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Abstract

The paper proposes a demand response scheme controlling many domestic electric
water heaters (DEWHs) with a price function to consume electric power according to a
target schedule. It discusses at length the design of an algorithm to calculate the price
function from a target schedule. The price function is used by the control of each DEWH
to automatically and optimally minimize its local heating costs. It is demonstrated
that the resulting total power consumption approximates the target schedule. The
algorithm was successfully validated by simulation with a realistic set of 50 DEWHs
assuming perfect knowledge of parameters and water consumption. It is shown that
the algorithm is also applicable to clusters of large numbers of DEWHs with statistical
knowledge only. However, this leads to a slightly higher deviation from the target
schedule.
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Introduction
In electricity networks, suppliers have to inject the amount of electricity that is consumed
by their customers at the same time. Therefore, the customers’ consumption is estimated
for each time interval of 15 min of the next day. The supplier then instructs power plants
to produce this power, by sending each a so called target schedule containing the amount
of power to be produced for each time interval (Konstantin 2013).
This scheme of controlling production according to expected consumption is ques-

tioned by increasing amounts of electricity produced by wind and solar farms according
to weather conditions and not according to desired schedules. Thus, demand response
(DR) approaches were developed to adapt the course of consumption to that of availabil-
ity. One option is providing customers with time dependent prices for the day ahead. This
gives customers an incentive to shift their power consumption to times with lower prices
corresponding to times of higher power availability (Vardakas et al. 2015). The approach
protects the customer’s privacy by design as no central entity has knowledge about the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-018-0020-8&domain=pdf
https://orcid.org/0000-0001-5125-5191
https://orcid.org/0000-0001-9964-8816
mailto: tobias.luebkert@tuhh.de
http://creativecommons.org/licenses/by/4.0/


Lübkert et al. Energy Informatics 2018, 1(Suppl 1):31 Page 2 of 428

customer’s flexibility in power consumption. However, it requires that suppliers can fix
prices leading to given consumption schedules.
A domestic electric water heater (DEWH) is good candidate for a load perform-

ing DR in a household. Its thermal energy storage allows shifting its electrical con-
sumption in a way that is not noticed and does not require intervention by users.
DEWHs consume a major share of domestic electricity. In Germany, it is about 9.3%
of the electrical energy of all households, even though only about 15% have one
(Stryi-Hipp et al. 2007).
This paper discusses the design of an algorithm that implements DR by calculating a

price function for a given target schedule that makes a set of DEWHs to consume power
approximately according to the schedule. The algorithm is validated numerically by simu-
lations. In a first step, perfect knowledge about every DEWH is assumed. In a second step
this assumption is relaxed by only using statistics about clusters of many similar DEWHs,
bringing the approach closer to practical application.

Retail pricing for demand response
In liberalized electricity markets, a supplier is an enterprise that purchases electricity
at wholesale (or by operating power plants) and resells it to end customers, using net-
works operated by other enterprises (Lübkert et al. 2018a). The focus of this paper is
the supplier’s ability to control the consumption of its customer’s DEWHs by using time
dependent retail prices. Therefore, the supplier calculates a price function for the day
ahead from a target schedule of the desired power consuption. The prices are sent to
the customer’s DEWHs, which automatically shift heating times to minimize their cost.
This makes the resulting total consumption of all DEWHs follow the target schedule. The
approach differs from most schemes in literature that maximize the suppliers profit only
(Meng and Zeng 2013; Zugno et al. 2013; Wei et al. 2015; Kovacevic et al. 2017; Meng
et al. 2017) or do not use retail prices at all (Binding et al. 2013).
In every time interval of 15 min (called a slot), a supplier has to inject the same amount

of power into the network that is consumed by its customers. If there is an imbalance, the
supplier has to buy balancing energy from the network operator (Konstantin 2013). Reg-
ulations force suppliers to minimize imbalances1. Therefore, suppliers perform balancing
in a planning process on the day before power flow.
Suppliers use two means for planning, these are estimations of uncontrollable power

flows and schedules to adjust controllable power flows. Estimations are mainly used for
the power consumptions of customers for each slot of the next day. Essentially, mea-
surements from the previous year or general consumption statistics a.k.a. standard load
profiles are considered for this purpose (Konstantin 2013). Furthermore, the power pro-
duced by wind and solar farms is estimated based on weather forecasts. Schedules
are vectors containing the power progression as one value per slot. Suppliers use it
to instruct power plants to produce required amounts of power in each slot. In the
future, suppliers may also prepare schedules to instruct DR systems to consume a desired
consumption.
The use of varying retail prices is a well-known scheme to incentivize customers to par-

ticipate in DR schemes. The price functions used by suppliers follow specific schemes as
documented in Vardakas et al. (2015). With real-time pricing (RTP) the supplier regularly
updates the prices and notifies customers some time before these are valid. A subscheme
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is day-ahead RTP (DA-RTP), where all prices of a day are fixed on the day before power
flow.
For suppliers, RTP produces new challenges for estimating consumptions. Tradi-

tional estimations based on consumptions of the previous year or general statistics
are no more applicable, as consumption progressions differ between years. This is
intended for DR, as consumptions shall follow power availability, which also differs
between years, e.g. because wind and solar farms lead to a correlation between avail-
ability and weather conditions. Hence, suppliers need new means to estimate their
customers’ consumption for given retail price functions or they need means for con-
trolling DR loads directly, leading to known consumptions. Note that DA-RTP is
different from day-ahead auctions, used for trading electricity at wholesale energy
exchanges. At exchanges, trades are only concluded for matching bids (Konstantin
2013). As trades are always concluded some time before power flow, the amount
of power to be delivered or consumed is always known accurately, not requiring
estimations.
If a supplier wants to influence its customer’s consumption with RTP, it has to find

