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Volatile hydrocarbons from endophytic
fungi and their efficacy in fuel production
and disease control
B. Shankar Naik

Abstract

Endophytic fungi are the microorganisms which asymptomatically colonize internal tissues of plant roots and
shoots. Endophytes produce a broad spectrum of odorous compounds with different physicochemical and
biological properties that make them useful in both industry and agriculture. Many endophytic fungi are known to
produce a wide spectrum of volatile organic compounds with high densities, which include terpenes, flavonoids,
alkaloids, quinines, cyclohexanes, and hydrocarbons. Many of these compounds showed anti-microbial, anti-oxidant,
anti-neoplastic, anti-leishmanial and anti-proliferative activities, cytotoxicity, and fuel production. In this review, the
role of volatile compounds produced by fungal endophytes in fuel production and their potential application in
biological control is discussed.
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Background
Endophytic fungi are the microorganisms, which asymp-
tomatically colonize the internal tissues of plant roots and
shoots (Bacon and White 2000). Endophytes provide
beneficial effects on host plants in deterring pathogens,
herbivores, increased tolerance to stress drought, low soil
fertility, and enhancement of plant biomass (Redman et al.
2002; Rodrigues et al. 2008 and Ghimire et al. 2011).
Plants have many mechanisms to limit the growth of en-
dophytes by producing a variety of toxic metabolites, but
over a long period of co-evolution, the host-endophyte
may develop genetic systems, allowing for transfer of in-
formation themselves, and endophytes have gradually
formed a variety of tolerant mechanisms towards host me-
tabolites by producing exoenzymes, mycotoxins, enor-
mous secondary metabolites, and volatile compounds
(Tan and Zou 2001; Schulz et al. 2002; Shankar Naik et al.
2006; Newman and Cragg 2015 and Muller et al. 2013).
These secondary metabolites are related to terpenes, flavo-
noids, alkaloids, quinines, cyclohexanes, and hydrocar-
bons. Many of these shown anti-microbial, anti-oxidant,
anti-neoplastic, anti-leishmanial and anti-proliferative

activities, and cytotoxicity (Firakova et al. 2007; Korpi et
al. 2009; Kharwar et al. 2011; Zhao et al. 2016 and Wu et
al. 2016).
Volatile organic compounds (VOCs) are a large group

of carbon-based chemicals with low molecular weights
and high vapor pressure produced by living organisms as
part of their metabolic process (Bennett and Inamdar
2015). Several biodiesel hydrocarbons are terpenes, a
chemically diverse class of high-density compounds pro-
duced by plants, fungi, and bacteria. Due to their high en-
ergy densities, terpenes (e.g., pinene and bisabolene) are
actively being investigated as potential ‘drop-in’ biofuels
for replacing diesel and aviation fuel (Wu et al. 2016).
The composition of all biodiesel fuels is straight

chained hydrocarbons like hexane, heptanes, octane,
nonane, and decane along with many other compounds
including branched alkanes, cyclic alkanes, a plethora of
benzene derivatives, and poly aromatic hydrocarbons
(Campos et al. 2010 and Song et al. 2000). Several reviews
(Kramer and Abraham 2012 and Morath et al. 2012) have
reported on endophytic fungal VOCs and their potential
for biotechnological applications in biofuel production,
antibiotics against human pathogen, biosensors, flavor,
and fragrance additives in development of sustainable
agriculture (Wheatley 2002 and Zhi-Lin et al. 2012).
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The importance of fungal volatile compounds in fuel pro-
duction and their efficacy in biological control have been
emphasized with comprehensive chemical analyses (Dennis
and Webster 1971 and Stoppacher et al. 2010). Currently,
different methods are being used to assess VOCs from
fungi which include GC-MS (gas chromatography-mass
spectroscopy) (Matysik et al. 2009 and Wani et al. 2010),
solid-phase micro extraction (SPME) (Zhang and Li 2010),
headspace-SPME GC-MS (Stoppacher et al. 2010), selected
ion flow tube-mass spectrometry (SIFT-MS) (Senthilmohan
et al., 2001), the proton transfer reaction-mass spectrom-
etry (PTR-MS) (Ezra et al. 2004), and E-nose (Wilson and
Baietto 2009 and Booth et al. 2011) etc.

