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SCIENTIFIC (SHORT) NOTE

Antifungal activity of Streptomyces sp. 
CACIS‑2.15CA, as a potential biocontrol agent, 
against some soil‑borne fungi
Diana Elizabeth Rios‑Muñiz and Zahaed Evangelista‑Martínez*    

Abstract 

Background:  Soil biocontrol streptomycetes are considered as ecofriendly agents, which inhibit the growth of multi‑
ple fungal pathogens. In addition, the majority of species are considered non-plant pathogenic, and they are ben‑
eficial to plant growth and soil salinity because they produce broad bioactive secondary metabolites, i.e., polyenes, 
volatile organic compounds, fatty acids, plant growth regulators, and diversity of extracellular hydrolytic enzymes. 
Therefore, this study aimed to select, characterize, and perform the molecular identification of a streptomycete isolate 
by in vitro antagonistic activity against some soil-borne fungi.

Results:  Twenty-five isolates obtained from the Germplasm Bank of Actinomycetes were tested in dual confrontation 
assay to determine their inhibitory activity against the growth of Colletotrichum musae. In addition, 22 isolates (88%) 
inhibited the mycelial growth of C. musae, particularly the isolate CACIS-2.15CA, which showed the highest antagonis‑
tic activity. Furthermore, an antifungal evaluation using additional fungal species was performed. The CACIS-2.15CA 
isolate exhibited a high inhibitory activity against Phytophthora capsici, C. musae, Botrytis cinerea, Lasiodiplodia sp., 
Sclerotinia sp., Fusarium oxysporum, F. oxysporum f sp. lycopersici Fusarium sp., and Aspergillus sp. at percentages rang‑
ing from 7.3 to 61.2%. The isolate was characterized by its morphology and physiology and by the presence of genetic 
biosynthetic clusters for non-ribosomal polyketide synthases and polyketide synthases type I and II using polymerase 
chain reaction assays; the selected strain harbored genes for NRPS and PKS type I clusters. Moreover, the isolate was 
molecularly identified as a member of Streptomyces genus based on the partial sequence of the 16S rRNA gene. Based 
on its morphological and physiological characteristics, the CACIS-2.15CA isolate belongs to Streptomyces genus.

Conclusion:  Given the aforementioned characteristics, Streptomyces sp. CACIS-2.15CA can be a potential biocontrol 
agent against various fungal strains.
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Background
Globally, the production of field crops was affected by 
plant diseases, in which fungi and oomycetes attribute to 
70 to 80% of product losses and reduced quality of food 
products (Yang et al. 2019).

The fungal group is a diverse group of microorganisms 
in nature, and it is a principal group with more than 8000 
plant pathogenic species (Shuping and Eloff 2017). A 
diversity of fungal species is responsible for diseases on 
roots, stems, leaves, flowers, fruits, and seeds. Fusarium 
oxysporum is an important phytopathogen, and it is the 
causal agent of plant wilt diseases (Dean et  al. 2012). 
Anthracnose disease caused by the genus Colletotri-
chum is affecting the leaves, flowers, and fruits of plants. 
In addition, Colletotrichum musae is the causal agent of 
anthracnose in banana fruit (de Silva et al. 2017). Botrytis 
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cinerea is a fungal pathogen responsible for gray mold 
disease that has a broad host plant range, including many 
important crop species (De Angelis et al. 2022). Lasiodip-
lodia theobromae is the causal agent associated with die-
back and fruit rot in mango, grapes, papaya, and citrus 
fruits (Picos-Muñoz et  al. 2015). Aspergillus species are 
responsible for various plant diseases, which primarily 
cause postharvest diseases on fruits, thereby affecting 
quality and nutrient content; some other species are pro-
ducers of aflatoxins (Perrone et al. 2007).