prices that make its customers shift their consumption as desired. Finding optimal retail
prices can be formulated as a bilevel problem (Dempe 2002), in which customers min-
imize their electricity costs based on received prices and the resulting consumption
impacts the supplier’s objective and thus the prices. Other works often consider maxi-
mizing the supplier’s profit resulting from the difference of their income for energy sold
and its procurement costs at day-ahead markets (Meng and Zeng 2013; Zugno et al.
2013; Wei et al. 2015; Kovacevic et al. 2017; Meng et al. 2017). To estimate the result-
ing procurement costs, forecasts of exchange prices can be considered (Zugno et al.
2013). Alternatively, prices can be expressed as a function of time (e.g. for each hour) and
the required energy quantity (Meng and Zeng 2013; Kovacevic et al. 2017; Chang et al.
2013). The available power of the supplier may be complemented by additional power
sources, e.g. renewable sources (Chang et al. 2013) or battery storage (Wei et al. 2015;
Kovacevic et al. 2017). Furthermore, positive or negative amounts of balancing energy
have to be purchased during power flow (Zugno et al. 2013; Chang et al. 2013). Chang
et al. considers this as part of the supplier’s objective, e.g. when trades are already con-
cluded (Chang et al. 2013). If the available power is known in advance, the problem
becomes a load shaping problem, where the aggregated load shall follow a target schedule
(Lübkert et al. 2018a; Hunziker et al. 2017).
Finding the optimal price function to be sent to all customers is a complex task, unless

customers’ utility functions are convex and differentiable, which allows to analytically
determine strategies (Yu and Hong 2017). A simple solution is to use a price that is inverse
to the power availability of the supplier. However, this leads to synchronized load peaks
and thus high costs for power balancing during the day (Chang et al. 2013). To reduce
the peaks, the loads need to distribute their energy consumption. This can be achieved
by exchanging messages between customers (Chang et al. 2013) or with the supplier (Yu
and Hong 2017; Safdarian et al. 2014 and Safdarian et al. 2016). Such an approach allows
iteratively shaping the aggregated consumption profile directly or indirectly by updating
the prices (Kovacevic et al. 2017). Alternatively, households may directly participate in
micro markets as prosumers (Horta et al. 2017), buying and selling energy from and to
neighbors or operators. When behavioral knowledge of the customers is given, the bilevel
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problem can be solved by converting it into a single-level problem (Zugno et al. 2013; Wei
et al. 2015; Kovacevic et al. 2017) or by heuristic optimization such as genetic algorithms
(Meng and Zeng 2013; Meng et al. 2017). None of these approaches constructs prices
making the total consumption follow a target schedule.
Load shaping regarding a target schedule becomes simpler when retail prices increase

with larger power consumption by using inclining block rates (IBR), as considered in
Hunziker et al. (2017). As customers face stepwise increasing costs depending on the
power level, they prevent load peaks to reduce costs. Therefore, this approach allows an
iterative price adjustment to find a price function inducing the desired load shape. How-
ever, it is not necessary to penalize customers’ peak load (e.g. cooking) if the peaks of
all customers are sufficiently distributed. The approach of this work thus considers the
variance of customers’ appliances in order to determine prices instead of using IBR.
The effects of changes in retail prices on the power consumption pattern of DEWHs

were analyzed in Lübkert et al. (2018a). The analysis used a bilevel model with full knowl-
edge about every DEWH and assumes that each individual DEWH perfectly minimizes
its costs with respect to the provided prices. It was shown that resulting price functions
cannot operate a single DEWH according to a target schedule. However, well-defined
price changes bring DEWHs into one of two states with significantly different power con-
sumption. It was conjectured that this may allow constructing a price function that makes
many DEWHs to consume power according to a given target schedule provided that the
power consumption in both states can be calculated. This paper discusses the design of
an algorithm doing so.

Systemmodel preserving privacy
This paper uses a bilevel model to control DEWHswith DA-RTP prices, which is based on
the model from Lübkert et al. (2018a). The supplier is the leader. In its planning process,
the supplier determines a target schedule of the power to be consumed by all DEWHs on
the next day. From the schedule, it fixes one retail price for each slot. The DEWHs are the
followers automatically minimizing their costs while considering their users’ constraints.
Therefore, the local control of each DEWH receives the prices and solves a linear pro-
gram (LP) to find the heating times leading to its lowest costs for its known hot water
consumptions. The supplier’s goal is to minimize the mean square error between target
schedule and total consumption of all DEWHs.
Adjusting the power consumption of DR loads on the basis of target schedules fits

well with the common planning process used by suppliers. As discussed in the previ-
ous section, schedules are commonly used to adjust controllable power flows such as
the power produced by power plants. Suppliers could use DR loads for controllability in
a similar way, just with power flows having a reversed sign. However, this requires that
suppliers can make the loads follow the target schedule accurately.
The following assumes DEWHs to be controlled with prices, because this protects the

privacy of its users. A common alternative is the control of the DEWHs’ heating directly
by the supplier or some operator of a virtual power plant (You et al. 2009). As the supplier
can then choose all heating times, it can ensure that the schedule is adhered to. However,
to comply with the requirements of each user, the supplier needs to know each user’s
flexibilities. For DEWHs it needs to know the expected hot water consumptions of the
user that is related to its personal behavioral pattern. This is private information that
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should be protected as much as possible. On the other hand, if decisions are made locally
based on changing retails prices, knowledge about the user’s flexibility is needed in the
DEWH only. The supplier is still informed about the heating decisions of each DEWH, as
the power consumption per slot is needed for accounting. However, details of the times
of hot water consumption can be concealed.