Volatile compounds with biofuel potential
Fungal endophytes produce a broad spectrum of volatile
compounds with different physicochemical and bio-
logical properties that make them useful in industry,
agriculture, and pharmacy (Yuan et al. 2012) (Table 1).
Volatile organic compounds with high energy densities
have potential energy applications, which have been de-
scribed as mycodiesel (Strobel 2014). Endophytic fungi
of several Ascomycota lineages (especially members of
Xylariaceae) are found to be capable of producing hy-
drocarbons (Strobel et al. 2001). The genus Muscodor
(e.g., M. albus) has evoked general interest among my-
cologists due to its obligate endophytism, comprehensive
spectrum of antimicrobial activity, and fuel production
(Strobel et al. 2001). Gliocladium roseum (NRRL 50072)
(now Ascocoryne sarcoides) (Griffin et al. 2010) is known
to produce a series of volatile hydrocarbons and hydro-
carbon derivatives (e.g., heptane, octane, benzene, and
some branched hydrocarbons) on both oatmeal and
cellulose-based agar medium (Strobel et al. 2008). An
endophytic fungus Hypoxylon sp. (CI-4A) was isolated as
its imperfect stage (Nodulisporium sp.) from Persea
indica (an evergreen tree native to the Canary Islands).
On cultivating this fungus on PDA plates, the volatiles
produced by this fungus were primarily consisted of
1,8-cineole and 1-methyl-1,4-cyclohexadiene and com-
pounds of high densities (Tomsheck et al. 2010).
Ahamed and Ahring (2011) reported production of hy-
drocarbons from Gliocladium culture directly from cel-
lulosic biomass. The GC–MS–SPME of head space
gases from Gliocladium cultures demonstrated the pro-
duction of C6–C19 hydrocarbons. Hydrocarbon produc-
tion was 100-fold higher in co-cultures of Gliocladium
and Escherichia coli than in pure cultures of Gliocla-
dium. An unusual Phomopsis sp. was isolated as endo-
phyte of Odontoglossum sp. (Orchidaceae) associated
with a cloud forest in Northern Ecuador. This fungus
produces a monoterpene known as sabinene isolated
only from higher plants earlier. In addition, some of the
other more abundant VHCs recorded by GC-MS in this

organism were 1-butanol, 3-methyl; benzene-ethanol;
1-propanol, 2-methyl and 2-propanone (Singh et al.
2011). Gianoulis et al. (2012) characterized A. sarcoides,
using transcriptomic and metabolic data, to establish a
hypothetical base for biofuel production pathways. Has-
san et al. (2012) selected endophytic Hypoxylon sp.
(strain CI-4) and exposed to the epigenetic modulators
suberoylanilide hydroxamic acid (SAHA, a histone dea-
cetylase) and 5-azacytidine (AZA, a DNA methyl trans-
ferase inhibitor). The GC–MS analyses of the VHCs
produced by the variants produced the terpenes includ-
ing several primary and secondary alkanes, alkenes, or-
ganic acids, and derivatives of benzene.
An endophytic Nodulisporium sp. has been isolated

from Myroxylon balsamum found in the upper Napo re-
gion of the Ecuadorian Amazon. This fungus produces
1,4-cyclohexadiene, 1-methyl-, 1–4 pentadiene and cy-
clohexene, 1-methyl-4-(1-methylethenyl)—along with
some alcohols and terpenoids of interest as potential
fuels under microaerophilic growth environments
(Mends et al. 2012). The fungus was scaled up in an aer-
ated large fermentation flask, and the VHCs trapped by
Carbotrap technology and analyzed by headspace SPME
and fiber-GC-MS. Under these conditions, Nodulispor-
ium sp. produced a series of alkyl alcohols, a few terpe-
noids, and some hydrocarbons (Mends et al. 2012).
Nodulisporium sp. (Hypoxylon sp.) was also isolated as
an endophyte of Thelypteris angustifolia (broadleaf leaf
maiden fern) in a rainforest region of Central America.
This fungus uniquely produces a series of ketones. The
most abundant identified compound was 1,8 cineole,
1-butanol, 2-methyl, and phenyl ethanol alcohol and
most importantly cyclohexane, propyl, which is a com-
mon ingredient of diesel fuel when cultured on PDA.
Furthermore, the volatiles of the isolate Nodulisporium
sp. were selectively active against a number of plant
pathogens including Daldina sp. and Hypoxylon spp. tel-
eomorphs (seems to produce its own unique set of
VOCs) (Hassan et al. 2013). Wu et al. (2016) character-
ized 26 terpene synthases (TPSs) derived from four
endophytic (Xylariaceous) fungi known to produce
mycodiesel hydrocarbons. Shaw et al. (2015) suggested
the evolutionary relationship of fungal terpene synthases
to those in plants and bacteria. Authors identified
1,8-cineole, a commercially important monoterpenes
from endophytic Hypoxylon sp.

