
Rahim et al. 
Egypt J Neurol Psychiatry Neurosurg           (2023) 59:60  
https://doi.org/10.1186/s41983-023-00649-z

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

The Egyptian Journal of Neurology,
         Psychiatry and Neurosurgery

Metabolite changes in the posterior 
cingulate cortex could be a signature for early 
detection of Alzheimer’s disease: a systematic 
review and meta‑analysis study based 
on 1H‑NMR
Fakher Rahim1   , Mohammad Khalafi2   , Mohammad Davoodi3    and Kiarash Shirbandi4*    

Abstract 

Background  Posterior cingulate cortex (PCC) is a paralimbic cortical structure with a fundamental role in integrative 
functions of the default mode network (DMN). PCC activation and deactivation of interconnected structures within 
the medial temporal lobe is essential in memory recall.

Aim  Assessing the metabolomics content changes in PCC of the patients with Alzheimer’s disease (AD) compared to 
healthy controls (HC) to find a new method for early AD detection was the primary goal of this study.

Methods  We performed a comprehensive search through eight international indexing databases. Searches were 
done using the medical subject headings (Mesh) keywords. Outcome measures included Population (HC/AD), Age (y), 
Gender (Male/Female), MRI equipment, Tesla (T), MMSE (mean ± SD), absolute and ratio absolutes metabolites in the 
PCC. All meta-analyses were performed using STATA V.14 tools to provide pooled figures.

Results  Studies published from 1980 to 2019 using the 1H-NMR technique of 3,067 screened studies, 18 studies 
comprising 1647 people (658 males and 941 females, 921 HC and 678 AD cases) were included. The results revealed 
a significant increase in mI content and a substantial decrease in NAA, Glu, and Glx levels of the PCC in AD patients 
compared to HC.

Conclusions  Our meta-analysis showed that microstructural disruptions in the PCC could be used as a marker for 
early AD detection. Although NAA, mI, Glu, and (NAA, Cho, and mI)/Cr biomarkers are substantial metabolites for 
diagnosis and are most sensitive for diagnosis.

Trial registration PROSPERO Registration: CRD42​01809​9325.
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Introduction
The most prevalent cause of dementia is Alzheimer’s 
disease (AD), characterized by regional brain atrophy, 
memory deficits, and deterioration of executive func-
tions [1, 2]. AD causes memory and executive function 
problems, affects other cognitive domains, and causes 
neuropsychiatric symptoms. AD is a multifactorial 
disease, however, the etiopathogenesis not being fully 
understood. Amyloid precursor protein metabolism, 
phosphorylated tau aggregation, impaired kynurenic 
acid pathway, and mitochondrial dysfunction are iden-
tified as culprits in disease pathology. Lower nicoti-
namide adenine dinucleotide (NAD+) secondary to 
impaired tryptophan-kynurenine metabolic system 
causes aerobic respiration dysfunction which leads 
to anaerobic respiration and energy loss in AD [3–7]. 
With the increase in life expectancy, it is predicted that 
in 2050, more than 106 million people will be diag-
nosed with AD worldwide, while in 2006, the number 
of patients was equal to 26 million [8, 9]. Amyloid and 
tau pathologies, which have different structural abnor-
malities, are two distinct pathologies that manifest at 
various stages of the disease’s progression. It has been 
proposed that when the amyloid and tau diseases over-
lap, the sickness may turn into a distinct illness [10–
12]. Prior to that, specific characteristics may have been 
linked to the development of just plaques in specific 
brain regions [13].

The posterior cingulate cortex (PCC) is a paralimbic 
cortical structure located in the core hub of the default 
mode network (DMN), with a fundamental role in the 
integrative functions of the DMN, including memory 
processing and encoding [14]. During episodic memory 
recall activity, there is the deactivation of the PCC and 
hippocampal activation. PCC interactions with the hip-
pocampal gyrus of the medial temporal lobe (MTL) net-
work and prefrontal cortical regions are essential for their 
role in cognitive function. Prominent Aβ deposition and 
hypo-metabolism in PCC, despite a low degree of atro-
phy, support the idea of the vital role of PCC dysfunction 
in connectivity disruption and memory loss associated 
with AD [15–17].

The measurement of the metabolome is related to a 
novel field of research with increasing importance called 
metabolomics [18]. This field can aid us by providing a 
comprehensive diagnosis of neurodegenerative disorders 
by characterizing absolute metabolites in a specific sam-
ple. Metabolomics is more sensitive to environmental 
and physical factors than genomics and proteomics [19]. 
Hence, to evaluate the metabolomics content changes 
in PCC, it can be helpful to compare AD patients and 
healthy individuals by the metabolome content in PCC 
[20].

