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Abstract 

The goal of any radiological diagnostic process is to gain information about the patient’s status. However, the math-
ematical notion of information is usually not adopted to measure the performance of a diagnostic test or the agree-
ment among readers in providing a certain diagnosis. Indeed, commonly used metrics for assessing diagnostic 
accuracy (e.g., sensitivity and specificity) or inter-reader agreement (Cohen κ statistics) use confusion matrices con-
taining the number of true- and false positives/negatives results of a test, or the number of concordant/discordant 
categorizations, respectively, thus lacking proper information content. We present a methodological paradigm, based 
on Shannon’s information theory, aiming to measure both accuracy and agreement in diagnostic radiology. This 
approach models the information flow as a “diagnostic channel” connecting the state of the patient’s disease and the 
radiologist or, in the case of agreement analysis, as an “agreement channel” linking two or more radiologists evaluating 
the same set of images. For both cases, we proposed some measures, derived from Shannon’s mutual information, 
which can represent an alternative way to express diagnostic accuracy and agreement in radiology.

Key points
• Diagnostic processes can be modeled with information theory (IT).

• IT metrics of diagnostic accuracy are independent from disease prevalence.

• IT metrics of inter-reader agreements can overcome Cohen κ pitfalls.
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Background
One can hypothesize that any examination aims to extract 
as much information as possible about a disease (its pres-
ence and/or its gravity or stage), which can be assumed a 
“hidden,” objective status of a patient according to a stand-
ard of reference. Analogously, gauging the agreement in 

radiology can be seen as measuring how much informa-
tion is shared between different readers assessing a certain 
condition, e.g., by using the prostate imaging reporting and 
data system (PI-RADS) categories for assessing prostate 
cancer [1]. Of note, the notion of information, rather than 
being vague, can be expressed quantitatively and rigorously 
in accordance with the mathematical apparatus underlying 
the so-called information theory (IT), which is the base of 
current telecommunication systems technology [2]. Details 
on the mathematical definition of information and derived 
measures can be found in the milestone paper with which 
Claude Shannon founded IT in 1948 [3]. Based on the above 
assumptions, some IT-derived measures of both diagnostic 
accuracy and agreement have previously been built [4–7], 
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proving their formal consistency. The purpose of this article 
is to present them to the radiological community, describing 
their conceptual fundaments and potential advantages com-
pared to conventional statistics such as receiver operating 
characteristic (ROC) analysis and Cohen κ.

The information‑oriented paradigm
The mutual information (MI) [3] is a measure of the 
(average) quantity of information exchanged between a 
sender and a receiver communicating on a channel. It is 
defined by the formula as follows:

where X and Y  are two random variables modeling the 
input and the output of the channel, X  and Y are the 
sets of the possible input and output messages, and 
pX (x) , pY (y) , and pXY (x, y) denote the probability for X 
to equal x, the probability for Y to equal y, and the joint 
probability for X and Y to equal x and y at the same time, 
respectively.

MI measures the dependency between X and Y  : the 
more they are related, the higher the mutual infor-
mation. Whenever the two variables are independ-
ent, i.e., their values are non-related, MI drops to 0. 
The mutual information is symmetric and the role of 
the channel input and output is not relevant in gaug-
ing the information exchanged on the channel itself, i.e., 
MI(X ,Y ) = MI(Y ,X).

Because of its features, MI can also  be used as a cor-
relation index between X and Y  , but differently from the 
Pearson correlation coefficient that exclusively handles 
linear correlations, MI is a nonlinear index.

Modeling diagnostic information with MI
The diagnostic channel D ⇐⇒ X is a virtual channel 
modeling the information flow between the unknown 
patient condition D (i.e., the channel input) and the out-
come X of a diagnostic test (i.e., the channel output)  [4, 
6–8]. The diagnostic test relates the two random variables 
D and X as channels connect their input and output, and its 
goal is to carry the maximum amount of information of the 
former to the latter.

