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Abstract 

Background  We evaluated the feasibility of a chick chorioallantoic membrane (CAM) tumor model for preclinical 
research on tumor radiofrequency ablation (RFA).

Methods  Fertilized chicken eggs were incubated and divided into five cohorts: RFA for 30 s (n = 5), RFA for 60 s (n = 5),  
RFA for 120 s (n = 4), sham (n = 8), and controls (n = 6). Xenografting using pancreatic neuroendocrine tumor cells of 
the BON-1 cell line was performed on embryonic day (ED) 8. The RFA was performed on ED 12. Survival, stereomicro-
scopic observations, and histological observations using hematoxylin–eosin (H&E) and Ki67 staining were evaluated.

Results  The survival rates in the 30-s, 60-s, and 120-s, sham and control cohort were 60%, 60%, 0%, 100%, and 50%, 
respectively. Signs of bleeding and heat damage were common findings in the evaluation of stereomicroscopic 
observations. Histological examination could be performed in all but one embryo. Heat damage, bleeding, throm-
bosis, and leukocyte infiltration and hyperemia were regular findings in H&E-stained cuts. A complete absence 
of Ki67 staining was recorded in 33.3% and 50% of embryos in the 30-s and 60-s cohorts that survived until ED 14, 
respectively.

Conclusions  The CAM model is a feasible and suiting research model for tumor RFA with many advantages 
over other animal models. It offers the opportunity to conduct in vivo research under standardized conditions. Further 
studies are needed to optimize this model for tumor ablations in order to explore promising but unrefined strategies 
like the combination of RFA and immunotherapy.

Relevance statement  The chick chorioallantoic membrane model allows in vivo research on tumor radiofre-
quency ablation under standardized conditions that may enable enhanced understanding on combined therapies 
while ensuring animal welfare in concordance with the “Three Rs.”

Key points   
• The chorioallantoic membrane model is feasible and suiting for tumor radiofrequency ablation.

• Radiofrequency ablation regularly achieved reduction but not eradication of Ki67 staining.

• Histological evaluation showed findings comparable to changes in humans after RFA.

• The chorioallantoic membrane model can enable studies on combined therapies after optimization.
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Background
Thermoablative therapy methods like radiofrequency 
ablation (RFA) are known to be safe and effective alter-
natives to surgical therapy in different tumor entities, 
such as hepatocellular carcinoma [1, 2] and renal cell 
carcinoma [3] where thermoablative therapies are 
commonly used. Furthermore, RFA is also proven to 
be clinically effective in combination with transarterial 
(chemo)embolization in the therapy of human hepato-
cellular carcinoma and renal cell carcinoma [4, 5]. An 
important advantage of thermoablative methods over 
surgery is a lower risk for procedure-associated com-
plications due to their minimal-invasive character and 
the possibility to perform these procedures under local 
anesthesia [6]. Therefore, minimal-invasive treatment 
options like RFA are already increasingly used in clini-
cal practice as suiting alternatives for patients with 
increased surgical risk. Preclinical research on ablative 
strategies is especially important to explore promising 

but unrefined strategies like the combination of RFA 
and immunotherapy. But first, there is a need for a 
suitable and feasible preclinical research model for 
tumor RFA.

A preclinical research model for tumor ablations 
should enable repeated procedures under standardized 
conditions. Furthermore, the research model should be 
in line with the Three Rs of “The Principles of Humane 
Experimental Technique” — replacement, reduction, and 
refinement — to ensure animal welfare [7]. Commonly 
used animal models for RFA are murine and porcine 
models [8–10]. Problems with these models are that they 
are models of generally sentient animals, not always easily 
reproducible and/or cost-effective.

The chorioallantoic membrane (CAM) model is 
a non-sentient animal model that uses the CAM of 
the chick, which is created by the fusion of mesoder-
mal layers of allantois and chorion [11, 12]. The CAM 
model is already established as a well-suited preclinical 
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research model for a multitude of studies including 
oncologic and pharmacologic research [11, 13–16]. 
The innate and adaptive immunity of the chick are not 
fully developed until embryonic day (ED) 16 and ED 
18, respectively [13, 17]. This lack of immunity in the 
first EDs allows xenografting of cells of different origins 
such as human cancer cells [18, 19]. Therefore, it pro-
vides a platform for the preclinical evaluation of different 
therapeutic strategies.