Early diagnosis of AD has been one of the hot-spot 
research focus, fluid biomarkers, as well as neuroim-
aging techniques, have been utilized to elucidate the 
pathophysiology of early AD [21, 22]. The loss of func-
tional integrity of the frontal and hippocampal-based 
memory systems in individuals can be utilized as a meas-
ure of neurodegenerative processes in individuals with 
a high risk of dementia or with a diagnosis of AD: evi-
dence from recent studies provided an overview of the 
anatomical–functional interplay between the prefrontal 
cortex and heart-related dynamics in human emotional 
conditioning (learning). It proposed a theoretical model 
to conceptualize these psychophysiological processes, 
the neurovisceral integration model of fear (NVI-f ), that 
can be impaired in neurodegenerative disorders [23, 24]. 
Nuclear magnetic resonance (NMR), positron-emission 
tomography (PET), and mass spectrometry (MS) with 
conventional techniques have raised hope of achieving 
this goal [5].

Proton nuclear magnetic resonance (1H-NMR), 
also called NMR spectroscopy, helps us measure 
quantitatively microstructural disruptions. Different 
electron shielding around the metabolites is the discrimi-
native factor in assessing the signals of each metabolite 
in a strong magnetic field [25]. NMR spectroscopy-based 
metabolomics is a non-invasive method that does not 
require complex manipulation protocols of samples. 
Although for a precise and comparable measure of brain 
metabolites, MR spectroscopy needs some (and some-
times many) manipulations of protocols post-processing 
and is subjected to many artifacts. So, it is not a sim-
ple technique. The standardizing methods are the main 
limitation of applying spectroscopy on a large scale and 
comparing it in different centers [26, 27]. Therefore, this 
study aimed to look at the similarities and discrepancies 
of the studies, critically review the advantages and limita-
tions of using NMR spectroscopy as a marker of AD, and 
investigate the metabolites changes in PCC as one of the 
signature AD regions in AD patients compared to HC.

Methods
The systematic review and meta-analysis protocol was 
registered in the PROSPERO, a prospective international 
register of systematic reviews under record number 
CRD42018099325. This study was done with standard 
guidelines such as the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guide-
lines [28] and the Meta-analysis of Observational Studies 
in Epidemiology (MOOSE) [29].

Study criteria
The cohort, cross-sectional, and case–control design 
studies were included and evaluated metabolomics 
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changes in PCC patients with AD through the 1H-NMR 
technique. Patients will be recruited if they are above 
65 with the AD diagnosis by altered biomarkers (CSF or 
PET-scan) and clinical symptoms. Outcome measures 
included Population (HC/AD), Age (y), Gender (Male/
Female), MRI equipment, Tesla (T), MMSE (mean ± SD), 
absolute and ratio absolutes metabolites in the PCC. HC 
group were all age and sex-matched with the AD patients 
and had no history of neuropsychological disorders.

Search methods
ISI Web of Science, Cochrane Library, PROSPERO, Pub-
Med, Scopus, CINAHL, Science Direct from inception, 
EMBASE, and any of the included research reference 
lists.

The search was started in 2000 until May 2019. 
Searches were done using the medical subject headings 
(Mesh) keywords (“1H-NMR” OR “MRS” OR “Magnetic 
Resonance Spectroscopy”) AND (“Alzheimer disease” OR 
“Dementia”) AND (“Metabolite” OR “Metabolomics”). 
Any meta-analysis, review studies (narrative or system-
atic), case series or case reports, commentaries, and let-
ters to the editor were excluded. Studies fulfilling the 
above criteria, with a cohort, cross-sectional, or case–
control design, and full-text information were available 
and considered in the meta-analysis.

In our data collection, studies were included whether 
they were about brain 1H-NMR, examined individu-
als with AD, comprised healthy control groups, and 
compared absolute metabolites in the PCC region. The 
importance of knowledge was independently derived 
from experiments by two scholars (K.SH. and F.R.) If 
applicable, we have contacted the writers of the qualify-
ing papers for missing details.

Quality assessment
Quality assessment was assessed according to standard-
ized tools for grading cohort studies (Newcastle Ottawa-
Scale [30]). Newcastle Ottawa-Scale is a tool to assess 
risk of bias and quality used in a systematic review study 
with included non-random studies.

