, see (Charlton and Singleton 2014) for
more details.

Lloyd’s forecastingmethod

Lloyd (Lloyd 2014) achieved the second best test score in the competition. First, the tem-
perature was estimated as the sum of a smooth trend and a daily periodic estimate using
Gaussian processes with squared exponential and periodic kernels, respectively.
The prediction is a weighted ensemble of three forecasting methods: (i) the benchmark

model (see “Benchmark forecasting model of GEFCom 2012” section) with weight 0.1,
(ii) a gradient boosting machine (Friedman 2001) with weight 0.765 and (iii) a Gaussian
process regression with weight 0.135. The weights have been chosen by manual tuning.
For each zone, a separate boosting model was learned using as input the time of day

∈[ 0, 1], the time within the week ∈[ 0, 7], the temperature predictions and smoothed tem-
perature predictions of all weather stations. Note that the loads are not used as inputs,
only as response values.
The third method uses Gaussian process regression with three additive kernels for

forecasting that all depend on time: two squared exponential kernels should explain the
variation of the load by two different length scales; the third, periodic kernel shouldmodel
the periodic behavior.

Differentially private metering and load forecasting
As we have discussed in “Electricity metering process (in Germany)” section, the energy
provider as a responsible party for a balancing group has the incentive to forecast the
aggregate load of her customers with low error so that she can trade or schedule energy
production ahead of time for lower costs. Smart metering could provide the means to
realize a more accurate forecast by using load monitoring of individual households. How-
ever, monitoring individual loads conflicts with customer privacy interests. Due to the
high stochasticity of individual loads, proficiently grouping households based on geo-
graphic or topological areas (zones) is beneficial to the forecasting performance (cf. (Fan
et al. 2009)). Thus, monitoring individual loads may not have benefits anyway.
Therefore, we propose that the energy provider and the customers split the difference by

agreeing on a trade-off between forecasting accuracy and customer privacy. For that, Dif-
ferential Privacy is guaranteed for the customer by grouping households into zones and
applying the Laplace mechanism on the aggregated load of each zone. Individual loads do
not need to be disclosed, since in this paper we assume the usage of a privacy-preserving
protocol for the smart metering infrastructure based on additional homomorphic encryp-
tion (Li et al. 2010; Erkin and Tsudik 2012) or masking (Acs and Castelluccia 2011;
Knirsch et al. 2018). These protocols enable the calculation of the sum of all the
household’s load values of a zone at each time point without providing the individual
values.
Since the load of the whole balancing group used for balance compensation must be

provided by the TSO, this could be used for a direct forecast of the aggregate of the bal-
ancing group. Smart metering data are only useful, if better forecasts can be obtained.
Possibly, forecasting could be improved by providing differentially private, zonal sub-
aggregates of the region obtained by the DSOs. As shown in “Experiments and results”
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section depending on the forecasting method, using this so-called hierarchical forecast
compared to the direct forecast may not even improve the forecasting performance.
If there is an advantage using the hierarchical forecast, the acquisition of smart meter-

ing data has to satisfy the privacy interests of the affected customers. For each forecasting
method, the limit for the privacy level of the differentially private method depends on
the additional error introduced by it. If the forecasting error exceeds the direct forecast-
ing error, smart metering data do not help the energy provider for trading or scheduling
tasks. In “Basic Forecasting Problem” section and “Evaluation of Forecasting” section,
we reflect that idea in the definition of the load forecasting problem and the utility
definition.
We envision that the energy provider offers different energy tariffs coupled with a

specific privacy protection level in terms of different λ values for the Laplace mecha-
nism applied to the calculation of the zonal aggregate. The differentially private metering
process is detailed in “Differentially private metering process” section. The customer
interprets the privacy level coupled with the tariff by deriving her own effective privacy
protection in terms of Differential Identifiability. Using that assessment, she can perform
an informed decision about her energy tariff and howmuch privacy she is willing to trade.
This is described in “Application of differential privacy” section.