Biological control potential of volatile compounds
Volatile compounds are typically lipophilic liquids with
high vapor pressures. These are lethal to a wide variety
of plant and human pathogenic fungi and bacteria and
are also effective against nematodes and certain insects
(Strobel 2006 and Grimme et al. 2007) (Table 1). Emis-
sion of volatiles by bacteria and fungi has been known
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and reviewed by many authors for a long time (Kai et al.
2009). Volatile production is species-specific and serve as
info chemicals for inter-and intra-organismic communica-
tion, cell-to-cell communication signals, a possible carbon
release valve, or growth-promoting or growth-inhibiting
agents (Kai et al. 2009). The inhibitory mode of action,
when it involves one plant pathogen among interacting or-
ganisms, will be of interest in biological control. Strobel et
al. (2001) reported that the volatiles produced by endo-
phytic fungus M. albus inhibited the germination of the
teliospores of Tilletia horrida, T. indica, and T. tritici
(pathogenic fungi cause the plant diseases rice kernel
smut, wheat kernel bunt and wheat common bunt, re-
spectively). The VOC molecules produced from M. albus
were 1-butanol, 3-methyl-acetate, esters, alcohols, acids,
lipids, and ketones. The most effective class of inhibitory
compounds tested against fungi was the esters, of which
1-butanol, 3-methyl-acetate was the most biologically ac-
tive, reducing growth of Cercospora beticola, Fusarium
solani, Pythium ultimum, Rhizoctonia solani, Sclerotinia
sclerotiorum, Tapesia yallundae, and Xylaria sp. (Strobel
et al. 2001). An endophytic isolate of Gliocladium sp. was
obtained from the Patagonian Eucryphiacean tree (Eu-
cryphia cordifolia), producing a mixture of volatile organic
compounds (VOCs) lethal to plant pathogenic fungi such
as Pythium ultimum and Verticillium dahliae. Some of
the volatile bioactive compounds exuded by Gliocladium
sp. (1-butanol, 3-methyl-, phenylethyl alcohol and acetic
acid, 2-phenylethyl ester, and various propanoic acid es-
ters) are also produced by Muscodor albus, a well-known
volatile antimicrobial producer (Stinson et al. 2003).
Soil fungistasis is a natural process in which fungal

propagules fail to survive under favorable temperature
and moisture content (Morath et al. 2012). Several
VOCs such as trimethyl amine, 3-methyl-2-pentanone,
dimethyl di sulphide-methyl pyrazine, 2,5-dimethyl-pyra-
zine, N-dimethyl octyl-amine and nonadecane (Xu et al.
2004 and Garbeva et al. 2011) inhibited three fungal spe-
cies Paecilomyces lilacinus, Pochonia chlamydospora,
and Clonostachys rosea in the soil suggesting that direct
competition is not needed for microbial interaction (Xu
et al. 2004).
Fungal pathogen Rhizoctonia solani, which causes

damping off of broccoli and Phytophthora casici, which
causes root rot of bell pepper, could not be able to sur-
vive in the soil consisting of M. albus (Mercier and
Manker 2005). In addition, fungal VOCs stimulate or
enhance soilborne biocontrol agents (Wheatley 2002).
The VOCs of Trichoderma atroviridae increase the ex-
pression of a primary biocontrol gene of Pseudomonas
flourescencs (Lutz et al. 2004). The VHCs of endophytic
fungi may also benefit the host plant by production of
additional line of defense against pathogens of their host
plants (Rubalcava et al. 2010). The fungi in genus