Publication bias
The visual inspection of the funnel plots and the Egger 
test for each group and each metabolite were used to 
observe the propensity for publishing bias [31]. A signifi-
cance level of P < 0.10 defined significant publishing bias 
based on the Cochrane handbook for systematic reviews 
[31].

Sensitivity analysis
Sensitivity analysis based on study quality (risk of bias) 
to investigate possible sources of heterogeneity. The 

primary decision nodes concluded methodological con-
sistency, sample size, and the impact of missed data. The 
researchers replicated the meta-analysis, and low-quality 
findings were omitted. The outcome was contrasted and 
debated based on the extracted conclusions from other 
researchers.

Statistical analysis
All meta-analyses were carried out using STATA V.14 
tools to provide pooled figures, with a corresponding 95 
percent confidence interval (CI) and plots for studies dis-
closing absolute metabolite and metabolite ratio in the 
PCC. The mean estimates of each sample were pooled 
using a model of random effects for meta-analysis [32]. 
The I2 figures and the Chi-square test have been used to 
test heterogeneity. It was considered that I2 > 50 percent 
or P < 0.05 demonstrated substantial heterogeneity. In 
addition, to determine publishing bias, the funnel plot 
and the Egger regression test were added.

Results
Study selection
A comprehensive search of the literature conducted 
a total of 3067 relevant studies. A total of 764 were 
excluded after duplicates. Title—the abstract screening 
was excluded, and several 2276 studies and 27 full texts 
were selected (Fig.  1). At last, 18 original articles with 
cross-sectional or case–control design, comprising 1647 
cases, [658 (40%) males and 941 (60%) females] were 
selected. Healthy controls (HC) 921 (55.9%) and AD 678 
(44.1%) were included in the meta-analysis [33–50]. Nine 
studies were excluded after full-text screening (Addi-
tional file 1: Table S1) [51–59]. The mean age of the AD 
and HC participants was 73.33 ± 4.22 and 69.73 ± 7.15, 
respectively, and the Mini-Mental State Examina-
tion (MMSE) of the AD and HC were 19.45 ± 2.63 and 
28.36 ± 1.27, respectively. Outlines of the search method 
and the number of studies excluded during each phase 
of the search are provided in Fig.  1. The table gives a 
detailed overview of the study population of each of the 
18 reviewed studies (Table 1).

A. Metabolite concentration
Metabolite concentrations were reported in 8 studies. 
N-Acetyl aspartate (NAA), creatine (Cr), choline (Cho), 
myo-inositol (mI), glutamine (Glu), and glutamate + glu-
tamine (GLx) concentrations were extracted as the target 
variables (Table  1). On the one hand, results displayed 
a significant increase in mI content of the PCC in AD 
group compared to controls (0.32 [95% CI 0.19, 0.46]) 
(Table  2) (Additional file  1: Figs. S1–S5); on the other 
hand, there was significant decrease in NAA, Glu, and 
Glx levels of the PCC in AD participants compared to 
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HC, (mean difference = 0.91 [95% CI − 1.05, − 0.77], 0.75 
[95% CI − 1.00, − 0.50], and 0.67 [95% CI − 1.13, − 0.20], 
respectively) (Table 2) (Additional file 1: Figs. S6 and S7). 
No significant difference between AD and HC groups 
was observed in the concentration of Cr and Cho (Figs. 2, 
3, 4).

B. Metabolite ratio
Metabolite ratios reported in 18 studies, NAA/Cr, NAA/
mI, Cho/Cr, mI/Cr, scyllo-inositol (sI)/Cr, mI/NAA, 
Glu/Cr, mI/Cho were extracted (Table  1). The results 
revealed a significant decrease in NAA/Cr ratio (mean 

difference = 0.15 [95% CI − 0.20, − 0.09]) (Fig.  5), how-
ever, the results for Cho/Cr (0.05 [95% CI 0.03, 0.06]) 
(Fig. 5) and mI/Cr ratio (0.10 [95% CI 0.08, 0.13]) (Fig. 6) 
were associated with significant increase in the AD group 
compared to controls (Table 2; Additional file 1: Figs. S8–
S13). No significant differences were found in the PCC 
mI/NAA ratio between the AD and HC groups (Fig. 6). 
Due to insufficient studies, we could not conduct a meta-
analysis for NAA/mI, SI/Cr, Glu/Cr, and mI/Cho ratios 
(Fig. 7).
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Fig. 1  Study flow diagram showing how to extract articles
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Discussion
According to this meta-analysis, in PCC absolutes, sub-
stantial variations were observed between early detection 
AD patients and HC of the NAA, mI, Glu, and Glx and 

metabolite ratios, including NAA/Cr, Cho/Cr, and mI/Cr. 
There was no significant difference in Cr and Cho levels 
and mI/NAA ratio in early detection AD compared with 
HC groups. The hippocampus, crucial for declarative 