Since MI is symmetric, the diagnostic channel can be 
represented as symmetric too: the information flows 
from the patient condition to the test outcome exactly 
as it flows from the test outcome to the patient condi-
tion. Thus, if the diagnostic channels D ⇐⇒ X and 
D ⇐⇒ Y  model two different diagnostic tests or read-
ers, we can relate the outcomes X and Y  of the two tests/
readers by joining D ⇐⇒ X and D ⇐⇒ Y  in the single 

MI(X ,Y ) =

x∈X y∈Y

pXY x, y ∗ log
pXY x, y

pX (x) ∗ pY y

channel X ⇐⇒ D ⇐⇒ Y  , or, in short, X ⇐⇒ Y  . 
This last channel is the agreement channel [5–7].

The mutual information can be used to both evaluate 
the accuracy of the test modeled by a diagnostic channel 
D ⇐⇒ X and measure the agreement of two tests/read-
ers linked by an agreement channel X ⇐⇒ Y .

An information measure of diagnostic accuracy
Image analysis can be seen as a way to extract informa-
tion from the patient to correctly diagnose the disease. The 
most accurate diagnosis will be, in turn, the one extracting 
as much information as possible. Consequently, the more 
information flows on the diagnostic channel from the dis-
ease to the radiologist, the more accurate the diagnosis is.

The dichotomous case
As shown in [4], whenever the evaluation has only two 
possible outcomes (dichotomous case), the amount of 
information flowing in a diagnostic channel, i.e., MI, can 
be expressed in terms of sensitivity ( SE ), specificity ( SP ), 
and prevalence of the disease PREV as follows:

where h(x) = −x ∗ log2x − (1− x) ∗ log2(1− x) is the 
(binary) Shannon entropy [3]. 

The IT-based approach avoids the dependency from 
the prevalence of the disease by assessing diagnostic 
accuracy in terms of the area under the curve (AUC) sub-
tended by the MI-curve obtained by varying the preva-
lence for all possible values in the interval [0, 1] , i.e., a 
prevalence of disease ranging from [0] to 100%.

The information ratio (IR) [4] is an information meas-
ure that normalizes MI-curve AUC with respect to the 
best possible performance. In the dichotomic case, IR 
can be computed by the formula

where h(x) is the binary Shannon entropy as above. Fig-
ure  1 depicts two exemplificative MI-curves: MI for SE 
0.9 and SP 0.8 as the prevalence changes and MI for the 
reference standard, i.e., SE and SP equal to 1. The ratio 
between the AUC of the former and that of the AUC of 
the latter is the IR(0.9, 0.8).

IR represents the normalized amount of information 
carried by a diagnostic process as a value in the interval 
[0, 1] : the higher diagnostic accuracy, the nearer IR to 1.

MI(SE, SP,PREV ) =h(SP − (SE + SP − 1) ∗ PREV )

+ (h(SP) − h(SE)) ∗ PREV − h(SP)

IR(SE, SP) = (ln4) ∗ ∫
1

0

MI(SE, SP,PREV )dPREV

= 1 +
(1 − SP) ∗ h(1 − SE) + (1 − SE) ∗ h(1 − SP)

SE + SP − 1
∗ ln2

+
(1 − SE) ∗ ln(1 − SE) + (1 − SP) ∗ ln(1 − SP)

SE + SP − 1
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Table  1 reports a simulated clinical scenario in which 
magnetic resonance imaging is used to identify clinically 
significant prostate cancer in a population of biopsy-
naïve men with 40% cancer prevalence [9].

By setting the cutoff for auctioning prostate biopsy to 
prostate imaging reporting and data system (PI-RADS) 
category 3, we get Table  2. Since the SE and SP of the 
data in this table are 0.95 (95%) and 0.5 (50%), respec-
tively, IR(0.95, 0.5) ≈ 0.195 . Hence, due to the imbalance 
between SE and SP (a typical state-of-the-art clinical 
scenario in this field), MRI can extract only 19.5% of the 
possible information about a patient prostate cancer con-
dition on average.