The aim of this study is to establish the CAM model as 
a feasible model for preclinical research on thermoabla-
tive tumor therapies like RFA.

Methods
All experimentations performed on CAM model in this 
prospective study were in accordance with the EU direc-
tive 2010/63/EU for animal experiments and therefore 
did not require approval by an ethics committee [20].

Cultivation and preparation for xenografting
After delivery, fertilized chicken eggs (Brormann GmbH 
& Co. KG, Rheda-Wiedenbrück, Germany) were allowed 
to stay at room temperature for temperature equilibrium 
at least for 2 h. Subsequently, they were cleaned with 70% 
(v/v) ethanol and incubated at 37.8 °C and 60−70% relative 

Fig. 1  Overview of methods. Parts of the figure were drawn using pictures from Servier Medical Art (smart.servier.com), provided by Servier, 
licensed under a Creative Commons Attribution 3.0 Unported License (https://​creat​iveco​mmons.​org/​licen​ses/​by/3.​0/). ED Embryonic day, RFA 
Radiofrequency ablation

https://creativecommons.org/licenses/by/3.0/
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humidity in a hatching incubator (Brutmaschine Easy 150,  
J. Hemel Brutgeräte GmbH, Verl, Germany). On ED 3, the eggs  
were taken out of the incubator and cleaned again with 70%  
ethanol. The egg shell was cracked at the broad pole using 
a manual egg opener. The cracked egg shell as well as the 
adjacent membrane was carefully removed with the help of  
forceps. A round window with a diameter of approximately  
3 cm was thus created. Viable embryos were identified by 
clear blood vessels and a beating heart [21]. The window was 
covered with a sterile petri dish, and the eggs were returned  
into the incubator where they were further incubated on a 
frame which kept them in upright position until further use 
[14]. An overview over the methods is presented in Fig. 1.

Xenografting
Xenografting was performed on ED 8, after the CAM was 
gently injured using an aseptic lens tissue as previously 
described [22]. A silicon ring was placed directly on the 
injured area. The cell line used for xenografting was the 
BON-1 (CVCL_3985) cell line which was derived from a 
lymph node metastasis of a serotonin-producing neuroen-
docrine tumor of pancreas [23]. A suspension of BON-1 
cells (0.6–0.8 × 106 in 20-µL medium) was mixed with 20 
μL of Matrigel (Corning Life Sciences, Amsterdam, the 
Netherlands). The mix of Matrigel and cell suspension was 
implanted into the silicone ring. The round window was 
covered again with a petri dish. The egg was placed back 
into the incubator. The vitality of the embryos was examined 
daily, and tumor growth was observed via stereomicroscopy.

Radiofrequency ablation
On ED 12 (4  days after tumor engraftment), radiofre-
quency ablation was performed with a CELON Power 
System (Olympus, Hamburg, Germany). ED 12 was cho-
sen as the day of ablation as it enables both sufficient 
time for tumor growth and follow-up. A bipolar needle 

electrode (CELON ProSurge micro, Olympus, Hamburg, 
Germany) was inserted outside the silicone ring, and the 
electrode tip was positioned under the center of the sili-
cone ring. The eggs were divided into five cohorts: abla-
tion for 30 s with 4 W (n = 5), ablation for 60 s with 4 W 
(n = 5), ablation for 120 s with 4 W (n = 4), a sham cohort 
without therapy (n = 8), and a control cohort without 
xenografting prior to RFA (total: n = 6; 30  s with 4 W: 
n = 2; 60 s with 4 W: n = 2; 120 s with 4 W: n = 2).

Evaluation of the outcomes
Survival of the embryos after RFA as well as stereomicro-
scopic changes were observed directly after RFA, 2 h after 
RFA, 15 h after RFA, and 40 h after RFA. On ED 14 (2 days 
after RFA), the CAM tumors were harvested, fixated in 
phosphate-buffered 4% paraformaldehyde, and embedded 
in paraffin. Serial 3-μm paraffin sections were processed 
and routinely stained with hematoxylin–eosin (H&E). 
Immunohistochemistry (IHC) staining was performed 
with monoclonal mouse antihuman Ki67 antibodies (Dako, 
Ki67, Clone MIB-1) to mark proliferating cells [16, 24]. 
Since the antibody does not recognize chicken Ki67, com-
plete ablation was assumed when there was an absence of 
Ki67 staining in the CAM of embryos that survived until 
ED 14. Stereomicroscopic changes and immunohistochem-
istry were evaluated by observation with a Leica EZ4 HD 
stereomicroscope (Leica, Wetzlar, Germany) and a Leica 
DM1000 LED microscope (Leica, Wetzlar, Germany), 
respectively. Effectiveness of ablation, survival, and stereomi-
croscopic changes were exploratively analyzed.