Follower’s problem of DEWHs

Today, DEWHs permanently keep the stored water at a preset temperature by using a
thermostat and a heating element at the bottom of the tank. Whenever the temperature
falls below the thermostat’s dead band due to losses to the environment or drawing water,
the heater is turned on until the upper temperature bound of the dead band is reached.
In order to shift the DEWH’s energy consumption for DR, the water can be preheated to

higher temperatures by using a more sophisticated controller. However, higher tempera-
tures lead to increased energy losses to the environment due to the imperfect insulation.
Preheating thus requires a sufficient price difference to financially compensate additional
losses.
The simplified thermal model for a DEWH described by differential Eq. (1) allows for-

mulating the LP in (5)–(7) to minimize the operational costs with time-varying electricity
prices pi as developed in Lübkert et al. (2018a) and Kepplinger et al. (2015). The LP
requires considering discrete time, by dividing the optimization horizon into time slots
of equal length �t and solving (1) for each time slot with constant heating power P, heat
conductivity G, water draw power equivalent HW and environmental temperature Tenv.
The heat capacity C results from the product of the volume and the specific heat capac-
ity of water. The discrete solution is given by (2)–(4), which describes the temperature
change within a time slot. The water temperature Ti converges exponentially to T∞, with
the temperature change rate τ defining the duration of changing about 63.2% towards T∞
(see (2)). Thus, the temperature changes faster for smaller τ -values and vice versa.

C
dT(t)
dt

= P(t) − G · (T(t) − Tenv) − HW (t) (1)

Ti+1 = (
1 − e−�t/τ )T∞ + Tie−�t/τ (2)

T∞ = Tenv + P − HW
G

(3)

τ = C
G

(4)

The decision variables hi determine the portion of each slot used for heating. It allows
high precision of the solution while keeping the complexity low byusingaLP with less time
slots compared to an integer linear program (ILP) considering binary heating decisions.
However, the heating element can only be turned on or off. The resulting average power
hi ·Pheater can thus only be achieved with many DEWHs equally distributing their heating
times in the slot. Furthermore, the solution must consider the constraints of the user
regarding minimum Tmin and maximum temperature Tmax. A detailed description of the
LP is given in Lübkert et al. (2018a).

min
h

p · hT , p = (p1, . . . , pn), h = (h1, . . . , hn) (5)

s. t. Tmin < Ti < Tmax (6)

0 ≤ hi ≤ 1 (7)
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Leader’s problem of supplier

To be able to produce day-ahead real-time prices, the supplier has forecasts of the avail-
able power and the demand of price insensitive loads for the next day. Additionally, it has a
lower estimation of the total energy demand required by all DEWHs. The energy demand
can be distributed over the day within the limits of the user’s constraints. The supplier
can choose the target schedule such that the remaining available power is utilized in a
beneficial way, i.e. by preventing down-regulation of renewable energy sources or buying
additional energy at high costs. The procedure of selecting an optimal target schedule is
out of scope of this work.
The supplier induces the DEWHs to follow the target schedule by sending a price

function to all customers. The price function consists of discrete time-dependent prices
and is implemented as price vector p. To protect the customers’ privacy, the supplier is
assumed to have statistical knowledge about hot water usage and device parameters only.
However, the subsequent discussion initially requires the supplier to have full knowl-
edge of hot water usage and device parameters. This is relaxed to statistical knowledge
later. The supplier applies the pricing algorithm proposed in this work on the selected
target schedule to calculate the closest possible aggregated consumption profile and
the related price vector p. The supplier uses unidirectional communication to the cus-
tomers sending p as only shared information. The customers do not reply with resulting
schedules.
The objective of the supplier is to find the price vector p minimizing the difference of

the target schedule ĥ to the aggregated heating profile of all DEWHs (8). The objective
extends (Lübkert et al. 2018a), where a single DEWH is considered. Prices are constant
during each slot. The individual heating profile vector hk of DEWHwith number k results
from minimizing its operational cost for the given price vector (9)–(11).

min
p

∥
∥∥
∥
∥
∥

⎛

⎝
d∑

k=1
hk

⎞

⎠ − ĥ

∥
∥∥
∥
∥
∥

(8)

∀k ∈[ 1, d] : min
hk

p · hTk (9)

s. t. Tmin < Tk,i < Tmax (10)

0 ≤ hk,i ≤ 1 (11)

Simple pricing schemes

Themodel was validated for simple pricing schemes, which are constant prices and prices
that are inverse proportional to the target schedule. Both schemes lead to huge deviations
from the target schedule as shown in Fig. 1. This motivates the need for a more suitable
pricing algorithm as proposed in this work.
Using a constant price makes the heating profile independent of the desired target

schedule h. The cost-optimal heating profile hconst maintains the minimum temperature
and heats as late as possible. As shown in Fig. 1, the energy consumption is lower than
desired at night and higher during the evening. The realistic target schedule h as well as
the DEWH setup are the same as used for validating the proposed pricing algorithm later
in this paper.
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Fig. 1 Results for simple pricing schemes

With inverse proportional prices, loads are shifted to times of high availability. However,
only few hours are used by all DEWHs to preheat to maximum temperature when prices
reach a local minimum. Thus, the heating profile hinv is far lower than desired at most
times and exceeds the desired demand by a factor of about four in three hours. Due to
the increased temperature, the total energy demand also increases resulting in an average
daily heating duration of 3.44 h instead of 3.3 h at minimum temperature of 40 °C. The
increase is comparable to the energy demand which is required when maintaining the
average temperature of 55 °C.