Table 2  Summary of outcome of subgroup analysis of various metabolites between patient with Alzheimer’s disease (AD) and healthy 
controls (HC)

Bold values indicate a signidicante value relationship between AD and healthy controls

N number

Metabolites No. of studies No. of AD N of HC Heterogeneity test I2 (%) Model Effect estimate (95% CI) Test(s) of P = 0

Chi2 P-value Z P-value

Concentration

 NAA 6 326 417 2.15 0.83 0 Fixed − 0.91 [− 1.05, − 0.77] 12.47 < 0.00001
 Cr 2 169 97 5.36 0.02 81 Random − 0.33 [− 0.81, 0.15] 1.33 0.18

 Cho 4 235 316 0.64 0.84 0 Fixed 0.03 [− 0.01, 0.07] 1.67 0.89

 mI 5 302 370 1.10 0.89 0 Fixed 0.32 [0.19, 0.46] 4.65 < 0.00001
 Glu 3 90 266 0.37 0.83 0 Fixed − 0.75 [− 1.00, − 0.50] 5.87 < 0.00001
 GLx 4 189 311 7.66 0.05 61 Random − 0.67 [− 1.13, − 0.20] 2.80 0.005

Ratio

 NAA/Cr 14 491 735 174.71 < 0.00001 93 Random − 0.15 [− 0.20, − 0.09] 5.30 < 0.00001
 Cho/Cr 13 464 739 54.16 < 0.00001 78 Random 0.05 [0.03, 0.06] 5.38 < 0.00001
 mI/Cr 16 632 1005 104.68 < 0.00001 86 Random 0.10 [0.08, 0.13] 8.66 < 0.00001
 mI/NAA 7 266 367 162.48 < 0.00001 96 Random 0.17 [0.04, 0.30] 2.51 0.01

 NAA/mI 1 47 56 – – – – – – –

 sI/Cr 1 15 19 – – – – – – –

 Glu/Cr 1 30 26 – – – – – – –

 mI/Cho 1 30 15 – – – – – – –

Fig. 2  Compared to healthy controls, forest plots of comparison N-acetyl aspartate (NAA) and creatine (Cr) in AD patients. Data type: continuous; 
effect size: Hedges’ g; effect model: fixed and random model; CI: confidence interval
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memory, serves as the physical hallmark of AD [60]. 
Potential indicators for predicting the transition from 
MCI to AD include hippocampal shrinkage and its rate of 

atrophy [61]. It has also been shown that functional and 
structural networks connected to the hippocampus have 
decreased integrity [62]. Although different studies use 

Fig. 3  Forest plots of comparison choline (Cho) and myo-inositol (mI) in AD patients compared to healthy controls. Data type: continuous; effect 
size: Hedges’ g; effect model: fixed model; CI: confidence interval

Fig. 4  Compared to healthy controls, forest plots of comparison glutamine (Glu) and glutamate + glutamine (GLX) in AD patients. Data type: 
continuous; effect size: Hedges’ g; effect model: fixed and random model; CI: confidence interval
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different network mapping techniques, the geographical 
distribution of the discovered synchronized degeneration 
networks (SDNs) with hippocampal epicenters is remark-
ably consistent with earlier research [63]. Numerous AD 
histological and neuroimaging discoveries have suggested 
that the hippocampus and surrounding areas, generally 
known as the medial temporal lobe, have close relation-
ships [64, 65]. According to a large body of research, the 
hippocampus and prefrontal cortex connect via oscilla-
tory synchrony, reflecting bidirectional information flow, 
and may play a significant role in memory and learn-
ing outside of the limbic system [66]. These regional 
and network-level discoveries highlight the significance 
of the hippocampus and the related functionally and 

structurally connected regions in the pathophysiology of 
AD [67].