Muscodor produces VHCs that inhibit and kill various
plant pathogenic fungi and bacteria. The VHCs of M.
albus, M. yucatanensis, and M. fengyangensis inhibited
pathogenic species of bacteria fungi and oomycetes
(Strobel et al. 2001; Atmosukarto et al. 2005 andZhang
et al. 2010). The culture of M. crispans produces hydro-
carbons that inhibited Mycosphearella fijiensis (causes
black sigatoka disease in bananas) and Xanthomonas
axonopodis pv.citri (a bacterial pathogen of citrus)
(Mitchell et al. 2010). An endophytic Phoma sp. isolated
from Creosote bush (Larrea tridentata) emits volatile
compounds such as transcaryophyllene, a series of ses-
quiterpenoids, some alcohols, and naphthalene deriva-
tives, which inhibited or killed isolates belonged to
Cercospora, Ceratocystis, Sclerotinia, and Verticillium
(Strobel et al. 2011). The extracts of endophytic fungi
Colletotrichum truncatum isolated from oil seed crop
Jatropa curcas produce volatile compounds effective
against Fusarium sclerotiorum (Kumar and Kaushik
2013). Rubalcava et al. (2010) reported allelochemical ef-
fects of volatile hydrocarbons from tropical endophytic
fungi M. yucatanensis isolated from Bursera simaruba
growing in forests of Mexico. The VOCs were lethal to
Alternaria solani, Colletotrichum sp., Giugnardia mangi-
fera, Phomopsis sp., Phytophthora capsici, Phytophthora
parasitica, and Rhizoctonia sp. New fungitoxic sesquiter-
penoids, chokols A–G, have been isolated from Epichloe
typhina, an endophytic fungus of Phleum pratense, and
have been found to be toxic to the leaf spot disease
pathogen Cladosporium phlei (Koshino et al. 1989).
Other endophytic fungi isolated from plum (Prunus
domestica) leaves showed antagonistic activity against
Monilinia fructicola (Pimenta et al. 2012).
Post-harvest diseases often result in serious loss during

storage of fruits and vegetables. The application of mi-
crobial antagonists is generally considered as a safe and
eco-friendly alternative to control fruit spoilage (Jamali-
zadeh et al. 2011). Sulphur dioxide (SO2) and ozone (O3)
are often used as fumigants for control of post-harvest
decay (Gabler et al. 2010). SO2 and O3 have disadvan-
tages over the large-scale commercial use, and fruits are
more likely to be attacked by pathogens again after fumi-
gation (Gabler et al. 2006). The volatiles produced by
endophytic fungi can overcome these limitations and
represent an attractive and promising biofumigation op-
tion for organic food production (Zhi-Lin et al. 2012).
Microbial antagonists can effectively control fruit spoil-
age and minimizes the loss. Volatiles offer safe and ef-
fective strategy for controlling the post-harvest diseases.
The volatiles possess long distance mechanism of antag-
onistic action leading to direct penetration at spatial
scales (Fialho et al. 2011) without spraying or drenching
as application methods (Park et al. 2010). The volatiles
of M. Albus are useful for the control of post-harvest
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plant diseases which is popularly known as “mycofumi-
gation” (Stinson et al. 2003). Some endophytic fungal
volatiles effectively inhibit or kill the most common
postharvest fruit pathogens (Gabler et al. 2006; Lee et al.
2009 and Park et al. 2010), including species of Botrytis
cinerea (gray mold), Penicillium expansum (blue mold),
Sclerotinia sclerotiorum (white mold), and Monilinia
fructicola (brown rot) (Kanchiswamy et al. 2015). The
volatiles produced by endophytic fungi have been used
to replace methyl bromide (MeBr), a traditional soil fu-
migant that is now being banned in many parts of the
world because its involvement in depletion of ozone
layer. Both greenhouse and field trials showed that Mus-
codor spp. were effective in reducing soilborne disease
severity in many crops and vegetables, including Phy-
tophthora blight (Phytophthora capsici), common bunt
of wheat (Tilletia caries), damping-off (Rhizoctonia
solani), and root rot (Pythium ultimum) (Camp et al.
2008; Mercier and Jiménez 2009; Worapong and Strobel
2009; Goates and Mercier 2011). Additionally, the vola-
tiles of Oxyporus latemarginatus EF069, an endophyte
isolated from red pepper, inhibited the mycelial growth
of several plant pathogens, which are known to damage
post-harvest fruits (Lee et al. 2009). The volatiles of O.
latemarginatus EF069 reduced post-harvest decay of ap-
ples caused by B. cinerea and Rhizoctonia root rot of
moth orchid (Lee et al. 2009). Endophytic Nodulispor-
ium sp. CMU-UPE34 isolated from Lagerstromia lou-
doni is able to produce 31 different volatiles especially
eucalyptol. This fungus is able to inhibit or kill 12 differ-
ent plant pathogens including control of green mold
decay on Citrus limon caused by Penicillium digitatum,
blue mold decay of Citrus aurantifolia and Citrus reticu-
lata caused by P. expansum (Suwannarach et al. 2013).
Fungal volatiles could serve as signaling molecules (“info