Basic Forecasting Problem

We consider a control area, called region for simplicity, that is divided into Z zones con-
taining nz households. All households i of a zone z provide their load measurements
lz,i,t′ at several time points t′. The zone aggregators (DSOs) calculate the sum of all the
household’s load values Lt′ at each time point t′ without receiving the individual values.
Therefore, for each zone for each time point t′, only the sum Lz,t′ of the load values lz,i,t′
of all the households i of the zone is available. These zonal aggregate loads are available
at past time points t′1, . . . , t′k . The goal then is to predict the regional aggregate load Lt′

which is the sum of the zone’s loads:

Lz,t′ :=
nz∑

i=1
lz,i,t′ , Lt′ :=

Z∑

z=1
Lz,t′ . (7)

Based on values available at times t′1, . . . , t′k the forecasting problem consists of pro-
ducing forecasts Ft1 , . . . , FtT for the regional aggregate load L for a sequence of forecast
horizons t1, . . . , tT in the future (t1 > t′k). For forecasting, not only past aggregate load val-
ues are available but also additional factors �xt′1 , . . . , �xt′k , where vector �xt′ = (xt′,1, . . . , xt′,p)
summarizes p different explanatory variables. Typical information that is summarized in
�xt′ is, for example, the temperature, the hour of the day or the season (cf. “Electric load
forecasting methods” section).

Direct forecasting

Two variants are distinguished. The first variant is called direct forecasting that pre-
dicts each Lt′ of the prediction period based on the past regional aggregate values
Lt′1 , . . . ,Lt′k and other factors �xt′1 , . . . , �xt′k . Note that no zonal aggregate loads are available
for forecasting. The corresponding forecast value is denoted by Fdirect,t.
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Hierarchical forecasting

The second variant is called hierarchical forecasting that is allowed to use the zonal
aggregate loads. First, the aggregate load per zone is predicted and the prediction of the
region is obtained by the sum of the predicted zonal aggregates. For each zone z, based
on the past values Lz,t′1 , . . . , Lz,t′k and other factors �xt′1 , . . . , �xt′k , future values Lz,t1 , . . . , Lz,tT
are forecasted. With the forecasts of the zonal aggregates denoted as Fz,t1 , . . . , Fz,tT , the
overall aggregate L is then estimated

Ft =
Z∑

z=1
Fz,t . (8)

Hierarchical forecasting is assumed to be beneficial when the loads of different zones
must be predicted differently depending on the forecast inputs. For example, loads exhibit
more or less distinctive maximum values also at different times of the day. The tem-
perature might as well be described more accurately for smaller, more homogeneous
zones.
Hierarchical forecasting with differentially private, perturbed data is effectively the

same problem as before with the difference that for each zone instead of the exact aggre-
gates Lz,t′1 , . . . , Lz,t′k solely perturbed aggregates L̂z,t′1 , . . . , L̂z,t′k are used. Since resulting
forecast of the regional aggregate then depends on the amount of added noise, it is
denoted as Fλ.

Evaluation of Forecasting

As stated before, we need to add noise to the original data to achieve Differential Privacy.
The noise added to the aggregate of each zone yields to the Differential Privacy property
of the aggregate load data of each zone z. Due to the immunity against post-processing
(cf. “Differential Privacy” section), the overall aggregate load that is computed as the sum
is differentially private.
It is clear that in a practical setting, perturbed data can only be of use if noise does not

destroy the prediction performance of the data. For calculating utility, we compare the
direct, non-hierarchical forecast with the hierarchical forecast using differentially private
load data of the zones.
The utility of load forecasts of period t1, . . . , tT is assessed by two error measures.

Firstly, the commonly used mean absolute percent error MAPE, a scale-free error mea-
sure that enables a comparison of our results with results for other datasets. Secondly, the
mean absolute error MAE that allows to compare different forecasting methods for the
same (GEFCom) data. Both error measures are computed according to their names, i.e.,

MAE := 1
T

tT∑

t=t1

|Ft − Lt| , (9)

MAPE := 1
T

tT∑

t=t1

∣
∣∣∣
Ft − Lt

Lt

∣
∣∣∣ . (10)

This way the error can be assessed both for forecasting the aggregate load Lz of a zone z
and the overall aggregate load L.



Eibl et al. Energy Informatics 2018, 1(Suppl 1):48 Page 103 of 428

We define utility uλ as the relative gain we achieve by switching from non-hierarchical
to hierarchical forecast with perturbed data,

uλ := MAEdirect − MAEλ

MAEdirect
. (11)

The error measureMAEλ uses the forecasts Fλ of the hierarchical forecast with perturbed
data for the overall aggregate load L, whereMAEdirect is the error of the direct load fore-
cast for the overall aggregate load L. Since the regional aggregate values are known in
any case, direct forecasting can always be applied. Therefore, hierarchical forecasting only
makes sense if it performs better than direct forecasting. Consequently, when the pertur-
bation factor λ gets too large, it causes the error MAEλ to exceed the direct forecasting
errorMAEdirect and the utility becomes negative uλ ≤ 0.

