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Abstract 

Background  Breast cancer screening through mammography is crucial for early detection, yet the demand for mam-
mography services surpasses the capacity of radiologists. Artificial intelligence (AI) can assist in evaluating microcalcifi-
cations on mammography. We developed and tested an AI model for localizing and characterizing microcalcifications.

Methods  Three expert radiologists annotated a dataset of mammograms using histology-based ground truth. The 
dataset was partitioned for training, validation, and testing. Three neural networks (AlexNet, ResNet18, and ResNet34) 
were trained and evaluated using specific metrics including receiver operating characteristics area under the curve 
(AUC), sensitivity, and specificity. The reported metrics were computed on the test set (10% of the whole dataset).

Results  The dataset included 1,000 patients aged 21–73 years and 1,986 mammograms (180 density A, 220 density B, 
380 density C, and 220 density D), with 389 malignant and 611 benign groups of microcalcifications. AlexNet achieved 
the best performance with 0.98 sensitivity, 0.89 specificity of, and 0.98 AUC for microcalcifications detection and 0.85 
sensitivity, 0.89 specificity, and 0.94 AUC of for microcalcifications classification. For microcalcifications detection, 
ResNet18 and ResNet34 achieved 0.96 and 0.97 sensitivity, 0.91 and 0.90 specificity and 0.98 and 0.98 AUC, retrospec-
tively. For microcalcifications classification, ResNet18 and ResNet34 exhibited 0.75 and 0.84 sensitivity, 0.85 and 0.84 
specificity, and 0.88 and 0.92 AUC, respectively.

Conclusions  The developed AI models accurately detect and characterize microcalcifications on mammography.

Relevance statement  AI-based systems have the potential to assist radiologists in interpreting microcalcifications 
on mammograms. The study highlights the importance of developing reliable deep learning models possibly applied 
to breast cancer screening.

Key points   
• A novel AI tool was developed and tested to aid radiologists in the interpretation of mammography by accurately 
detecting and characterizing microcalcifications.

• Three neural networks (AlexNet, ResNet18, and ResNet34) were trained, validated, and tested using an annotated 
dataset of 1,000 patients and 1,986 mammograms.

• The AI tool demonstrated high accuracy in detecting/localizing and characterizing microcalcifications on mammog-
raphy, highlighting the potential of AI-based systems to assist radiologists in the interpretation of mammograms.
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Graphical Abstract

Background
Breast cancer is the most diagnosed cancer among 
women worldwide, and early detection is crucial for 
successful treatment and higher survival rate [1]. 
Although mammography remains the primary screen-
ing test that has demonstrated a reduction in breast 
cancer-related mortality, the utilization of mammog-
raphy has shortcomings that pose challenges to its 
effectiveness and efficiency [2–4]. The large amount of 
mammograms produced every year, coupled with scar-
city of trained radiologists capable of interpreting these 
exams, poses a risk the studies are reported poorly and 
with delays, losing the window of opportunity for opti-
mal clinical intervention [5]. An overloaded screening 
service could become inefficient, leading to additional 
economical costs and inequalities between low- and 
high-income countries [6].

The introduction of artificial intelligence (AI) in medi-
cal image analysis has brought forth a potential revolu-
tion in computer-based interpretation of mammography 
[4, 5, 7].