chemicals” or “semio-chemicals”) as pheromones, allo-
mones, kairomones, food sources, and attract insects
(Rohlfs et al. 2005 and Mburu et al. 2011). Emission of
VHCs produced by Trametes gibbosa (wood-rotting white
rot fungus) serves as an attractant for fungus-eating bee-
tles (Coleoptera) (Kline et al. 2007 and Thakeow et al.
2008). The M. albus VHCs demonstrated nematostatic
and nematicidal properties. It has shown a great capacity
to control of the root-knot nematode Meloidogyne incog-
nita (Grimme and Zidack 2007). Riga et al. (2008) tested
the VHCs produced by the fungus M. albus and found in
vitro mortality of Paratrichodorus allius, Pratylenchus
penetrans, and Meloidogyne chitwoodi. The VHCs pro-
duced by M. albus were capable of inhibiting the develop-
ment of the pupal stage of P. operculella and cause
mortality in several growth stages of the codling moth
(Lepidoptera) (Lacey et al. 2009). Fumigation with VHCs
produced by M. albus for 3 days caused mortality of cod-
ling moth adults and neonate larvae, and it was reported

that VHCs, including nitrosoamides produced by Musco-
dor spp., were highly efficient at killing insects (Strobel
(2011); Schalchli et al. 2016). M. vitigenus produces naph-
thalene, an effective insect repellent (Daisy et al. 2002).
Liarzi et al. (2016) reported the biological activities of
VOCs produced from Daldinia cf. concentrica, an endo-
phytic fungi isolated from olive tree (Olea europaea L.)
grown in Israel. The GC–MS analysis of volatiles pro-
duced from this fungus led to identification of 27 VOCs.
The post-harvest experiments demonstrated that D. cf.
concentrica prevented development of molds on organic
dried fruits and also eliminated Aspergillus niger infection
in pea nuts (Liarzi et al. 2016).

VOCs in controlling human pathogens
Endophytes have recently attracted a great attention due
to their production of strong antimicrobial volatile com-
pounds. Muscodor species are known to produce five
classes of volatiles (acids, alcohols, esters, ketones, and
lipids). M. albus emitted a number of volatiles such as
tetrohydrofuran, aciphyllene, and an azulene derivative.
The volatiles produced by M. albus effectively inhibited
or killed a wide range of plant and human pathogenic
bacteria (Atmosukarto et al. 2005) and fungi such as As-
pergillus fumigates and Candida albicans (Strobel et al.
2001 and Schmidt et al. 2015). The VOCs of M. crispans
isolated from wild pineapple known to antagonistic
against several human pathogens including Yersinia pes-
tis, Mycobacterium tuberculosis, and Staphylococcus aur-
eus. (Mitchell et al. 2010). Another endophyte, M.
fengyangensis, has the ability to kill pathogenic E. coli
(Zhang et al. 2010 and Yuan et al. 2012). The majority
of fungal VOCs from endophytic fungi are used as con-
trolling fungal deterioration of crops, fruits, and vegeta-
bles under pre and post-harvest conditions. However,
presently, these volatiles are not being actively applied to
humans in controlling fungal infections (Deshmukh et
al., 2018).

Conclusions
Endophytic fungi represent a relatively untapped pool of
wide array of metabolites with potential applications.
Volatiles represent a new frontier in bioprospect ave-
nues. The study of these gas-phase compounds promises
the discovery of new products for human exploitation in
fuel production, biocontrol, plant growth, and biotech-
nology. Technological advances with respect to profiling
and analyzing VOCs; genome sequencing and functional
genomics tools; and way forward studying the molecular,
physiological, and cellular changes in plant and micro-
bial systems will open a new area of research on volatiles
of immense applications.
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