Differentially private metering process

In this work, we strive to bring energy providers in the position to train load forecast
models on differentially private aggregated data from electricity customers. Differen-
tial Privacy is required due to possible insufficiencies of pure aggregation for privacy
protection (Dwork 2006; Buescher et al. 2017).
As stated previously, energy providers desire to limit deviation of their forecasting

algorithms due to differentially private noise added to load forecasting training data by
specifying an upper bound for acceptable forecasting errors. In turn, this will lead to an
upper bound for acceptable noise scales λwhich is needed according to the Laplacemech-
anism for achieving Differential Privacy. More specifically, by Theorem 1 each household
is provided �f

λ
= ε-Differential Privacy. The application of the Laplacemechanism results

in three challenges in the scenario of this paper.
Firstly, we do not want to have perturbation Lz,t′1 , . . . , Lz,t′k → L̂z,t′1 , . . . , L̂z,t′k done by the

energy provider to avoid assumptions about trustworthiness. Instead, we desire pertur-
bation to be performed at the data sources directly, i. e. a smart meter adds noise itself for
each point in time t′. Following Lemma 1, we realize this by decomposing Laplace noise
into gamma noise for distributed noise generation at household level as stated in Eq. 12.
The provider has to compute the sum for each zone to obtain the noisy total consumption,
see Eq. 13.

l̂z,i,t′ = lz,i,t′ + (G1(nz, λ) − G2(nz, λ)) (12)

L̂z,t′ =
nz∑

i=1
l̂z,i,t′ = Lz,t′ + Z(λ) (13)

Secondly, the training data is represented by a time series t′1, . . . , t′k of each electricity
customer’s energy data, i.e., involving always the same set of households. Consequently,
privacy decays over time as more information is revealed. For measuring the accumulated
privacy loss, we apply Theorem 2 to obtain the total privacy loss ε̃δ̃ as a function of ε, δ
and time k.
Thirdly, the accumulated privacy guarantee, ε̃δ̃ , is hard to interpret for consumers (i.e.,

electricity customers). Our envisioned process addresses this by translating ε̃δ̃ into an
interpretable risk ρ by Eq. 5. ρ represents the upper bound for the confidence of an adver-
sary trying to infer the membership of a single household in L̂t′,z. We have almost perfect
privacy if an attacker is unable to confidently distinguish whether a household contributed
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to the sum or not, i.e., ρ ≈ 0.5 (random guessing). In contrast, if ρ ≈ 1 the privacy level is
extremely low. To provide a reasonably good protection, we aim to bound the confidence
at ρ = 0.6, meaning that even in worst case situations an adversary is not able to identify
that a household contributed with more than 60% confidence.
Our process of applying Differential Privacy has several benefits. The energy provider

does not have to perform any perturbation as noise is added locally by each meter and
adds up to noise following the Laplace mechanism. In addition, providers can select the
amount of noise λ they tolerate with regard to their forecasting algorithms. λ then gets
propagated to households who resolve it to their corresponding ρ to see how much data
privacy the energy provider actually ensures.

Experiments and results
In this section, three different models for forecasting the GEFCom data set are trained.
After confirming the correctness of the implementations by applying the forecasts to
unperturbed data, the sensitivity of the forecasting performance on Laplacian noise
of different scales λ is assessed. As the noise scale λ does not lend itself to describe
the achieved privacy in a comprehensive way, such a description is developed in
“Application of differential privacy” section based on the Differential Identifiability
notion. Using all of the above, the privacy-utility trade-off will be described.

Forecast results

We re-implemented Hong’s linear regression benchmark model3 and CountingLab’s fore-
cast model. For sake of simplicity, we omitted 2 of the improvements of CountingLab’s
model. Lloyd’s method did not need to be implemented because the source code is freely
available4. Only adaptions facilitating the handling of many different input files have been
necessary.
Firstly, we verified the correctness of the implementation for unperturbed data. The

MAPE and MAE of the non-perturbed forecast by Hong’s model for each zone are
depicted in Fig. 3. The zones are sorted by their average load from left to right. Zone 9 and
10 have prominently high errors. As Fig. 2 shows, the outliers in Zone 9 indicate metering
errors or power outages. In Zone 10, the average monthly consumption suddenly tripled
starting in January 2008, indicating a change of the grid configuration. As the forecasting
time period is after January 2008, this may be the cause of the high forecasting errors.