AI introduction implies technological, ethical, and 
legal considerations (especially around data privacy and 
AI influence on medical liability) and different patient’s 
perspectives on AI integration, ranging from cautious 
support to concerns about overreliance and potential loss 
of human interaction [7, 8]. However, it has the poten-
tial to revolutionize the field by addressing the limitations 
of mammography interpretation and improving breast 
cancer diagnosis. AI-based tools hold the potential to 
reduce the time invested by radiologists in scrutinizing 
mammography screening images, offering the capacity to 
identify and characterize abnormalities present on mam-
mograms. Radiologists could proceed faster through can-
cer-free cases and give more attention to the images with 
suspicious findings. Shifting time allocation and integrat-
ing AI for mammogram interpretation could enhance 
cost-effective accessibility to screening worldwide, par-
ticularly aiding low- and middle-income countries fac-
ing equipment costs and expertise limitations while also 
tackling radiologist shortages in high-income countries 
to ensure successful breast cancer screening [5, 9].
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Mammography provides a rich domain for scalable 
clinical AI application. Several studies are currently eval-
uating how and when AI will be successfully used in clini-
cal practice [10–14]. Particularly, AI systems may have 
clinical value for early detection and treatment of breast 
cancer—by filtering out cancer-free mammograms, 
resulting in lower recall rates and reducing the number 
of unnecessary biopsies [15–18]. This would free up time 
for managing suspected and proven cancers and optimize 
clinical interventions. Moreover, AI has the potential to 
surpass current techniques for the detection and clas-
sification of breast microcalcifications [19–22], namely 
tiny calcium deposits that can be an early sign of breast 
cancer. While mammography is the primary imaging 
tool for microcalcifications assessment, their detection 
and discrimination can be challenging and subjective for 
radiologists, leading to high interobserver variability [23]. 
Deep learning (DL) tools can alleviate some diagnostic 
challenges, improving breast cancer screening accuracy 
and reducing the need for unnecessary biopsies.

Therefore, the development of a standardized, 
observer-independent microcalcifications detection and 
categorization system is warranted. Once trained, the 
tool can then analyze new mammograms, accurately 
detect and classify microcalcifications, providing radi-
ologists with a second opinion to improve diagnostic 
accuracy.

In this context, our study aims to develop a deep DL-
based network, with the following aims:

•	 Task 1, to detect and localize suspicious microcalcifi-
cations in digital mammography

•	 Task 2, to accurately classify microcalcifications into 
benign or malignant categories

Methods
Ethics statement
The Institutional Review Board of the European Institute 
of Oncology (IEO) approved this study: protocol UID 
3052 and date of approval 7 October 2021.

Patient population and dataset
The dataset was collected at a single institution, which is 
an academic hospital and referral centre for breast can-
cer care. All patients had an interval of less than 1 month 
between vacuum-assisted breast biopsy and the diagnos-
tic mammography.

The patient selection criteria included individuals who 
had undergone and subsequently had diagnostic mam-
mography performed within an interval of less than 
1 month.

The dataset contained a total of 1,986 mammogra-
phy images from 1,000 patients with age 45 ± 10  years 

(mean ± standard deviation), ranging 21–73 years, includ-
ing 611 benign lesions and 389 histologically proven 
breast cancers. Accordingly, the pathological analysis 
through needle biopsy or surgery was the ground truth 
reference standard of the microcalcifications included in 
the region of interest (ROI). To be representative of the 
population that the model will be applied to, we selected 
heterogeneous data of patients including women with 
different breast densities — according to the American 
College of Radiology (ACR) classification [24] — medi-
cal histories, and demographics data, as reported in the 
“Results” section. To maintain data quality, we carefully 
excluded any poor-quality mammography images, such 
as those with low resolution.

Each mammography image in the dataset was meticu-
lously annotated by three expert radiologists from the 
breast imaging department of a national referral centre 
for breast cancer care [25]. These annotations served to 
localize the microcalcifications within the images and 
provide valuable information on their benign or malig-
nant characteristics.

Study design and workflow
The workflow of the study included the following five dif-
ferent phases, as shown in the flowchart (Fig. 1):

1.	 Data collection: Two radiologists retrospectively col-
lected cases from a pool of patients who meet the 
inclusion criteria, namely mammography exams 
performed at a single institute (European Institute 
of Oncology, Milan, Italy) containing microcalcifica-
tions for which the histology result was available.

2.	 Anonymization: The selected images, in DICOM for-
mat, were made completely anonymous during the 
extraction phase.

3.	 Annotation: Three expert radiologists annotated 
the selected cases. During the annotation phase, 
the radiologists used a special application made 
available by Laife Reply, namely the X-RAIS tag-
ging tool [26], which made it possible to correlate 
the location of suspicious microcalcifications for 
each image and the binary classification of benign/
malignant, as reported by the outcome of the his-
tological investigation. Figure  2 shows an example 
of annotation of suspicious microcalcifications by a 
radiologist.