Results
Effectiveness of ablation
The completeness in the 30-s cohort and 60-s cohort 
was 33.3% and 50%, respectively. There were more 

Table 1  Summary of outcomes

The completeness is not evaluable in the 120-s sham and control cohort because no embryo survived in the 120-s cohort, no radiofrequency ablation was performed 
in the sham cohort, and no xenografting was done in the control cohort

Cohort Completeness (based on Ki67 staining) Survival (time of death) Stereomicroscopic observation 
directly after radiofrequency 
ablation

30 s, 4 W
(n = 5)

33.3% 60% (2 h, 15 h) Signs of bleeding (100%)
Signs of heat damage (100%)

60 s, 4 W
(n = 5)

50% 60% (2 h, 15 h) Signs of bleeding (80%)
Signs of heat damage (100%)

120 s, 4 W
(n = 4)

Not applicable (no survival) 0% (3 × 2 h,
2 × 15 h)

Signs of bleeding (100%)
Signs of heat damage (100%)

Sham
(n = 8)

Not applicable
(no ablation, all Ki67 +)

100% Not applicable

Control
(n = 6)

Not applicable
(no xenografting, all Ki67 −)

50% (3 × 15 h) Signs of bleeding (66.7%)
Signs of heat damage (83.3%)
Vaporization (16.7%)
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Ki67-positive cells on CAMs of the sham cohort than on 
ablated CAMs. The outcomes of the ablations are dis-
played in Table 1.

Survival of the chick embryos
The survival rates of the chick embryos in the 30-s cohort, 
60-s cohort, 120-s cohort, sham cohort, and control 
cohort were 60%, 60%, 0%, 100%, and 50%, respectively.

Stereomicroscopic observations
Common stereomicroscopic observations are given in 
Fig. 2. Regular findings after ablation were signs of bleed-
ing and signs of heat damage. Furthermore, vaporization 
was observed on one CAM in the control cohort.

(Immune‑)histological observations
Histological examination including Ki67 staining and 
H&E staining was successfully performed in all but one 
embryo. The analysis of (immune-)histological outcomes 
was not performed in one embryo because of insuffi-
cient histological sections. Heat-induced tissue damage 
(Fig. 3c, d), bleeding, thrombosis (Fig. 3e), and leukocyte 
infiltration and hyperemia (Fig.  3f ) were common find-
ings in H&E stained cuts.

Discussion
The presented study provides new insights into the CAM 
model as a preclinical research model for tumor RFA. The 
outcomes in the sham and control cohort show the validity  
of the CAM model for tumor RFA studies. There was 

Fig. 2  Stereomicroscopic observations. a Tumor cell formation (arrow) is visible inside the silicone ring on the CAM on ED 12 before RFA. b Signs 
of heat damage (*) and bleeding (arrow, bordered by dashed line) can be seen 2 h after ablation on ED 12. No tumor cells are visible on a chick 
embryo of the control cohort before the RFA on ED 12 (c), while signs of bleeding (arrow, bordered by dashed line) and heat damage (*) are 
displayed 2 h after ablation (d). CAM Chorioallantoic membrane, ED Embryonic day, RFA Radiofrequency ablation
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no Ki67 staining in the control cohort showing no pro-
liferating cells, while Ki67 staining could be observed in 
every slice in the sham cohort, indicating that Ki67 can be 
used to differentiate between tumor cells and nontumor 
cells in this research model. Reduction but not eradica-
tion of Ki67 staining was regularly achievable in this in 
ovo model. Therefore, the CAM model may be suited as a 
preclinical model for incomplete ablations or for complete 
ablations after optimization. Furthermore, a survival of 

100% in the not ablated sham cohort indicates that there 
is a low likelihood of a coincidental embryo death.