Fig. 3 MAPE (left) and MAE (right) of Hong’s benchmark model for different zones (ordered by average load)
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Similarly, both CountingLab’s and Lloyd’s forecast models are inaccurate for zones 9 and
10. However, for both of these models, the averaged errors for the remaining zones are
smaller compared to the benchmark model. A comparison between unperturbed direct
forecast and the unperturbed hierarchical forecast shows that the hierarchical forecast for
the benchmarkmethod lowers the average error by 12MW. This results in a utility of 7.8%
(first line of Table 1) and means that our privacy mechanism should not introduce addi-
tional errors much above 12 MW in order to avoid too negative utilities. Surprisingly, the
hierarchical forecast is worse than the direct forecast for the other two models resulting
in negative utilities.
Now, the impact of varying levels of noise on the forecast performance is evaluated.

Figure 4a shows the forecasting error of perturbed hierarchical forecasting of Hong’s
benchmark model using increasing levels of perturbation. We train the models and run
the forecast 10 times each with different random seeds. In some cases, the error even
decreases. The red line indicates our utility-limit of 12 MW above unperturbed error
(blue line). With λ = 56, 234, all runs still stay below this limit. Starting at λ = 100, 000,
some runs start to show higher error than the unperturbed direct forecast.
While the performance of CountingLab’s forecast is better than the benchmark model

for unperturbed data, the performance is highly negatively affected by the noise. This can
be seen in Fig. 4b where the MAE quickly rises with λ.
The main difference between CountingLab’s method and the benchmark model lies in

the construction of many small models that use a smaller amount of data, each. It seems
plausible that noise has a greater negative effect on such approaches.
TheMAPE andMAE of Lloyd’s forecast with perturbed data for each zone are depicted

in Fig. 4c. Surprisingly, the forecast first improves for some amount of noise, reaches a
minimum at λ = 177, 828 and then rises quickly.
This behavior can be attributed to the gradient boosting model which also

has the highest weight (0.765) in the ensemble averaging process (not shown).
Since the inputs of the gradient boosting model do not include any load values
(compare “Lloyd’s forecasting method” section), Differential Privacy acts as output noise

Table 1 Noise (λ) and sensitivities (�f ) lead to ε and interpretable re-identification confidence (ρ)
for k-fold adaptive composition (k = 38, 070)

λ �f [kW] ε ε̃δ̃ ρ
uλ

CountingLab Lloyd Benchmark

0 - - - - -1.53 -16.81 7.80

10,000 7.57 0.00076 0.92 0.72 -17.62 -10.48 7.98

10,000 10.05 0.00100 1.23 0.77

10,000 15.36 0.00154 1.92 0.87

10,000 48.00 0.00480 6.46 1.00

56,234 7.57 0.00013 0.15 0.54 -433.29 -6.49 5.94

56,234 10.05 0.00018 0.21 0.55

56,234 15.36 0.00027 0.32 0.58

56,234 48.00 0.00085 1.04 0.74

100,000 7.57 0.00008 0.08 0.52 -1084.80 -2.76 3.10

100,000 10.05 0.00010 0.11 0.53

100,000 15.36 0.00015 0.18 0.54

100,000 48.00 0.00048 0.57 0.64

The first row states utility (u) of the hierarchical, unperturbed forecast (λ = 0) over the direct forecast
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(a)

(b)

(c)
Fig. 4 Forecasting errors (MAE) of the forecasting models with increasing levels of noise. Blue, solid lines:
MAE of the hierarchical models, each without noise. Red, dashed lines: MAE of direct forecast models. a,
Hong’s benchmark model with peturbed data. b, CountingLab’s model with peturbed data. c, Lloyd’s model
with peturbed data

which has been shown to potentially improve a model by (Breiman 2000). As the
benchmark model did, the third classifier of the ensemble, the Gaussian Process model,
degrades monotonically and finally rather quickly with increasing λ (not shown). The
bad reaction upon noise of the Gaussian Process is plausible since the model heavily
relies on a limited amount of 500 load values which corresponds to three weeks of data.
However, since it only has a weight of 0.135 the gradient boosting model dominates for
small λ.
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Application of differential privacy