Traditionally, the control of fungal phytopathogens is 
carried out with chemical pesticides, which could repre-
sent serious risks to the environment and human health 
(Law et  al. 2017). Thus, the use of biocontrol agents 
(BCAs) has emerged as a safe alternative to chemi-
cal pesticides (Evangelista-Martinez 2014). BCAs are 
antagonistic microorganisms than can inhibit or regu-
late the population of pathogens by using some mecha-
nisms, including the competition for nutrients or space, 
parasitism, production of secondary metabolites (SeM), 
secretion of lytic enzymes, or induction of a resistance 
mechanism in host plants (Thambugala et  al. 2020). 
Trichoderma, Actinobacteria, Pseudomonas, and Bacil-
lus species have been extensively investigated as potential 
BCAs to control plant diseases (Thambugala et al. 2020). 
Among these antagonists in particular, Streptomyces 
species could be used as potential biopesticides to con-
trol phytopathogenic fungi and plant growth-promoting 
activity (Nonthakaew et al. 2022).

Streptomyces is the largest genus of Actinobacteria with 
more than 700 species of Gram-positive, spore-produc-
ing, and filamentous bacteria (Law et al. 2017). The genus 
has been recognized by the production of a wide variety 
of SeM, many of which have an inhibitory activity against 
bacteria, fungi, parasites, and virus, and some of which 
are recognized as antitumor and cytotoxic metabolites 
(Qi et  al. 2019). Moreover, the members of this genus 
have an exceptional repertoire of extracellular enzymes, 
including lipases, proteases, amylases, chitinases, and 
β-1,3-glucanases, which play an important role in inhib-
iting the growth of phytopathogenic fungi (Pérez-Rojas 
et al. 2015). This study aimed to evaluate the antagonistic 
activity of streptomycetes obtained from the Germplasm 
Bank of Actinomycetes against some fungal strains.

Methods
Microorganisms used and culture conditions
Twenty-five streptomycetes preserved at the Actinomy-
cetes Germplasm Bank from CIATEJ, which were origi-
nally isolated from bulk and rhizosphere samples of soils 
from natural protected areas in México, were selected. 
The commercial strain Streptomyces lydicus WYEC108 
was used as a positive control. All the strains were 

cultured on International Streptomyces Project media 
No. 2 (ISP-2) at 29  °C for 14 to 21  days. Streptomycete 
spore suspensions (SS) were adjusted at 0.5 McFarland 
standard (106 spores/ml).

Phytopathogenic fungi
The following fungal strains were used for confrontation 
assays: Colletotrichum musae N1 and C. musae C6, both 
isolated from banana fruit; Lasiodiplodia sp. LA iso-
lated from coconut palm; Phytophthora capsici isolated 
from serrano chili plant; Sclerotinia sp. S1 isolated from 
Aloe vera; Fusarium oxysporum F4 isolated from Agave 
tequilana; F. oxysporum f sp. lycopersici F6, isolated from 
tomato plant; Fusarium oxysporum F7 isolated from 
gladiolus corms; Botrytis cinerea B1 isolated from tomato 
fruit; Lasiodiplodia theobromae Rh2 isolated from 
Ataulfo mango fruit; Aspergillus sp. A3 isolated from 
sweet-orange fruit (Evangelista-Martínez et al. 2022). The 
strains were cultured on potato dextrose agar (PDA) at 
29 °C for 10 days.

Primary screening for antagonistic streptomycetes
The selection of streptomycete strain with antagonistic 
activity against fungi was evaluated by dual confronta-
tion assays from twenty-five streptomycetes (Evangelista-
Martínez 2014). S. lydicus WYEC 108, the strain of the 
biological fungicide product Actinovate®, was used to 
compare the antagonism potential of the streptomycete 
strains. In brief, the confrontation assay consisted in the 
simultaneous inoculation at opposite sites onto ISP2 agar 
media of 2 µl of a streptomycete SS and 2 µl of the SS of 
S. lydicus. This process was repeated with all streptomy-
cete strains. Thereafter, Petri plates were kept at 29  °C 
for 3  days. Then, agar plugs (9  mm in diameter) with 
mycelium of C. musae C6 from a recent PDA Petri plate 
culture were placed at the center of each plate. All the 
plates were maintained at 29  °C for additional 10  days. 
All experiments were performed in duplicate using plates 
inoculated only with C. musae as growth control. Fungal 
growth was measured using a caliper. The percentage of 
inhibition (PI) was calculated using the following for-
mula: PI (%) = FR − AR/FR × 100, where FR represents 
the radial growth (mm) of fungi of a control culture and 
AR represents the radial growth (mm) of fungi in the 
direction of the tested streptomycete (Evangelista-Mar-
tínez et  al. 2020). The isolate with the highest PI value 
was selected for further evaluation.