Impact of prices on cost-optimal heating profiles
Creating price functions to induce an energy consumption following a target schedule
requires understanding the impact of prices on the cost-optimal solution and pre-
dicting the resulting heating profile of a DEWH. This section describes how prices
can be calculated such that a specific DEWH changes its target temperature and
thus the heating state at a certain time. Furthermore, it is explained how the heat-
ing rate is chosen in each individual hour, allowing to predict the total heating
profile.

Changes of heating state

In order to understand how price functions impact the cost-optimal heating profile, the
bilevel problem (8) of finding a price to shape the heating profile of a single DEWH was
analyzed in Lübkert et al. (2018a). It was understood that the resulting optimal price func-
tion allows the solver to select many heating profiles resulting at the same costs. The
reason is that the price compensates the costs for earlier heating at any time slot. For
this purpose, the price can be formulated as an exponentially increasing function (12)
using the temperature change rate τ of the considered DEWH as a parameter called
τp = (τ

p
1 , . . . , τ

p
n ). Such a price determined with τ

p
i = τ for all i using (12) leads to a

constant effective price determined with (13) of peff,i = prefen�t/τ . The effective price
represents a modified price information incorporating additional costs for higher standby
losses due to preheating to higher temperatures (Lübkert et al. 2017). A constant effective
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price allows arbitrary heating profiles fulfilling the constraints and leading to minimum
temperature at the end of the last slot.
In contrast, if parameter τ

p
i is smaller or larger than the τ -value of the DEWH, the heat-

ing profile will deterministically either heat to the maximum or it will always maintain
minimum temperature respectively. Preheating is always beneficial when prices are gen-
erated with τ

p
i < τ , as this leads to amonotonic increasing effective price, whereas τ

p
i > τ

leads to a monotonic decreasing effective price and thus prevents any preheating. Thus,
the heating state Hi in slot i can be determined directly as shown in (14).

pi = pi−1 · e�t/τpi−1 , 2 ≤ i ≤ n, p1 = pref (12)

peff,i = pi · e(n−i)�t/τ (13)

Hi =

⎧
⎪⎨

⎪⎩

MAX if τpi < τ

MIN if τpi > τ

UNDEFINED otherwise
(14)

A change of the heating state from maintaining minimum (Hi = MIN) to heating to
maximum temperature (Hi+1 = MAX) leads to a localminimum in the effective price (13)
and thus to a peak in the resulting heating profile as a rise from minimum to maximum
temperature is required to fulfill the upcoming demand. Changing the heating state from
MAX to MIN generates a local maximum in the effective price, which stops the heating
until the temperature reaches the minimum again.

Prediction of cost-optimal heating profiles

Price functions generated with (12) cause changes in the heating state Hi of a cost-
optimizing DEWH depending on the temperature change rate τ , as discussed in the
previous section. In order to induce an aggregated heating profile of many DEWHs, the
impact of such state changes on the heating profile needs to be known in detail. This
section extends the findings of Lübkert et al. (2018a), which only considered monotonic
decreasing τ

p
i values to induce peak loads at certain times.

In principle, whenever the heating state changes, the DEWH will either start or stop
preheating. Before the start of a preheating phase (Hi = MIN), the DEWHwill heat as late
as possible and thus heats the demand of the slot to maintain minimum temperature and
only preheats when heating the full slot is insufficient. At the start of a preheating phase
(Hi = MAX) the heating rate will be at a maximum level, e.g. heating the full slot (hi = 1).
However, the actual heating rate depends on the maximum required temperature, which
depends on the demand of later slots and also on later heating states as well as on the
effective price (13).
The required temperature is selected such that the minimum temperature will be

reached at the next local minimum effective price which is the start of next heating phase.
When the maximum temperature is reached during the preheating phase, the tempera-
ture will be maintained until the effective price is below the next local minimum. Thus,
any drawn energy will be restored by heating, similar to maintaining minimum tempera-
ture, but with higher standby losses. If the required temperature cannot be reached within
a single slot, the heating rate will continue to be higher than the demand to reach the
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temperature. A different behavior occurs, if the effective price of the slot before the heat-
ing phase starts is below the price of the slot after the start (peff,i−1 < peff,i+1). Then, the
heating rate is selected such that the resulting temperature allows to reach the required
temperature within the next slot.
Figure 2 shows an example LP solution for a price, which was generated to induce two

changes from heating state MIN to MAX. The resulting heating and temperature profile
is shown at the top and the selected τ p as well as the resulting effective price at the bottom
of the figure. The local minima of the effective prices are at slot 5, 16, and 24. At both state
changes (first two minima), the heating rate is set to maximum value (hi = 1). A preheat-
ing before the state change occurs in both cases, as the preceding effective price is slightly
lower than the following price. The maximum temperature is maintained in slot 6 and 7
until it is sufficient to fulfill the energy demand until the next state change. The second
preheating phase heats below the maximum allowed level and thus may turn off heat-
ing until the very last slot, where the effective price is slightly smaller than in slot 15 and
thus the demanded energy will be restored by heating as it occurs to maintain minimum
temperature.

τ -price algorithm
Results from the previous section allow constructing an algorithm, which generates
a price function that induces an aggregated heating profile h of a known set of
DEWHs following a target schedule ĥ. It exploits the effect that price functions result-
ing from (12) determine the heating state of a DEWH depending on the relation of
the τ -value of the DEWH and of the prices. Thus, the solution space is reduced to
prices corresponding to (12) and the decision variable p of the leader’s problem is
replacedwith τp.
In principle the proposed Algorithm 1 utilizes a hill climbing approach by increasing or

decreasing the number of DEWHs which are in the heating state MAX or MIN at each
time slot i. The direction of change depends on whether the heating profile resulting from
the current price is below or above the desired profile.