While we conceptually presented the integration of Differential Privacy into smart meter-
ing load forecasting in “Differentially private metering process” section, we provide an
evaluation of the implementation in the following.
As initial step, we let an energy provider set utility bounds by choosing the noise scale

λ in dependence of the acceptable loss in utility, i.e., forecast accuracy. In the next step we
fix�f = 48 kW as global �f (i.e., maximum power consumption), which is the maximum
power limit of 3-phased circuits in German residential homes. Based on λ and �f , a
global privacy guarantee of (ε, 0)-Differential Privacy (1) is provided by each individual
load aggregate L̂z,t using the Laplace mechanism (2).
However, this theoretical restriction is far from being reached in practice. Thus, house-

holds may exchange the global �f by a smaller, local �f to identify their actual privacy
guarantee. Considering the same λ, since ε = �f /λ, households may actually enjoy a
stronger (smaller ε) protection against membership inference under their local �f . How-
ever, the ε guarantee then only applies to loads within the local interval and does not keep
an attacker from finding out about the bounds of that local interval. In the end, it is a
matter of interpretation whether one relies on a very theoretical protection guarantee or
a more realistic relaxation. To illustrate the impact, we vary �f 5 according to Table 2 for
our scenario.
When continuously releasing information by computing L̂z,t′1 , . . . , L̂z,t′k a composition

theorem has to be applied as each L̂z,t′ relates to the same set of individuals (i.e., house-
holds). The GEFCom data set consists of k = 38, 070 hourly load recordings, thus we
have almost 40,000 composition steps. For large k, however, k-fold adaptive composition (
“Differential Privacy” section) is a tight estimation of the privacy loss. By fixing some very
small δ̂, the growth of a composed ε̃δ̃ no longer (3) depends linearly on k. We set δ̃ ≤ 1

|D| ,
where in the worst case w.r.t. the GEFCom data set |D| is the number of all households in
the US in 20136, i.e., δ̃ = 1

117,716,237 ≈ 10−9. In the end, each household is protected by
(ε̃δ̃ , δ̃)-Differential Privacy.
Regarding our aim to express the privacy guarantee in a comprehensible way, ε̃δ̃ is

transformed into ρ by (5). The impact of λ on ρ is displayed in Fig. 5 for various �f
to illustrate the significant difference in membership inference likelihood when using
theoretical worst case power consumption (i.e., �f = 48 kW) or realistic maximum
demands (i.e.,�f = 15.36 kW). Lowering�f to more realistic values causes ρ to decrease
and consequently results in stronger protection against membership inference. Thus, for
λ ≥ 50, 000, households with realistically estimated maximum loads (�f ) have already
acceptable privacy levels. At λ = 100, 000, even the theoretical worst case of 48 kW
approaches the desired ρ = 0.6 (cf. “Differentially private metering process” section).

Table 2 Selected �f and according reasoning based on (Smart Metering Project - Electricity
Customer Behaviour Trial 2012)

�f Argument

7.57 kW 90th percentile of highest power demands recorded per hour

10.05 kW 99th percentile of highest power demands recorded per hour

15.36 kW highest power demand per hour in the whole data set

48.00 kW maximum power demand fused in German residential homes
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Fig. 5 Confidence ρ and forecasting MAE for various �f under composition

The trade-off between privacy and utility is shown in Table 1. Both CountingLab’s and
Lloyds’s model work better for the direct than for the hierarchical setting. In contrast,
the hierarchical benchmark forecast outperforms its direct counterpart. Thus, only the
benchmarkmodel is a suitable candidate for Differential Privacy. This is an interesting and
unexpected result (note that although the performance of Lloyd’s forecast improves with
limited amount of noise it never has a positive utility). The desired membership inference
confidence region ρ ≤ 0.6 is achieved for the benchmark model for λ = 56, 234 with
�f = 15.35 and offers a positive utility of 5.94% with respect to the direct forecast. Thus,
a setting has been found where both, privacy and utility, have been reached. The authors
want to highlight that they assume communication of individual, understandable mem-
bership inference risk ρ based on individual �f as crucial to foster consumer acceptance
of privacy-preserving techniques.