Antifungal activity of the CACIS‑2.15CA isolate
The antifungal activity of the CACIS-2.15CA isolate was 
evaluated on PDA plates by dual confrontation assay 
against 10 fungal strains. An aliquot (3 µl) of SS isolates 
was deposited 1.0 cm from the edge of the plate. On the 
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opposite side of the same plate, 3 µl of SS of S. lydicus was 
inoculated. The Petri plates were maintained at 29 °C for 
3 days. Thereafter, agar plugs of 9 mm diameter covered 
with actively growing fungal mycelium of the pathogens 
were transferred onto the center of each plate and incu-
bated at 29  °C for additional 7–10 days, until the fungal 
control cultures reach the border of the control plate. 
Control cultures containing the fungus alone were used 
to compare the inhibition of fungal growth. All tests were 
conducted in triplicate. The PI was determined as previ-
ously described (Evangelista-Martínez et al. 2020).

Morphological and physiological characterization 
of CACIS‑2.15CA
The isolate was grown on different culture media for 
14 days to characterize its morphology such as aerial and 
substrate mycelia, soluble pigment, and spore produc-
tion (Shirling and Gottlieb 1966). The morphology of the 
spore mass was observed by scanning electron micros-
copy (Evangelista-Martínez et  al. 2020). Moreover, the 
samples were analyzed by using an electronic microscope 
EVO-50 (Carl Zeiss) at the Science Faculty from the 
Autonomous University of Querétaro, México.

Carbon utilization was determined using the Biolog 
FF Microplate™ (Biolog Inc., USA) system, following the 
manufacturer’s instructions. In addition, antibiotic sus-
ceptibility testing was performed by the disk diffusion 
assay using the commercial multidisc PT-34 Multibac 
I.D. (Investigación Diagnostica), as described by the Clin-
ical and Laboratory Standards Institute (CLSI 2011). All 
tests were performed in triplicate.

Molecular identification and phylogenetic analysis 
of the CACIS‑2.15CA isolate
DNA purification was performed as described by Evan-
gelista-Martínez (2014) using the GenElute Bacteria 
genomic DNA kit (Invitrogen). Purified DNA was used as 
a template to amplify the 16S rRNA gene by polymerase 
chain reaction (PCR). The amplification was performed 
using GoTaq DNA polymerase (Promega) and univer-
sal primers fD1 (5′-CCG​AAT​TCG​TCG​ACA​ACA​GAG​
TTT​GAT​CCT​GGC​TCA​G-3′) and rD1 (5′-CCC​GGG​
ATC​CAA​GCT​TAA​GGA​GGT​GAT​CCA​GCC-3′) (Weis-
burg et  al. 1991). The amplified PCR product was puri-
fied using the PureLink kit (Invitrogen) and sequenced 
at Macrogen Inc., Seoul, Korea. The sequence was com-
pared in BLASTn (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​
cgi) against the nr database available on the NCBI Web 
site. Homologous sequences were retrieved and used for 
multiple alignments with Clustal. A phylogenetic tree 
was constructed using the neighbor-joining algorithm 
approach in MEGAX (Kumar et al. 2018).

Screening of SeM genes
The identified Streptomyces sp. CACIS-2.15CA was 
screened to detect gene clusters encoding for non-riboso-
mal peptide synthetases (NRPS) and polyketide synthase 
(PKS) types I and II. Detection was performed by PCR 
using GoTaq DNA polymerase (Promega) and degener-
ate primers K1F (5′-TSAAGTCSAAC​ATC​CGBCA-3′) 
and M6R (5′-CGC​AGG​TTSCSG TAC​CAG​TA-3′) for the 
detection of NRPS genes and A3F (5′-GCSTACSYSAT-
STACACSTCSGG-3′) and A7R (5′-SASGTCVCCS-
GTSCGGTAS-3′) for the detection of PKS-type cluster 
genes (Ayuso-Sacido and Genilloud, 2005). In addition, 
the detection of the PKS II gene was performed using the 
primers KSα (5′-TSGRC​TAC​RTC​AAC​GGSCACGG-3′) 
and KSβ (5′-TACSAGTCSWTC​GCC​TGG​TTC​-3′) 
(González et  al. 2005). Moreover, amplified loci were 
analyzed by 1.5% agarose gel electrophoresis and stained 
with SyBR safe (Invitrogen) using a GelDoc EZ analyzer 
(Bio-Rad, CA, USA).