4.	 Analysis of annotated data: Data scientists veri-
fied the consistency of the annotations made on the 
images for the purposes of DL algorithm training.

5.	 Networks training and evaluation: Using the anno-
tated data, the data scientists trained convolutional 
neural networks (CNNs) to analyze mammographic 
images towards the two aims of the study.
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Training set creation
The dataset contains 1,986 full-field digital mammo-
grams, with resolutions variable from 1,912 × 2,294 
to 4,700 × 5,800 and a depth of 12 bit. Since the anno-
tated images were too large to be used in their original 
size, a patch approach was used [22]. The rationale is 
to extract, from the original images, the portions con-
taining the areas noted by radiologists or tissue with-
out microcalcifications. Particularly, the criterion for 
extracting the annotated areas starts from the central 
point of a single annotation and defines a ROI of size 
112 × 112 pixels around it.

The ROI was then saved and considered from this 
moment on a patch of “microcalcifications” that, 
depending on the annotation, could be benign or malig-
nant. Supplementary Fig. S1 and Supplementary Fig. S2 
show an example of benign and malignant microcalcifi-
cations, respectively.

For the extraction of “non-microcalcifications” 
patches, the same images are reused, but a different 
extraction criterion was applied, aimed at obtaining a 
set composed only of tissue patches without microcal-
cifications. To guarantee the heterogeneity of the data-
set, the number of non-microcalcifications patches to 
be extracted is similar to the number of microcalcifica-
tions patches.

To extract non-microcalcifications patches, a point of 
the image is randomly chosen, and an area of interest of 
112 × 112 pixel is built around it. The patch’s inclusion is 
contingent upon satisfying two criteria: first, an average 
color intensity surpassing a  specified threshold (imple-
mented to prevent the extraction of patches unrelated to 
the tissue); second, avoidance of overlap with annotated 
regions.

At the end of the dataset creation procedure, we 
obtained the following: 24,237 patches with microcal-
cifications (12,637 benign and 11,600 malignant) and 
9,648 non-microcalcifications patches.

The dataset was partitioned by assigning 70% of the 
patches to the training set, 20% to the validation set, 
and 10% to the test set. Particularly, after splitting, we 
obtained the following:

•	 Task 1 (suspect microcalcifications versus non-
microcalcifications)

–	 Train split, 23,730 patches, 71% microcalcifica-
tions and 29% non-microcalcifications

–	 Validation split, 6,789 patches, 71% microcalcifica-
tions and 29% non-microcalcifications

–	 Test split, 3,393 patches, 71% microcalcifications 
and 29% non-microcalcifications

Fig. 1  Study flowchart illustrating the workflow of the study, highlighting the key steps involved in the analysis of mammographic images 
for microcalcifications classification. The study follows a 5-point framework, encompassing data collection, anonymization, annotation, analysis 
of annotated data, and network training and evaluation. The flowchart provides a visual representation of the interplay between these phases 
and the various patient subdivisions, including training, validation, and testing. Numbers of patches are indicated to convey the distribution 
of microcalcifications and their nature (benign/malignant)
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•	 Task 2 (benign versus malignant)

–	 Train split, 16,977 patches, 52% benign and 48% 
malignant

–	 Validation split, 4,859 patches, 53% benign and 47% 
malignant

–	 Test split: 24,26 patches, 54% benign and 46% 
malignant

Notably, the extracted patches were carefully allocated 
to different subsets during the training process, thereby 
mitigating the potential issue of reusing the same image 
portions for both training and validation/testing phases. 
To accomplish this, a methodical approach to group-
ing was adopted, specifically designed to safeguard 
against the separation of patches originating from the 
same image and images derived from the same patient 

Fig. 2  Example of annotations of suspicious microcalcifications in craniocaudal (a) and medio-lateral (b) mammograms performed by radiologists 
using a special application for tagging (X-RAIS, see the “Methods”)
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(attributable to the inclusion of dual views per patient) 
into different subsets. This division of patches aimed to 
eliminate any possibility of artificially inflated perfor-
mance by guaranteeing that no identical image regions 
were utilized across training, validation, and testing sets.