With the CAM model as a potential model for 
incomplete ablations, it can be tested if the combina-
tion of RFA and other therapies such as local immuno-
therapy or chemotherapy improves treatment efficacy 
and completes an otherwise incomplete ablation. This 
is especially important as incomplete tumor ablations 
are known to be associated with increased metastatic 

Fig. 3  (Immune-)histological observations. a and b display a cluster of BON-1 cells (arrow) in 40 × magnification H&E staining (a) and Ki67 
IHC (b) in a chick embryo on which no ablation was performed on. Vital BON-1 cells appear larger and more basophilic in H&E staining (a) 
than surrounding tissue and Matrigel (*) and also show a high nuclear to cytoplasmatic ratio. Proliferating tumor cells show brown nuclei in Ki67 
IHC, while surrounding chicken cells are negative because the antibody does not bind to chicken Ki67 (b). c depicts the overview of an ablated 
chorioallantoic membrane (CAM) in H&E (10 × magnification). In the corresponding Ki67 staining, a single Ki67-positive cell (arrow) can be seen 
within the Matrigel (d, 10 × magnification). Common findings after RFA were thrombosis (e) and the presence of leukocytes and erythrocytes 
indicating inflammatory response with leukocyte infiltration (f). Black scale bars in a, b, e, and f (40 × magnification) indicate 50 μm, while black 
scale bars in c and d (10 × magnification) indicate 100 μm. CAM Chorioallantoic membrane, ED Embryonic day, H&E Hematoxylin–eosin, IHC 
Immunohistochemistry, RFA Radiofrequency ablation
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potential as well as resistance to immunotherapy and 
chemotherapy [8, 9, 25].

To increase the survival of chicks and to make a com-
plete or incomplete ablation — depending on what is 
desired — as reliable as possible, there is a need to opti-
mize this model. To optimize this model, it is impor-
tant to notice that with increased duration of ablation, 
the completeness rate increased, while the survival 
decreased. Therefore, the chick embryo should be 
exposed to as little heat as possible while ensuring suf-
ficient heat supply to tumor cells on the CAM. A possible 
solution for this could be the fractionation of heat since it 
is known that temperature > 60 °C leads to almost instant 
cell death [26]. This would give the chick time to cool 
down between RFA fractions. Furthermore, a change in 
survival and completeness is also expected to be achiev-
able through adaption of power output.

Stereomicroscopic observations showed typical find-
ings of thermal ablation. Heat damage as well as local 
bleedings are expected outcomes in percutaneous abla-
tion. With the CAM as a highly vascularized area, corre-
sponding findings were to be expected [27]. Vaporization 
is another well-known finding after RFA. It can restrict 
energy transmission and is considered to occur in tem-
peratures > 105  °C in RFA [26]. Histological findings in 
this study like destruction of vessels and thrombosis 
(Fig.  3e) as well as leukocyte infiltration and hyperemia 
(Fig.  3f ) match literature on histological findings after 
RFA in humans and also animals using the example of the 
pig [10, 28]. This suggests that the CAM model is suited 
to evaluate outcomes of tumor RFA due to sufficient his-
tological comparability. The presence of these typical 
histological changes and the fact that the avian immune 
system is functionally comparable to the human immune 
system further support the analogy of this in ovo model 
to other in vivo models and therefore also the use for 
preclinical studies [29].

The CAM model for tumor RFA allows the observation 
of complete and incomplete eradication of Ki67 stain-
ing with the possibility to use incomplete ablations as a 
chance for studies on combined therapies. The outcomes 
of the sham and control cohort demonstrate validity of 
the model, while immunohistochemical examinations 
show that the model is suited for histological evaluation.  
Furthermore, this model compares favorably to other 
animal models due to the chicken embryos non- 
sentience, its low cost, simplicity, reproducibility, and short 
duration of experimentation [13, 30]. Moreover, there is 
no need for an approval of an ethics committee in many 
countries which allows a fast start of experimentation 
after the planning is finished [20].

This study is limited by the small number of ablated 
chicken embryos. Nevertheless, the feasibility of the 
CAM model for tumor RFA could be shown in this study. 
The number of chicken embryos experimented on was 
intentionally small to reduce the number of animals 
in concordance with the “Three Rs” recommended for 
experimental techniques [7].

The CAM model is a feasible and suiting research 
model for tumor RFA with many advantages over other 
animal models. It offers the opportunity to conduct 
in vivo research under standardized conditions. How-
ever, further studies are needed to optimize this model 
for tumor ablations in order to explore promising but 
unrefined strategies like the combination of RFA and 
immunotherapy.
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