Related work
One of the first works to discuss and demonstrate privacy issues with smart metering
was from (Molina-Markham et al. 2010). Most recently, (Rafsanjani et al. 2016) showed
empirically that the occupancy of a commercial building can be estimated based on high-
resolution energy consumption data with an accuracy above 95%.
Two prominent use cases of smart metering data are electricity consumption billing

and real-timemonitoring for grid operations. For billing, exact fees are important. Hence,
due to the addition of noise, Differential Privacy has rarely been applied (Danezis et al.
2011). Typically, privacy is improved by disclosing only the necessary information for the
business process, which is, at best, the final cost of each individual.Molina-Markham et al.
(2010); Rial and Danezis (2011) and Jawurek et al. (2011) use Zero-Knowledge Protocols
to provide privacy-preserving billing.
For real-time electricity monitoring, information aggregated over a geographical or

topological grid area are sufficient. The privacy enhancing approaches for this use case are
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based mostly on mixing networks which are partially backed by homomorphic encryp-
tion. Examples include work by Li et al. (2010); Garcia and Jacobs (2010); Defend and
Kursawe (2013), and Finster and Baumgart (2014). Approaches related to aggregation are
based on privacy definitions like k-anonymity. One representative is (Jia et al. 2017). These
approaches do not provide real guarantees for privacy as they depend on knowledge
limitations for the adversary.
All the approaches so far require the metering infrastructure to be designed in a

specific way. As a privacy self-defence mechanism, a grid customer could resort to
load obfuscation. Load obfuscation physically manipulates the load profiles of house-
holds by using battery storage systems or controllable loads and generators. Exam-
ples are Kalogridis et al. (2010) and McLaughlin et al. (2011), who leverage batteries
to shift loads, (Chen et al. 2014), who controls Combined Heat and Power plants,
and (Egarter et al. 2014), who uses energy management of appliances to protect
privacy.
The closest related to our work are differentially private smart metering concepts. Ács

and Castelluccia were the first to apply Differential Privacy on smart metering data. In
their work (Acs and Castelluccia 2011), a distributed Laplace mechanism is applied using
Gamma distributions before the data is mixed with other smart meters in an aggre-
gation group. Bao and Lu (2015) investigated further the security and fault tolerance
properties of the aggregation and mixing protocol. Eibl and Engel (2017) introduced
post-processing to be applied on the perturbed data to improve the utility while still
guaranteeing the same privacy level. They also discuss the required number of house-
holds in an aggregation group in order to be useful to the data analyst. Böhler et al.
(2017) suggest using Differential Privacy with relaxed sensitivity and a privacy-preserving
correction algorithm in IoT scenarios to still allow outlier detection while protecting
the majority of households. Barbosa et al. (2016) also discussed filtering techniques to
improve utility after the noise has been added to the aggregate. Their work evaluates the
protection of individual appliances in single households by considering multiple device
sensitivities in load profiles and by using Differential Identifiability. However, they do
not address the compatibility condition m = 2 to allow utilizing Differential Identifiabil-
ity in Differential Privacy scenarios. Besides Differential Identifiability, another method
for rationally choosing ε was proposed in (Hsu et al. 2014). Yet, this approach is purely
economically driven and introduces a handful of new parameters depending again on
subjective assumptions on a given scenario. In contrast, focusing more on unconditional
privacy, we further analyze Differential Identifiability. From Ács et al. (2011) we bor-
rowed the way how to generate Laplacian noise in a distributed way. While in (Acs
and Castelluccia 2011) the focus is on the aggregation protocol, we further improve
composition and connect to Differential Identifiability and load forecasting with utility
guarantees.

Conclusion and outlook
In this paper, we discussed that energy providers are interested in smart metering data to
refine the forecast of domestic loads of their customers. As this conflicts with the privacy
loss incurred by the acquisition of individual load profiles, we designed a differentially
private metering process based on building blocks already proposed in previous works.
Using three well-documented load forecasting approaches, we evaluate whether using
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smart metering data provides an actual benefit for the energy provider. We found out that
this is not always the case and that the forecasting approaches are variously susceptible to
noise. If smart metering data actually provides a utility to the energy provider, Differential
Privacy allows to gradually trade-off utility against forecasting performance. Our results
show that for one forecasting approach, reasonable utility can be reached while provid-
ing a strong privacy guarantee. In that case, Differential Identifiability even provides an
intuitive interpretation of the amount of privacy loss.
Several important points have to considered when our concept is to be applied safely