Model selection
After a review of the state of the art [19, 22, 23, 27–29], 
we have selected a small set of networks, namely three 
CNNs, to be used for their training. In particular, the 
three networks chosen were the following: AlexNet, 
ResNet18, and ResNet34. Using these networks, we 
evaluated whether increasing the complexity of the net-
works corresponded to better performance. For each of 
the above-mentioned neural networks, it was necessary 
to make a variation of the last level, to have only two exit 
nodes, necessary to carry out a binary classification task.

Model training
As reported before, the two tasks of this study are as 
follows:

•	 Task 1, classification of patches containing microcal-
cifications or not containing microcalcifications

•	 Task 2, classification of benign versus malignant 
microcalcifications patches

The training data used in Task 2 is therefore limited to 
microcalcifications patches only, while training data used 
in Task 1 includes also non-microcalcifications patches. 
Accordingly, the localization of microcalcifications was 
performed through a classification network, whose input 
is patches extracted from the original image following 
a sliding window approach. Finally, the dataset under-
went pre-processing operations (blur, normalization, and 
resize) which allowed obtaining better results.

Hyperparameter tuning was performed on each neu-
ral network, alongside with early stopping to avoid 
overfitting. Particularly, following rigorous evaluation, 
all proposed models were trained from the ground up, 
employing a cross-entropy loss function, the Adam opti-
mizer, a batch size of 16, and a learning rate of 0.0001.

Predictions interpretability
To evaluate the interpretability, we performed a visual 
assessment of the heatmaps generated from the indi-
vidual patches. The generation of heatmaps in this study 
involved a multistep process. Initially, the entire mam-
mogram was partitioned into nonoverlapping patches 
using a sliding window technique. Each patch was then 
individually processed through the trained model, which 

assigned a probability value representing the likelihood of 
that patch containing microcalcifications. Subsequently, 
a grid was constructed, where each cell of the grid cor-
responded to a specific patch and contained the probabil-
ity associated with the presence of microcalcifications. 
By the end of the processing, this grid served as a mask, 
which was superimposed on the mammogram to create 
a heatmap. The heatmap visually represented the regions 
with the highest probabilities, indicated as hot patches, 
suggesting the areas that are most likely to contain 
microcalcifications. This technique provided a valuable 
tool for enhancing the interpretability and localization of 
microcalcifications within the mammogram, facilitating 
the identification and analysis of potential breast abnor-
malities. Figure 3 shows an example of a heatmap gener-
ated by model predictions, compared with annotations 
by radiologists: this information can help us understand 
the features or patterns that the CNN is utilizing to make 
its predictions.

Model evaluation and statistical analysis
We evaluated the diagnostic performances of DL-based 
networks using various metrics, including positive pre-
dictive value (PPV), negative predictive value (NPV), sen-
sitivity, specificity, diagnostic accuracy, and area under 
the curve at receiver operating characteristics (AUC). 
Descriptive statistics were computed to summarize the 
age distribution of the patient population.

Model metrics are reported with 95% confidence inter-
vals (CIs) computed using the following formula:

where x is the metric and n is the size of the test set and 
then rounded.

We assessed the normality assumption of the age vari-
able using the Shapiro–Wilk test. Calculations were per-
formed using a specifically created Python script.

Results
The dataset contained a total of 1,986 mammogra-
phy images from 1,000 patients with age 45 ± 10  years 
(mean ± standard deviation), ranging 21–73  years. 
Mammographic breast parenchymal density was cat-
egorized as almost entirely fat (ACR category A) in 180 
(18%), scattered fibroglandular tissue (ACR category B) 
in 220 (22%), heterogeneously dense (ACR category C) 
in 380 (38%), and extremely dense (ACR category D) in 
220 (22%) patients. Patient’s medical histories also vary, 
with 350 (35%) patients having a family history of breast 

x − 1.96×
x × (1− x)

n
, x + 1.96×

x × (1− x)

n
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cancer, 110 (11%) patients with previous personal history 
of breast cancer, 120 (12%) patients had previous breast 
biopsies, and 75 (7.5%) had previous radiation therapy for 
breast cancer Table 1.