NAA is synthesized in the mitochondria of the brain 
cell and is considered a marker of neuronal integrity, vis-
ibility, density, functional mitochondria, and capacity in 
brain tissues [68]. The remarkable decline in the absolute 
metabolite in AD patients will represent neuronal loss 
and mitochondrial function [69]. Therefore, a signifi-
cant decrease in NAA levels of the PCC would directly 
reflect early detection of AD pathology in this region. 
1H-NMR studies have also shown a widespread reduction 
in NAA/Cr ratio in AD patients and its association with 
extensive neuronal dysfunction and loss [54]. NAA/cr is 
thus one of the sensitive markers for AD, in line with our 

Fig. 5  Compared to healthy controls, forest plots of NAA/Cr and Cho/Cr in AD patients. Data type: continuous; effect size: Hedges’ g; effect model: 
random model; CI: confidence interval
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findings of decreased NAA/cr ratio in the PCC [54, 70, 
71]. Cho is mainly present in myelin and cell membranes 
as Cho-bound membrane phospholipids [72]. Free Cho 
and acetylcholine absolute cytosol are hardly detectable 
through 1H-NMR due to their low absolute in brain tis-
sues [73]. An elevated level of Cho detected by 1H-NMR 
is attributed to the catabolism of phosphatidylcholine in 
the neuron membrane to provide free choline molecules 
in the cytosol, increasing it in absolute [51, 73]. Similarly, 
disinhibited regulation of choline acetyltransferase due 
to neuronal dysfunction can lead to high absolute Cho, 
justifying the high Cho/Cr level in early detection AD 
patients that can be interpreted into changes in mem-
brane metabolism and neuronal membrane disruption. 
γ-Secretase is a complex of transmembrane proteases 
which consists of the PEN2, PSEN, NCSTN, and APH-1 
monomers, and The breakdown of the amyloid precur-
sor protein into insoluble amyloid β-peptides (Aβ) is 

responsible for and is regulated by SLC2A13, which was a 
target in AD for Aβ reduction therapy [74, 75]. SLC2A13 
also encodes the (H+) myo-inositol co-transporter and 
is essential in the metabolic regulation of glial cells. 
Increased mI in PCC could reflect SLC2A13 downregu-
lation, γ-secretase overactivation, and increased Aβ pro-
duction deposition in PCC in early AD [75].

Last but not least, glutamate is the primary central nerv-
ous system (CNS) excitatory transmitter, which plays a sig-
nificant part in thought, memory, and plasticity [76]. These 
metabolites are synthesized from glutamine by glutami-
nase in neurons [77]. The N-methyl-d-aspartate receptor 
(NMDAR) is usually the most calcium-permeable (Ca2+) 
receptor and type of glutamate receptor [78]. The receptor 
can interact between beta oligomers and glutamine, gluta-
mate, or glutamine + glutamate (Glx) metabolites.

Fig. 6  Forest plots of mI/Cr and mI/NAA in AD patients compared to healthy controls. Data type: continuous; effect size: Hedges’ g; effect model: 
random model; CI: confidence interval
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Limitations and future directions
Sample sizes were relatively small, and randomized clini-
cal trial (RCT) studies were not included, requiring more 
significant diagnostic accuracy. The real added value will 
come from new studies where metabolomics technolo-
gies are added to evaluate changes in metabolism in the 
brain and peripherally spectroscopy and the interconnec-
tions between both. Therefore, what has been done so far 
is limited insights into metabolism using a small number 
of markers that authors are reviewing. The combina-
tion of imaging and genomics has proved to be a power-
ful pair, but a critical question may come to mind: could 
imaging be equally valuable for metabolomics? Some 
researchers think it might, particularly with the adoption 
of 1H-NMR. Our meta-analysis showed that metabolite 
changes in the posterior cingulate cortex could be used 
as a marker for the early detection of Alzheimer’s disease. 
NAA and ml, and Cho/Cr ratio biomarkers seem to be 
substantial metabolites for early detection of AD, which 
can be of interest to researchers. It is recommended to 
design studies similar to the studies analyzed here but 
with a more significant number of participants by age 
group, as well as taking into account the years that have 
passed since the early diagnosis.

Conclusions
Our meta-analysis showed that microstructural disrup-
tions in the PCC could be used as a marker for early AD 
detection. Although NAA, mI, Glu, and (NAA, Cho, and 
mI)/Cr biomarkers are substantial metabolites for diag-
nosis and are most sensitive for diagnosis. The critical 
biomarker can be of interest to researchers. Two suscep-
tible areas involved in the pathophysiology of AD early 
on are the PCC and the hippocampus. Notably, the PCC-
epicentered network predicts AD development, includ-
ing brain atrophy and cognitive impairment, but not the 
hippocampus-epicentered network. Our findings lend 
credence to the network degeneration concept of AD and 
imply that PCC could be employed as possible disease-
progression markers. The findings also shed light on the 
mechanisms behind network disease in AD.
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