Fig. 2 Example LP solution and effective price for price determined with (12) and τ p to induce two peaks
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Algorithm 1 τ -Price Algorithm
1: function FIND_PRICE(ĥ)
2: err ← 0
3: errlast ← ∞
4: � ← 01,n
5: while err �= errlast do
6: errlast ← err
7: for i = 1 to n do
8: err ← ERROR(�, ĥ)
9: �̃ ← �

10: �̃i ← �̃i + sign(erri)
11: if 0 ≤ ∑i

k=1 �̃k ≤ d then
12: �̃ ← APPLY_PEAK_BOUNDS(�̃)
13: errnext ← ERROR(�̃, ĥ)
14: if ‖errnext‖ < ‖err‖ − ε then
15: err ← errnext
16: � ← �̃

17: end if
18: end if
19: end for
20: end while
21: return {PRICE_BY_PEAK_PLAN(�), �}
22: end function
23: function PRICE_BY_PEAK_PLAN(�̃)
24: for i = 1 to n do
25: τ

p
i ← τm+τm+1

2 withm = ∑i
j=1 �̃j

26: pi ← compute with (12)
27: end for
28: return price
29: end function
30: function ERROR(�̃, ĥ)
31: p ← PRICE_BY_PEAK_PLAN(�̃)
32: h ← approximate heating profile(p)
33: return h − ĥ
34: end function
35: function APPLY_PEAK_BOUNDS(�)
36: γ0 ← 0
37: γ1..n ← cumsum(�)
38: for i = 1 to n do
39: γi ← max (0, γi)
40: γi ← min (d, γi)
41: �̃i ← γ − �̃i−1
42: end for
43: return �̃

44: end function
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As a change of the heating state at one time slot may impact the heating profile in
a later or earlier slot, the algorithm iteratively tries to improve the aggregated profile
and only considers changes that reduce the total error within the regarded horizon.
The algorithm terminates when the error converges with respect to some precision ε

(see lines 5 and 14). In Algorithm 1, planned state changes are represented by the
peak plan vector �, which is initially zero for each slot and thus all DEWHs remain
in heating state MIN. A positive value �i will induce additional �i DEWHs to change
from MIN to MAX heating state in slot i, whereas a negative value will do the oppo-
site. The sum of all �-values until time slot k thus determines the number of DEWHs
which are in heating state MAX at that moment and must be positive at all time
slots.
For each time slot in the horizon, the algorithm determines the total error resulting

from the current peak plan � and adjusts the value at time slot i in the direction of the
error at slot i (line 8–10). Because of the iterative approach, not only current bounds
(line 11) but also the subsequent bounds have to be ensured (line 12). For this purpose, the
cumulative sum of the peak plan is determined. The minimum and maximum number of
devices is applied in each time slot and then converted back into the adjusted peak plan by
taking the difference (see line 35–44). If the new resulting total error is below the previous
achieved error, the adjusted peak plan �̃ is accepted or otherwise rejected (line 14–18).
Incrementing the peak plan only by one step per time slot avoids an early depletion of
flexibility, as once all DEWHs are in MAX heating state, the aggregated heating profile
cannot be further increased in the following slots.
In order to determine the aggregated heating profile and the corresponding error

(line 30–34) regarding the desired profile, the peak plan � is converted into a price vec-
tor p (line 23–29) which is applied to a method for approximating the resulting heating
profile (line 32), e.g. by solving the LP for each DEWH or using some heuristic. The
vector p results from applying vector τp to (12). The values τ

p
i are determined from

the vector τ containing the available values in descending order. To set m DEWHs into
heating state MAX at slot i, τ pi is selected between τm and τm+1 (line 25). The border val-
ues τ0 and τd+1 are defined by some value significantly outside of the considered range
of τ -values.
The available values within the vector τ need to be unique, because otherwise an

increment of �i would have no effect. In practice, adjacent values must have an ade-
quate minimum difference, due to a limited precision of LP solvers. Otherwise a τ p

value between two very close τ -values may induce an undefined behavior of two DEWHs
instead of changing the heating state to MIN or MAX. Thus, considering DEWHs with
non-unique or similar τ -values leads to the effect, that incrementing �i actually changes
the heating states of multiple DEWHs.
Algorithm 2 creates a vector τ regarding this limitation, given any vector τ̃ of sorted

τ -values of considered DEWHs and minimum difference of �τ . This is done by ignor-
ing every τ̃k which has a smaller difference to its preceding value. The drawback of this
method is that the reduction may be unevenly distributed. This leads to a few larger gaps,
were a change in the peak plan � changes the heating state of many DEWHs at once.
However, an alternative approach, where instead of the difference to the previous value
in τ̃ , the difference to the last value in τ is considered, may again lead to the case that the
selected τp is too close to the τ -value of a DEWH.
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Algorithm 2 τ -Cluster
1: function TAU_CLUSTER(τ̃ , �τ )
2: τ0 ← τ̃1 + �τ

3: τ1 ← τ̃1
4: k ← 1
5: form = 2 to d do
6: if |τk − τ̃m| < �τ then
7: τk ← τ̃m
8: else
9: k ← k + 1

10: τk ← τ̃m
11: end if
12: end for
13: τk+1 ← τ̃d − �τ

14: return τ

15: end function

Evaluation for a single day
The performance of the proposed algorithm is assessed with a realistic setup of DEWHs
for a fixed horizon of one day in this section as well as with a receding horizon over 6 days
in the next section. The results are compared to alternative price scenarios of poor perfor-
mance, using constant or inverse proportional prices shown in Fig. 1. For this purpose, the
algorithm was implemented in Octave/Matlab using the Yalmip toolbox (Löfberg 2004;
Löfberg 2017).