Statistical analysis
Antifungal activity was expressed as mean ± standard 
deviation. Means were compared using a one-way analy-
sis of variance, followed by Tukey’s test (P = 0.05). Statis-
tical analysis was performed using the GraphPad Prism 
8 program (GraphPad Software Inc., La Jolla, CA, USA).

Results
Preliminary selection of actinomycetes with antagonistic 
activity
The antagonistic activity of isolates against C. musae C6 is 
presented in Table 1. Data showed the PI of isolates over 
fungal growth, wherein 22 isolates inhibited the myce-
lial growth and 5 isolates (Y21, AGS-4, CACIS-2.15CA, 
CACIS-2.16CA, and CACIS-2.17CA) exhibited a supe-
rior value of PIs to S. lydicus WYEC108 (48.0 ± 0.07%). 
Considering its high PI (58.6 ± 2.1%), the CACIS-2.15CA 
isolate was selected for further evaluation.

Antifungal activity of CACIS‑2.15CA
The in  vitro confrontation assay revealed that CACIS-
2.15CA inhibited the mycelial growth of the tested fungi 
at least by 30%, except for F. oxysporum (F6), L. theo-
bromae (Rh2), and Aspergillus sp. (A3). It also showed a 
high inhibitory activity compared with the commercial 
strain WYEC108. Comparative analysis of the antago-
nism of CACIS-2.15CA versus S. lydicus showed high PIs 
against C. musae N1, Lasiodiplodia sp., F. oxysporum F4, 
and B. cinerea (P < 0.05). However, statistical differences 
were observed when S. lydicus inhibited the growth of P. 
capsici and Sclerotinia sp. (P < 0.05). Neither of the two 
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streptomycetes inhibited the growth of L. theobromae 
(Fig. 1).

Molecular identification and phenotypic characterization 
of CACIS‑2. 15CA
The partial sequence of the rRNA 16S gene (1432 
nucleotides) of the isolate CACIS-2.15CA was 

deposited in the Gen Bank database (OP313935). The 
sequence showed a 99.72% similarity to 16S rRNA 
gene sequences of S. angustmyceticus (OK335988.1) 
and S. nigrescens (FJ532430.1), 99.65% similar-
ity to the sequences of S. libani (JN180219.1), and 
99.58% similarity to the sequences of S. lydicus 
WYEC108 (MH894216.1), S. rimosus subsp. rimosus 

Table 1  Preliminary selection of antagonistic streptomycetes from various soil samples

Percentage of inhibition: Streptomyces lydicus WYEC108 48.0 ± 0.07

Isolates from Oxkutzcab, Yucatán. México (Rejón-Martínez et al. 2022)

 ID Y7 Y18 Y21 Y31 Y36

 PI 9.1 ± 2.5 8.6 ± 2.2 50.0 ± 2.5 46.6 ± 3.0 36.8 ± 3.6

Isolates from Aguascalientes, México (Evangelista-Martínez et al. 2022)

 ID AGS4 AGS6 AGS12 AGS13 AGS32

 PI 56.3 ± 0.1 1.5 ± 0.7 37.8 ± 3.0 38.7 ± 0.7 33.0 ± 0.1

Isolates from Los Petenes Biosphere Reserve, Campeche. México (Evangelista-Martínez 2014)