Table  2 shows the performance results of all three 
networks at the end of the experimental study, with 
accuracy and AUC being the most relevant metrics. For 
Task 1, AlexNet showed the best performance, with an 

accuracy on the test set of 0.95 (95% CI 0.94–0.96), and 
an AUC on the test set of 0.98, reaching higher values 
than for Task 2. The AlexNet network was also the best 
in terms of sensitivity 0.98 (95% CI 0.98−0.98) and NPV 
0.94 (95% CI 0.93–0.95), while the ResNet18 model 
showed the best results in terms of specificity 0.91 (95% 
CI 0.90–0.92) and PPV 0.96 (95% CI 0.95–0.97). For 
Task 2, the network that obtained the best results was 

Fig. 3  Example of heatmaps generated by Task 1 AlexNet predictions (a, c), compared with radiologists’ annotations (b, d). Colour changes based 
on the probability of the predictions. The colour scale visually represents the probability of microcalcifications in the area; it ranges from blue to red, 
which are 0% and 100%, respectively
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again the AlexNet, with an accuracy on the test set of 
0.87 (95% CI 0.86–0.88), and an AUC on the test set of 
0.94. Sensitivity was 0.85 (95% CI 0.84–0.86), specific-
ity was 0.89 (95% CI 0.88–0.90), PPV was 0.87 (95% CI 
0.86–0.88), and NPV was 0.88 (95% CI 0.87–0.89). The 
results are reported at the patch level, meaning that the 
accuracy of 0.87 represents the performance of the net-
work in correctly classifying individual patches within 
the test set.

Figure  4 shows examples of microcalcifications that 
were incorrectly classified as either benign or malignant 
by the tested neural networks. This figure aims to visually 
demonstrate instances of misclassifications encountered 
by the CNNs, which are reflective of errors that expert 
human radiologists may also encounter during their 
clinical practice. These examples serve to emphasize the 
challenges faced by both automated systems and human 
observers when classifying microcalcifications accurately.

In addition, Fig. 5 shows areas with and without micro-
calcifications that were incorrectly classified by the tested 
neural networks. This figure further highlights the com-
plexity of the task and the potential difficulties faced in 
distinguishing between regions with and without micro-
calcifications. As part of future studies, the incorporation 
of supplementary data could potentially aid in mitigating 
such instances of misclassification.

Discussion
In this study, we evaluated the performance of CCNs 
in a dataset that included 1,986 mammography images 
from 1,000 patients, reflecting diverse demographics. 
The CCNs results showed AlexNet excelled in detect-
ing and localizing microcalcifications for accuracy, AUC, 
sensitivity, and NPV, while ResNet18 performed best in 
specificity and PPV. In the characterization of microc-
alcifications, AlexNet again led in accuracy and AUC. 
These findings indicate that AI models can be trained to 
successfully diagnose malignant microcalcifications and 
identify mammograms devoid of microcalcifications.

Radiologists are already familiar with computer-aided 
detection systems, which were first introduced in the 
1960s for mammography [30]. However, advances in 
algorithm development, combined with the ease of access 
to computational resources, allow AI to be applied in 
radiological decision-making at a higher functional level, 
achieving a sensitivity from 0.56 to 0.82 with a specific-
ity of 0.84–0.97 [31, 32], comparable with breast cancer 
detection accuracy of radiologists [33].

In mammography, DL models can be trained on a large 
dataset of images, including those with microcalcifica-
tions, to learn patterns and features that are characteristic 
of benign and malignant microcalcifications. However, 
there is a lack of standardized approaches for data collec-
tion, annotation, and evaluation. This hinders the com-
parability of results from different studies and makes it 
challenging to establish a consensus on best practices. 
Our study contributes by following a well-defined work-
flow for data collection, annotation, and evaluation, 
ensuring robustness and reproducibility of the results. It 
was conducted in a cancer referral centre by radiologists 