Scenario configuration

The proposed algorithm requires a set of DEWHs with a sufficient diversity of τ -values
in order to produce reasonable results. The hypothesis is that the existing DEWHs in
German households fulfill this requirement. For this purpose a sampling of devices
available on the market from selected manufacturers (Löfberg 2014; SEG Hausgeräte
GmbH 2017; STIEBEL ELTRON GmbH & Co. KG 2017; EHT Haustechnik GmbH /
Markenvertrieb AEG 2017) was carried out. Figure 3a shows the observed diversity of
40 distinct devices regarding heat conductivities and resulting τ -values for the volume
range of 30 to 200 l. Different types are available for each volume within a range of
up to almost 50% regarding the heat conductivity G. Calculating the τ -values with (4)

a b

Fig. 3 Considered DEWH parameter base from selected manufacturers. a Volume / heat conductivity of
DEWH, b Assumed discrete normal distribution of volumesN (μ = 70, σ 2 = 702)
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shows that DEWHs of significantly different volume may have similar τ -values due to
the diversity of the heat conductivity. However, although only a limited range of vol-
umes is available, the considered device base shows that it is likely to have an adequate
distribution of clustered τ -values for DEWHs on the market. This allows concluding
that the existing DEWHs in Germany fulfill the requirement of a sufficient diversity in
their τ -values.
In this study a sample of 50 devices is constructed assuming a cropped discrete normal

distribution of the volume as shown in Fig. 3b, with mean of 70 l and standard deviation
of 70 l. The corresponding heat conductivity is selected consecutively from the available
values. Additionally, an error between −2 to 2% is added to the volume with uniform
distribution. The resulting setup is available at Lübkert et al. (2018b).
Each DEWH’s daily energy demand is defined as twice its volume at minimum temper-

ature Tmin = 40 °C, which leads to an average heating duration of 3.3 h/day considering
heating elements with rated power of P = 2kW and an inlet water temperature of Tcold =
10 °C. The demand is distributed throughout the day according to a representative average
water consumption profile (Defra 2008). The allowed temperature range is from Tmin =
40 °C to Tmax = 70 °C and the environment temperature is considered as Tenv = 20 °C.
To simplify the model, the temperature parameters are assumed to be constant. The algo-
rithm terminates when no further reduction of the error is possible (ε = 0). A day is
divided into n = 24 time slots of length�t = 1h. The initial price pref is set to 1$/MWh to
simplify interpretation of resulting price values, as only the relation of prices is important,
not their absolute value.
The desired aggregated heating profile ĥ is constructed with (17) incorporating themin-

imum total energy demand (15) of all DEWHs required for maintaining the minimum
temperature. The shape of ĥ follows a virtual power availability P̂ with (16), by invert-
ing and normalizing electricity exchange prices, as in Lübkert et al. (2018a). Exemplary
prices pex are taken from Phelix at EPEX SPOT (EnergyMonitoring Company and Energy
Saving Trust) for January 1, 2016.

Etotal =
d∑

k=1

n∑

i=1

(
HWk,i + Gk · (Tmin − Tenv)

) · �t (15)

P̂i =
n+1
n max (pex) − pex,i

(n + 1)max (pex) − ∑n
i=1 pex,i

(16)

ĥi = P̂i
∑n

i=1 P̂i
· Etotal
Pheater · �t

(17)

Numerical results

With the prices generated by the proposed algorithm, the aggregated energy consumption
follows the desired shape of the availability profile. The energy consumption is shown in
Fig. 4a, with the aggregated heating profiles (target schedule and LP solution) at the top,
the resulting p with corresponding τp in the center, and the individual heating profiles
hk of all considered DEWHs in a heat map at the bottom. The considered 50 τ -values
of the DEWHs are reduced to 34 clusters by Algorithm 2 using a minimum difference of
�τ = 1%, as shown in Fig. 4b.
The algorithm terminates after 6 iterations. The most significant error reduction is

achieved within the first two iterations. As shown in Fig. 4c, the root-mean-square
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a b

c

Fig. 4 Results for τ -price with fixed 1-day horizon and virtual power availability. a Resulting aggregated and
individual heating profiles, τ p and p, b τ -Cluster: τ -values between lines belong to one cluster, c Resulting
error in iterations

deviation (RMSD) is reduced from about 5.4 to 1.6. The resulting mean absolute error
(MAEr) reaches 17.1% related to ĥ with (18), which is a significantly improvement com-
pared to an MAEr of 63.6% for constant and 113% for inverse proportional prices pex.