in practice: Firstly, there is no privacy guarantee for individual smart metering data of
a single household. In particular, the sum of individual load and Gamma noise is still
sensitive, therefore secure aggregation with other households is crucial. That is why we
stated homomorphic encryption and masking or mixing as minimum requirement (cf.
“Differentially private metering and load forecasting” section). Secondly, we considered
privacy guarantees from a static snapshot of the scenario when the energy provider has
collected approximately 4.5 years of zonal load profiles. Applying our approach in practice
continuously would mean that the privacy guarantee is stronger if less than 4.5 years of
data was collected from the customer. After 4.5 years our evaluated privacy guarantees
would slowly degenerate. Thirdly and tightly connected to the second point, the historic
and forecasted load profiles of our used data set were given with hourly readout intervals.
However in Europe, load profiles are acquired in 15 min intervals. Our findings also apply
to this case with the only difference that the privacy guarantee would hold for slightly
more than one year instead of 4.5 years. Finally, if the privacy level offered by the energy
provider is not high enough to protect the electricity usage of the whole household, the
protection can still be interpreted for single household appliances. In this case, one has to
be aware that the usage of this single appliance is not allowed to correlate to the (parallel)
usage of other appliances.
There are several natural extensions to the presented work: Firstly, for utility eval-

uation, we used three well-documented point forecasting methods. Point forecasting
outputs only a single (the likeliest) load value for one time interval. An extension to this
work would be to evaluate differentially private metering with probabilistic forecasting
methods (cf. (Hong and Fan 2016)). Secondly, our concept perturbs and transmits the
complete zonal time series to the energy provider and the forecasting model training is
performed by the energy provider. In the future, we plan to integrate Differential Privacy
directly into a distributed model training approach on the customer side using objective-
function perturbation for less privacy loss and tighter guarantees. Thirdly, lowering the
local sensitivity by minimizing the household’s peak load leads to a stronger privacy level.
Incidentally, automatic energy management systems like the ones described in (Egarter
et al. 2014) and (Mauser et al. 2016) are able to shift controllable loads or control bat-
tery storages and combined heat and power plants to facilitate this idea. Fourthly, with
the continual release of load data in practice, the privacy loss quantified by ε would
slowly add up over the course of time. To be aware of one owns privacy situation, one
needs to keep track of how much privacy was already leaked to which party. The data
custodian proposed by (Rigoll and Schmeck 2017) provides such an accounting ser-
vice. Finally, the perturbed data could be filtered (e.g., using moving average or Kalman
filters) to compensate the noise as already proposed in (Bao and Lu 2015; Eibl and Engel
2017).
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As final remark, using local sensitivities creates the incentive to limit one own’s
energy consumption due to privacy protection interests. Although this behavior
may be beneficial to the electric grid, this would not be in the spirit of informa-
tional self-determination. That is why using the global sensitivity instead of local
sensitivities should be preferred.

Endnotes
1 The control energy price in Germany (“reBAP”) is available for download on https://

www.regelleistung.net
2 e.g., household occupancy, appliance usage or approximate sleep-wake-cycles
3 Re-implementation available at https://github.com/KaibinBao/differentially-private-stlf
4 Source code available at https://github.com/jamesrobertlloyd/GEFCOM2012
5 Local �f are based on statistics retrieved from the CER data set (Smart Meter-

ing Project - Electricity Customer Behaviour Trial 2012) as the GEFCom data set only
contains aggregates. For the Adaptive Composition, one has to regard the peak load
(power) within a read-out interval. There are technical bounds on the instantaneous
electric power usage we can use to derive global sensitivities for our privacy model. In
Germany, a household is usually protected with a 63 A contractor and the household
is connected to all three AC-phases (cf. Section 15.2 in (Kasikci 2013) and DIN 18015
Part 1). With a nominal voltage of 230 V and an acceptable over-voltage of 10%, we
get that the highest electrical power consumption a German household could have is
Ppeak = 230V · 1.10 · 63A · 3 ≈ 48 kW. The global sensitivity �f = 48 kW for a read-
out interval is very likely to be higher than actual peaks households’ power demand.
Consequently, we calculate individual households’ risk with their corresponding local
sensitivities in the privacy evaluation. This enables households to derive their individual
Differential Privacy guarantee. To obtain these values, we unfortunately cannot use the
GEFCom data set due to missing information on load recordings of single households.
Thus, we calculated the 90th, 99th and 100th percentile of the highest consumption peaks
over all households from the comparable CER electric data set (Smart Metering Project
- Electricity Customer Behaviour Trial 2012) to obtain good approximation of a realistic
maximum.

6 Estimated 117,716,237 by the U.S. Census Bureau: https://www.census.gov/
quickfacts/fact/table/US/HSD410216
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