Table 1  Number of mammograms with malignant and benign 
breast findings

Histopathology result Number

Malignant

  Invasive ductal carcinoma 132

  Invasive lobular carcinoma 111

  Triple-negative breast cancer 9

  Inflammatory breast cancer 17

  Ductal carcinoma in situ 120

  Total 389

Benign

  Fibrocystic mastopathy 310

  Granulomatous inflammation 8

  Postsurgical scar 8

  Fat necrosis 18

  Fibroadenoma 7

  Diffuse cellular stroma 88

  Ductal papilloma 21

  Ductal cell hyperplasia 92

  Sclerosing adenosis 59

  Total 611

Table 2  Final results of deep learning networks performance

95% confidence intervals in parentheses. Best performance in bold. AUC​ Area under the curve, NPV Negative predictive value, PPV Positive predictive value

Task Network AUC​ Accuracy Sensitivity Specificity PPV NPV

1 AlexNet 0.98 0.95 (0.94−0.96) 0.98 (0.98−0.98) 0.89 (90.88−0.90) 0.96 (0.95−0.97) 0.94 (0.93−0.95)
ResNet18 0.98 0.95 (0.94−0.96) 0.96 (0.95−0.97) 0.91 (0.90−0.92) 0.96 (0.95−0.97) 0.91 (0.90−0.92)

ResNet34 0.98 0.95 (0.94−0.96) 0.97 (0.96−0.98) 0.9 (0.89−0.91) 0.96 (0.95−0.97) 0.91 (0.90−0.92)

2 AlexNet 0.94 0.87 (0.86−0.88) 0.85 (0.84−0.86) 0.89 (0.88−0.90) 0.87 (0.86−0.88) 0.88 (0.87−0.89)
ResNet18 0.88 0.80 (0.78−0.82) 0.75 (0.73−0.77) 0.85 (0.84−0.86) 0.80 (0.78−0.82) 0.80 (0.78−0.82)

ResNet34 0.92 0.84 (0.83−0.85) 0.84 (0.83−0.85) 0.84 (0.83−0.85) 0.81 (0.79−0.83) 0.87 (0.86−0.88)
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with high experience in breast cancer indeed, which 
ensures that the tool was developed in a context of expert 
knowledge and clinical expertise. This also increases the 
likelihood that the tool will be applicable and relevant to 
real-world clinical practice. While AI models have shown 
promising results in research settings, their integration 
into real-world clinical practice poses practical chal-
lenges indeed. Implementing AI tools effectively requires 
seamless integration with existing clinical workflows and 
regulatory approval, as well as demonstrating their clini-
cal utility.

One of the major challenges with AI models in mam-
mography is the lack of interpretability and transpar-
ency in their decision-making process as CNNs often 

act as a “black box”, making it difficult to understand 
the features or patterns they use to arrive at a diagnosis 
[7]. Our study addresses this challenge by incorporat-
ing heatmap visualization to provide interpretability 
and transparency to the CNN’s decision-making pro-
cess, enabling radiologists to understand the regions 
of interest considered by the AI for classification. As 
shown in Fig.  3, we use the heatmap to provide inter-
pretability and transparency to CNN’s decision-mak-
ing process. By analysing the heatmap, we can identify 
the specific regions of interest that the CNN consid-
ers when classifying microcalcifications as benign or 
malignant. This information can help us understand the 
features or patterns that CNN is utilizing to make its 

Fig. 4  Examples of benign microcalcifications (a–e) incorrectly classified cases as malignant and malignant microcalcifications (f–l) incorrectly 
classified as benign

Fig. 5  Examples of areas with microcalcifications (a–e) incorrectly classified cases as areas without microcalcifications and areas 
without microcalcifications (f–l) incorrectly classified as areas with microcalcifications
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predictions. Furthermore, by examining the heatmap of 
misclassified cases (Figs. 4 and 5), we can gain insights 
into the potential limitations and challenges faced by 
CNN: analysing the heatmap can reveal whether the 
misclassifications occurred due to the presence of sub-
tle or atypical features, the difficulty in distinguishing 
certain patterns, or any other factors that may contrib-
ute to classification errors indeed. This analysis can 
shed light on the areas where CNN may require further 
improvements or additional training data to enhance 
its performance.