MAEr = 100 ∗
∑n

i=1

∣
∣
∣
(∑d

k=1 hk , i
)

− ĥi
∣
∣
∣

∑n
i=1 ĥi

(18)

During the first seven hours of the day, the algorithm increases the energy consumption
following the increasing availability by changing τ p such that in each hour a few DEWHs
change to heating state MAX. As the DEWHs have different volumes and water demand,
the resulting consumption peaks differ in length and height. As the availability decreases
from slot seven, the algorithm increases τ p again. As a result, some DEWHs rely on pre-
heated water without need for further heating for few hours. Others continue heating to
maintain either minimum or maximum temperature.
The example availability increases again in the afternoon, where the first devices

already stop heating as the maximum temperature now is sufficient to serve the remain-
ing demand of the day. Thus, τp is decreased again for a short time. Afterwards, the
availability quickly drops to a minimum value in slot 18 and the algorithm increases
τp accordingly. However, the aggregated consumption cannot be reduced sufficiently,
because many devices did not preheat and still require to heat to satisfy the demand.
In the very last hour, the algorithms fails to increase the energy consumption, as there is

no remaining demand to preheat and it is always optimal to finish at minimum tempera-
ture. In order to increase the flexibility and include the demand of the next day, a receding
horizon can be used. This is done in the next section by sending new prices for the next
day during the current day.
In this scenario about half of the DEWHs remain in heating state MIN all the time.

These have the smallest considered τ -values, due to smaller volumes or a less efficient
insulation. With an average heating duration of 3.38 h, the total energy demand is lower
than in the scenario using exchange prices or constant prices when maintaining medium
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temperature. Although DEWHs with better insulation or larger volume preheat to higher
temperatures, they still have lower operational costs for the same energy demand. The
average price paid for consumed hot water energy (19) increases monotonically with τ .
The DEWHhaving the largest τ -value has to pay about 1.13 $/MWh, whereas the smallest
τ -value leads to costs of 1.26 $/MWh in relation to the arbitrary reference price pref.

p̄ = p · hT · Pheater∑n
i=1HWi

(19)

At most times of the day, the resulting heating profile follows the availability favorable,
except at slot six, where a sudden decrease occurs. Although an increase of the peak plan
� in that slot could reduce the local error, it would not reduce but increase the total error.
However, it is possible to find a combination of increase and later decrease which would
improve the total error. Thus, results could be further improved by a more complex post-
optimization method, e.g. using a recursive approach which first reduces the local error
and then tries to find an additional change of the peak plan to reduce the total error again.
Alternatively, only the local error could be considered to modify the peak plan, whichmay
lead to better results for the first part, but much higher errors at the end of the day. In
combination with a receding horizon, this still can lead to better results, but requires some
mechanism to ensure convergence. Further alternatives are using a more sophisticated
logic, e.g. modifying � around minimum and maximum error in one step, or a general
heuristic optimization method like genetic algorithm or particle swarm optimization.

Receding horizon and price reset
The results from the previous section suggest that a receding horizon can improve the
ability of the proposed algorithm to reduce the error at the end of a day, as the water
demand of the next day can be considered for further preheating. Otherwise, all DEWHs
will always end at minimum temperature at the same time, independent of the desired
heating profile. However, by introducing a receding horizon, the prices would continue
increasing exponentially, which is impractical as customers would not accept such prices.
Thus, the price needs to be reset to a lower value after some time.
The price reset hinders the benefit of a receding horizon, as again all DEWHs will end

at minimum temperature at that time. However, the moment of the reset can be selected
such that its impact on the resulting heating profile is small. Because the price reset causes
the same behavior as the end of the scheduling horizon, the price finding problem can be
split into two independent horizons before and after the reset. Algorithm 3 utilizes this
effect to calculate a price including a reset to a lower value.

Algorithm 3 τ -Price Heuristic with Price Reset
� ← FIND_PRICE(ĥ)
r ← index of last minimum value in cumulative sum of �
p1..r+1 ← FIND_PRICE(ĥ1..r+1)
pr+2..n ← FIND_PRICE(ĥr+2..n)

After determining the price for the whole horizon, the time slot r is selected to reset the
price afterwards. A reasonable time to reset the price is wheremost DEWHs are at heating
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state MIN and thus the peak plan is at a minimum level. The last occasion of this level is
selected to ensure sufficient flexibility in the time before. However, the reset must occur
before the start of the next horizon, as otherwise it could be removed again. Alternatively,
the reset needs to be enforced in the next schedule. The example shown in Table 1 leads
to a price reset index r = 4, as this is the last minimum value in the cumulative sum of
the peak plan �. In the next step the price is determined again as a combination of two
computed price functions for consecutive sub-horizons. The first sub-horizon ends at slot
r + 1 and the second starts at r + 2.
The results for a receding horizon with price reset are shown in Fig. 5 considering power

availability from January 1 to 6 respectively. Prices are updated every day at noon (12
p.m.) covering a horizon of 36 hours until midnight. The aggregated heating profile still
follows the shape of the availability. However, there are some noticeable errors especially
around the price reset where availability is low. Due to this effect, the error reaches an
MAEr-value of about 20.8%, which is slightly higher compared to the performance for the
first day, but significantly better than using constant prices (MAEr = 75.7%) or exchange
prices (MAEr = 102%).
The price resets always occur close to midnight, due to the nature of the virtual power

availability constructed from exchange prices, leading to minimum availability in the late
afternoon followed by an increase at night. A high availability in a larger period or a very
high availability in a short period leads the algorithm to select more devices to create
peaks. This increases the overall energy demand and also the maximum price, as the price
gradient needs to be steeper for DEWHs with smaller τ -values. Due to the price reset, the
maximum price difference is about 25% for the considered DEWH setup.