 ID CACIS-2.3CA CACIS-2.67CA CACIS-2.15CA CACIS-2.16CA CACIS-2.17CA

 PI 19.5 ± 0.9 15.5 ± 3.0 58.6 ± 2.1 49.4 ± 0.9 53.3 ± 0.7

Isolates from Calcehtok Cave, Yucatán. México

 ID GCAL3 GCAL7 GCAL17 GCAL19 GCAL33

 PI 0.0 ± 0.0 6.9 ± 1.6 8.8 ± 0.5 0.0 ± 0.0 5.2 ± 0.1

Isolates from Nacional Park “El Chico,” Hidalgo. México (Evangelista-Martínez 2014)

 ID 1.3H 1.44H 1.47H 1.54H 1.7H

 PI 45.2 ± 0.6 23.0 ± 1.5 16.2 ± 0.8 3.9 ± 1.5 10.2 ± 0.4
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Fig. 1  In vitro antagonistic activity of isolate CACIS-2.15CA against different phytopathogenic fungi. Means of PI over fungal species: N1, 
Colletotrichum musae N1; LA, Lasiodiplodia sp.; P1, Phytophthora capsica; S1, Sclerotinia sp.; F4, F. oxysporum; F6, F. oxysporum f sp. lycopersici; F7, 
Fusarium oxysporum; B1, Botrytis cinerea; Rh2, Lasiodiplodia theobromae; and A3, Aspergillus sp. In the assay, S. lydicus WYEC108 was included as 
control. The error bar represents one standard deviation. *Significant differences (P < 0.05)
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(AB184745.2), and S. platensis (AB163439.1). In addi-
tion, phylogenetic analysis showed that Streptomy-
ces sp. CACIS-2.15CA from a separate clade belongs 
to S. roseocinereus (AB184513.1), S. sioyaensis 
(NR_043498.1), and S. albus (AB184522) species 
(Fig. 2).

The phenotypic characterization of Streptomyces sp. 
CACIS-2.15CA on ISP2 culture media showed colo-
nies with dry and rough surfaces and a crusty appear-
ance. The 14th day vegetative mycelium developed 
white aerial hyphae and a gray spore mass. Branched 
and non-fragmented well-developed vegetative myce-
lia were observed; the color on the reverse side of the 
colony was brown. Regarding their microscopic mor-
phology, these mycelia showed abundant branched spi-
ral-type hyphae arranged in chains with 10–20 spores, 
oval to cylindrical in shape with a smooth surface 
(Fig. 3).

Additional morphological features on different cul-
ture media and sensitivity to antibiotics are shown in 
Additional file 1: Table S1. Furthermore, Streptomyces 
sp. CACIS-2.15CA grew in the presence of 62 com-
pounds as carbon sources (Additional file 1: Fig. S1).

Detection of SeM biosynthetic gene clusters 
in Streptomyces sp. CACIS‑2.15CA
The presence of biosynthetic gene clusters for PKS 
type I, PKS type II, and NRPS in the genome of Strep-
tomyces sp. CACIS-2.15CA was detected by PCR 
(Additional file  1: Fig. S2). The amplified DNA frag-
ments obtained by PKS type I and NRPS synthases 
were ~ 1400 and ~ 700 bp, respectively. No DNA ampli-
fication for PKS type II PKS was obtained using a spe-
cific pair of primers (KSα/KSβ).

Discussion
Studies assessing the ability of some actinomycetes 
to inhibit the growth of phytopathogenic fungi and 
oomycetes have been conducted worldwide. S. corcho-
rusii AUH-1 exhibited an antagonistic activity against 
Fusarium, Phytophthora, Rhizoctonia, Botryosphaeria, 
and Verticillium by SeM (Yang et  al. 2019). In addi-
tion, Streptomyces sp. CB-75 is another strain that 
inhibited the growth of 11 species of fungal pathogens, 
accounting for 73 to 81% (Chen et al. 2018). Streptomy-
ces rochei  MN700192 DG4 and Streptomyces griseus 
MT210913 DG5 have also shown a broad-spectrum 
antagonistic activity against phytopathogenic fungi that 
affect some vegetables and fruits at the postharvest stage 
(Ghanem et al. 2022). Therefore, in controlling the spread 
of F. oxysporum, the causal agent of gladiolus corm rot, 