Moreover, we tested the DL networks in a heterogene-
ous database of population, which increases the general-
izability of the results. By including a diverse population, 
the tool’s ability to detect and classify microcalcifications 
in a wide range of breast tissue types and patient demo-
graphics can be evaluated, providing a more comprehen-
sive assessment of its effectiveness.

Regarding the results of our study, high sensitivity and 
specificity were observed for Task 1 and Task 2, confirm-
ing that the proposed CNNs correctly detect and classify 
microcalcifications, without showing imbalances towards 
one of the two tasks. Among the three different networks, 
AlexNet obtained the best results for Task 1 and Task 2 
(see Table 2). Specifically, results of Task 2 demonstrate 
a high capacity of the model to discriminate between the 
benign and malignant microcalcifications. Furthermore, 
the results of the ResNet18 and ResNet34 networks show 
that increasing the complexity of the network does not 
correlate with an increase in performance in terms of 
accuracy and AUC.

Once our results will be confirmed in a prospective 
validation study, the proposed DL-based tool could sig-
nificantly reduce the time and variability associated with 
manual detection and discrimination of microcalcifica-
tions, leading to earlier diagnosis and treatment. It can 
also reduce the need for additional diagnostic tests, such 
as biopsy or second-level examinations like breast MRI 
or contrast-enhanced mammography, therefore limiting 
patient discomfort and cost.

So far, few studies [20, 22, 23] found that AI could 
help to characterize breast microcalcifications, and the 
novelty of our study lies in the integration of CNNs to 
address the challenges in not only microcalcifications 
classification but also their localization. By achieving 
these aims, our study seeks to contribute to the field by 
providing a standardized and reliable method for the 
observer-independent detection and categorization of 
microcalcifications. While studies have already demon-
strated AI promises, more real-world evaluations and 
studies are crucial to fully understand its impact. Par-
ticularly, many AI models in mammography are trained 
and evaluated on relatively small datasets that might 

lack diversity in terms of patient demographics, breast 
tissue types, and medical histories [34]. As a result, the 
models may not generalize well to different populations 
and may exhibit bias. Our study takes a step towards 
addressing this issue by including a large and heteroge-
neous dataset representing a diverse patient population, 
which increases the generalizability of the AI tool.

Making a specific comparison of the results of our study 
with the state of the art is not feasible, since the dataset 
used is not public (just as the datasets used in other stud-
ies are often not public) and tasks do not always coincide. 
However, a few similar studies are reported which allow 
for a comparison with our results. Cai et al. [22] used a 
set of 3,564 ROIs extracted from 990 source images with 
1,912 × 2,294 pixel size, and their results show the ability 
of the networks to distinguish patches of different types 
with 0.88 AUC, 0.93 sensitivity 0.88, and specificity 0.86. 
Accordingly, the results obtained, although with a differ-
ent dataset, were consistent with the Task 2 of our study. 
Concerning Task 1, studies by Valvano et  al. [28] and 
Alam et  al. [29] showed similar performances, confirm-
ing the potential of using AI networks to localize areas 
containing microcalcifications on mammography.

Our DL-based tool has some limitations, especially for 
implementing it in clinical practice.

The first limitation is the limited size of the data. 
This study shows preliminary data, and the number of 
mammographic images analyzed is constantly increas-
ing to better train AI networks. In the next phase, the 
amount of data for training, as well as for testing, will be 
expanded to achieve a higher accuracy. The retrospec-
tive testing on internal or external datasets was essential 
for assessing our new AI tool for clinical imaging [35]. It 
is paramount to distinguish between testing that is con-
ducted internally by the AI developers and externally by 
an independent institution. Accordingly, our experience 
is important as it combines external technological con-
sultancy with an internal and independent database and 
data analysis.