Average optimizationmodel vs. statistical behavior
In the previous sections the behavior of a set of known DEWHs was analyzed. However,
in practice, each DEWH considered for price construction would represent the average
behavior of a group of similar DEWHs for which only a stochastic water demand profile
is known. In order to assess the applicability of this approach, a Monte Carlo simulation
is conducted to analyze the additional error due to a variance of the water consumption
patterns. For this purpose 1000 optimal heating profiles are calculated for a single DEWH
cluster with a volume of V = 65 l considering different water demand profiles. The total
water demand is randomly chosen with 2V ·fN [l at Tmin], where fN is normally distributed
with mean μ = 1 and standard deviation σ = 0.25. The total demand is distributed into
10 randomly chosen slots regarding the average profile. Figure 6a shows three example
profiles on the left and a histogram of the total demand on the right.
The results of the previous section have shown that the most common individual

heating profiles include a single pre-heating at beginning, two pre-heating phases, or
maintaining minimum temperature during all slots of the horizon. The resulting heating
profiles of the Monte Carlo simulation for these three scenarios are shown in Fig. 6. In

Table 1 Example peak plan and cumulative sum leading to a price reset index r = 4

Slot i 1 2 3 4 5 6

�i 0 1 1 -2 1 4
∑i

j=1 �j 0 1 2 0 1 5
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Fig. 5 Results with receding horizon and price reset for January 1-6

the case of maintaining minimum temperature (Fig. 6b), the average of all heating pro-
files is equal to the result of the average optimization model. Only small deviations occur,
due to the randomization. Thus, in the considered scenario of the previous section, about
10–50% of the profiles can be considered as correct.
In the other two cases slightly larger deviations occur. In the case of continuous heating

to maximum temperature (Fig. 6c) both results begin with a similar profile, but differ at
the end. This is because, some of the consumption patterns have a focus in the morning,
which allows to turn off heating earlier. Others have a major consumption in the evening,
which still requires some heating at later times. In total the resulting profiles differ from
the average model by stretching the demand in the second part of the day, which causes a
shortfall first and then a surplus. In the case of a second pre-heating peak in the afternoon
(Fig. 6d), this leads to significant reduction of the peak height and a low additional load
before and after the peak. The first pre-heating peak remains equal to the average model,
but also distributes the demand afterwards into the time between both peaks.
Overall, the resulting heating profiles from the average optimization model are a good

estimate of many different optimized profiles. Especially the first part of the horizon fits

a

c

b

d

Fig. 6 Comparison of averaged optimization and Monte Carlo simulation. aMC HW profiles, bmaintain
minimum temperature, c heat to maximum, d heat to maximum twice
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well, but at later slots additional errors are introduced as the energy consumption is higher
than expected at times where it is intended to be reduced.
Deviations in volume or heat conductivity would lead to a different τ -value and thus are

crucial, as this would change the number of devices considered for a cluster in the aver-
aged model. Different temperature ranges have an impact on the peak height as DEWHs
may either heat more or less in a time slot, which reduces the main peak, but increases
the consumption before the peak. The rated power has a similar impact, as some devices
require more time to heat the same amount of energy. However, in practice rated power
is restricted to a few common discrete values.

Discussion
With the proposed algorithm, prices increase exponentially with a single reset to a min-
imum value per day. This successfully shapes the energy consumption of many DEWHs.
However, it is unclear if the prices generated by the algorithm are applicable in practice.
Customers might accept such prices. They lower the operating costs of the DEWHs.

The ratio betweenmaximum andminimum price is only about 25%, which is far less com-
pared to other approaches, e.g. up to roughly 400% in Hunziker et al. (2017). Furthermore,
prices are similar every day and change very little between the hours.
However, the same price function needs to be applied for many different appliances,

unless each DEWH has its own electricity meter. In most households with a single
meter measuring the entire household consumption, sending different prices to individ-
ual appliances is unrealistic. The integration of price insensitive loads (e.g. cooking, lights,
multimedia) is still not a problem, as these behave the same for any price function. Its con-
sumption can be forecasted as common today and subtracted from the target schedule. A
bigger issue is the integration of cost optimizing shiftable loads (e.g. washing machines,
dryer, charging electric vehicles). These devices will run as early as possible after the price
reset to exploit the lowest prices.
The effort for integrating other thermostatically controllable loads (TCL) may be low

due to their similar thermal model. In fact, the proposed algorithm only requires that
TCLs know their τ -value and optimally minimize their operational costs according to it.
However, if the loads use a different control mechanism, not fully optimizing for lowest
costs, the resulting total consumption is different and deviates from the target schedule.
Thus, loads may react with undesirable behavior, e.g. causing synchronized load peaks at
lowest prices.
The major challenge with non-DEWH-loads is likely to occur around the price reset.

Even though this point in time is selected to have low effect on the consumption of
DEWHs, other loads will react on this large price change. Their consumption will be
low before and large after the reset. In many cases this prevents following a given target
schedule, even though DEWHs account for a large part of the domestic energy demand.

Conclusion
The paper showed that it is possible to construct an algorithm that calculates a price func-
tion from a target schedule operating many DEWHs to approximately consume power
according to a schedule. With the setup used for validation, prices vary by about 25%.
Prices increase exponentially but can be reset to some smaller value in the late evening
after a period of low power availability. The prices can also be used for the more realistic
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case of clusters consisting of many similar DEWHs only described by statistics. However,
this leads to a larger deviation from the target schedule.
Future work should quantify the deviation from the target schedule for multiple sets

of DEWH clusters. Results need to be compared to the use of mathematical opti-
mization including heuristic approaches. Moreover, numerical requirements should be
examined in more detail, such as the minimum distance of the τ -values between clus-
ters, the required precision for prices, and the smallest possible length of slots. Finally,
the approach should be extended to further types of loads – thermostatically control-
lable loads and others – to study the feasibility to control all of these with the same price
function.

Endnote
1 In Germany, this is regulated in the contract every supplier has to conclude

with its transmission system operator. Its Section 5.2 obligates the supplier to
keep deviations from the balance as low as possible by taking reasonable measures
(EPEX SPOT).
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