Fig. 2  Phylogenetic relationship among Streptomyces sp. CACIS-2.15 CA isolate and other Streptomyces strains

Fig. 3  Scanning electron micrograph showing spore morphology of 
Streptomyces sp. CACIS-2.15CA
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a bioactive extract produced by a novel streptomycete 
and applied to infected gladiolus corms, controls’ fungal 
diseases and maintains corm hardness (Rios-Hernández 
et  al. 2021). Recently, the bioactive extract produced by 
Streptomyces sp. AGS-58 controls anthracnose-causing 
Colletotrichum siamense in postharvest mango fruits 
(Evangelista-Martínez et al. 2022).

SeM produced by Streptomyces is considered as the 
principal group of molecules that induce an antimicro-
bial effect against fungal phytopathogens. On the con-
trary, the PIs of the CACIS-2.15CA isolate were lower 
than those reported in other studies, which indicates 
the importance of in vitro antagonism assays. Moreover, 
the inhibitory effect mediated by SeM varies depend-
ing on the medium used to develop the assay (Santos 
et  al. 2020). The production of SeM by actinomycetes 
results from global changes in gene expression, which 
are induced by variations in the environment where they 
grow (van der Meij et al. 2017). Therefore, under in vitro 
culture conditions, the source of carbon, nitrogen, and 
phosphate, as well as temperature and pH, will either 
enhance or reduce the yield in the production of SeM 
(Souagui et al. 2019).

Phylogenetic analysis showed that Streptomyces sp. 
CACIS-2.15CA from a separate clade belongs to S. roseo-
cinereus, S. sioyaensis, and S. albus species. These species 
have shown bioactivity that improves the health and pro-
ductivity of field plants. The S. sioyaensis fermentation 
broth inhibited Valsa sordida by increasing the cell per-
meability and disrupting the metabolic pathways of the 
pathogen, which can be considered as potent BCAs for 
poplar tree canker (Li et al. 2020). Moreover, S. roseoci-
nereus showed a great application potential as a biofer-
tilizer, which increased plant growth, P uptake, and yield 
(Chouyia et  al. 2020). Furthermore, a novel isolate of 
Streptomyces albus S4, a symbiotic bacterium with leaf-
cutting ants, Acromyrmex octospinosus, produces the pol-
yene antifungal candicidin (Barke et al. 2010). Candicidin 
binds to ergosterol, which affects membrane permeabil-
ity and integrity and leads to a rapid efflux of K + ions, 
thereby causing fungal cell death. Notably, S. lydicus 
WYEC108 and S. platensis belong to this clade. The for-
mer is considered as a biocontrol fungal agent from the 
commercial biofungicide Actinovate®, whereas the latter 
can produce platensimycin or platencin, which is a class 
of broad-spectrum antibiotics against gram-positive bac-
teria (Smanski et al. 2009).

The biosynthesis of SeM with biological activity in 
Actinobacteria is associated with the presence of biosyn-
thetic gene clusters in their genome, most of which were 
synthesized for PKS type I and II and NRPS synthases 
(Dhakal et  al. 2019). In addition, the presence of these 
genes has been reported in various studies; for example, 

Ayuso-Sacido and Genilloud (2004) detected the pres-
ence of NRPS and PKS type I genes in 210 reference 
strains of actinomycetes, with a frequency of 79.5 and 
56.7%, respectively. The detection of gene clusters in the 
antagonist of plant fungal pathogens, Streptomyces sp. 
CACIS-1.15CA, was also reported (Evangelista-Martínez 
et  al. 2020). Therefore, the presence of NRPS and PKS 
I genes could play an important role in the antifungal 
activity of Streptomyces sp. CACIS-2.15CA.

Conclusion
The detection of PKS type I and NRPS gene clusters for 
SeM biosynthesis and the antagonism on fungal growth 
represent a natural alternative as a BCA to control fun-
gal pathogens, including species-causing plant diseases 
from the genus Colletotrichum, Lasiodiplodia, Fusarium, 
Phytophthora, and Botrytis. Therefore, Streptomyces sp. 
CACIS-2.15CA has a great application potential as a 
BCA.
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