In the next steps, external testing will limit bias and 
will also allow for the comparison of multiple algo-
rithms with similar applications [32]. There is a danger 
of innate latent bias built into certain systems, espe-
cially if these have been developed on datasets that 
underrepresent certain populations (i.e., with a lack of 
diversity of age or of breast density) and therefore lack 
the ability to generalize [32]. Accordingly, we selected 
the sample to be representative of the population that 
the model will be applied to, including patients with dif-
ferent demographics, breast densities, and medical his-
tories. Moreover, as the quality of the data used to train 
the model is essential for the accuracy of the model, 
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we provided high-quality annotation of data by expert 
breast radiologists, and we excluded poor quality data, 
such as low-resolution mammography to be sure that 
the quality is adequate. On the other hand, such high-
quality data may not reflect the real clinical practice. 
Overall, our data was heterogeneous and representative 
of the population, structured, annotated, and ready to 
use, which is something limited, currently existing in 
only a small number of institutions [35].

Another limitation for implementation in clinical 
practice is that our AI networks are focused on microc-
alcifications only, while in clinical practice, when read-
ing mammography, the radiologist considers different 
aspects in addition to microcalcifications, like radiopaci-
ties and architectural distortions. Moreover, radiologists 
rely heavily on the comparison against the contralateral 
and the prior breast image during their exam interpreta-
tion, while current AI networks are not capable of com-
paring images across time [23]. Additionally, to make the 
proposed DL-based tool complete for the current state 
of the art of mammography, the application of such tool 
also in tomosynthesis, and not only in 2D mammograms, 
is demanded.

Finally, we recognize that a more in-depth analysis of 
misclassified clusters could provide deeper insights into 
the model’s weaknesses and potential areas for improve-
ment. The exploration of misclassified areas, as shown 
in Fig. 5, highlights the intricate nature of distinguishing 
between regions with and without microcalcifications. 
Incorporating additional data in future studies could 
offer an avenue to address and mitigate these misclassi-
fications, enhancing the overall robustness of our model’s 
performance.

Despite such limitations, our study contributes to the 
field of breast cancer diagnosis by evaluating the perfor-
mance of AI-based neural networks in accurately detect-
ing, localizing, and characterizing microcalcifications on 
mammography. While there have been previous studies on 
computer-aided detection systems in mammography [22, 
28, 29, 32], our research stands out in several key aspects.

Firstly, we employed advanced DL models, specifi-
cally AlexNet, ResNet 18, and ResNet34, which have 
demonstrated excellent performance in various com-
puter vision tasks. These models were trained on a large 
dataset of mammography images with microcalcifica-
tions, to capture the patterns and features indicative of 
both benign and malignant microcalcifications. By uti-
lizing these state-of-the-art DL models, our study rep-
resents a significant advancement in the application of 
AI for breast cancer diagnosis. Secondly, we conducted 
our study in a real-world clinical setting, involving 
experienced radiologists with high expertise in breast 

cancer [25]. This ensures that the AI tool was devel-
oped with expert knowledge and clinical relevance, 
increasing the likelihood of its applicability in clinical 
practice. The inclusion of a diverse population in our 
dataset further enhances the generalizability of our 
results, allowing for evaluation across various breast 
tissue types and patient demographics. While our focus 
in this study was on microcalcifications, we acknowl-
edge the importance of considering other aspects such 
as masses and architectural distortions, as well as the 
ability to compare images across time. This recogni-
tion highlights the future direction of our research, as 
we strive to develop comprehensive DL models that 
encompass these additional aspects for a more holistic 
breast cancer diagnosis.

In conclusion, the current study demonstrates the 
potential of a DL-based tool to automate detection and 
discrimination of breast microcalcifications on mam-
mography. The tool achieved high levels of accuracy, 
sensitivity, and specificity, indicating its potential for 
clinical use. Once validated, the proposed tool can sig-
nificantly reduce the time and variability associated 
with traditional detection and discrimination of microc-
alcifications, leading to earlier diagnosis and treatment. 
Finally, this study holds significant implications for 
improving breast cancer diagnosis and has the potential 
to enhance the accuracy and efficiency of screening pro-
grams, ultimately leading to better patient outcomes. 
However, further development is required, and addi-
tional research is needed to validate the proposed tool 
on larger datasets and to evaluate its clinical utility.
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