The prevalence issue
While the IR value depends on the SE and SP values, as 
shown in the formula, IR is calculated by integrating them 
over all possible prevalence values included between 0 
and 1; thus, in fact making the metric independent from 

it [4]. Therefore, the results expressed by using it are also 
valid in cohorts different from the one in which a study 
has been performed, e.g., cohorts with different preva-
lences of the disease. Note, however, that many studies 
have suggested that both  SE and SP are related to the 
prevalence itself  [10–13]. This is a problem of spectrum 
bias, which is a type of sampling bias. In these cases, 
sampling from a patient population with a higher disease 
prevalence may include more severely diseased patients 
making the test performing better. Our analysis does 
not account for the effect of bias in study design like the 
abovementioned one. We are currently working on math-
ematical solutions for trying to overcome this problem.

The multivalue case
Radiologists frequently provide diagnoses by using ranks 
(e.g., the PI-RADS) or measuring continuous variables 
(e.g., the apparent diffusion coefficient from diffusion-
weighted imaging [14]). In these cases, the receiver oper-
ating characteristics (ROC) analysis is commonly used 
to discover the most appropriate cutoff for the investi-
gated condition identification and assess the diagnostic 
approach effectiveness. ROC analysis uses each of the 
values in the considered rank or continuous domain as 
a possible cutoff for a curated set of diagnoses, and it 
builds a 2 × 2 confusion matrix which relates the golden 
standard and the positive/negative results due to the spe-
cific cutoff. SE and SP of each of these matrices depend 
on the corresponding cutoff value: the greater the cut-
off value, the smaller the sensitivity, and the greater the 
specificity and vice-versa, depending on the clinical sce-
nario. By representing the possible cutoffs as points in a 
(1–SP) versus SP graph, ROC analysis produces a curve 
that depicts the effectiveness of the diagnostic method as 
the cutoff changes (Fig.  2a). The effectiveness is quanti-
fied by the AUC of the curve itself which is proven to be 
the probability for the rank/value assigned to a subject 

Fig. 1  The red line is the MI-curve for SE 0.9 and SP 0.8 as the 
prevalence of the disease ranges in the interval [0, 1]. The point p 
represents the value of MI (value on the MI axis) when the prevalence 
is 0.2 (value on the prevalence axis). The dark gray region is the area 
under the MI-curve for SE 0.9 and SP 0.8. It summarizes all the values 
of MI as the prevalence changes for a diagnostic method whose 
sensitivity and specificity are 0.9 and 0.8, respectively. This AUC 
does not range in an interval [0, 1], and it never reach 1. In order to 
normalize it in the [0, 1] range and get the information ratio, we must 
divide it by the maximum of the AUC among those obtainable by 
changing the sensitivity and the specificity. This is the AUC of the 
diagnostic method that has the best sensitivity and specificity, i.e., 
1 and 1. The blue line depicts the MI-curve for SE 1.0 and SP 1.0, i.e., 
the gold standard, and the gray region (i.e., the light gray plus the 
dark gray regions) represents its AUC. In [4] it is proved that the latter 
equals 1/ln4 ; hence, the information ratio of the method whose 
SE and SP are 0.9 and 0.8, respectively, is the AUC of the red curve 
multiplied by ln4 . AUC​ Area under the curve, MI Mutual information, 
SE Sensitivity, SP Specificity, PREV Prevalence

Table 1  Simulated clinical scenario in which magnetic 
resonance imaging is used to identify clinically significant 
prostate cancer in a population of 1000 biopsy-naïve men with 
40% cancer prevalence

PI-RADS category Target biopsy

Positive Negative

Magnetic reso-
nance imaging

5 93 37

4 201 128

3 86 135

2 18 131

1 2 169

Total number of subjects 400 600
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not having the investigated condition by the diagnos-
tic method to be lower than that of a subject having the 
condition [15].

In a similar way, the IT-based approach evaluates the 
IRs of the cutoff-specific matrices, and it plots the infor-
mation ratio curve (IRC), i.e., the curve of IR as the cut-
off is raised or, equivalently, as the specificity decreases. 

The IRC AUC does not range in the interval [0, 1]. In 
order to normalize it, it must be divided by the AUC of 
the limit information curve (LIC) that is the curve pro-
duced by the best theoretical diagnostic method: the one 
that always has the maximum sensitivity (i.e., 1) for any 
admissible value of the specificity (Fig.  2b). This ratio 
is the global information ratio (GIR). Since LIC AUC 

Table 2  Simulated PI-RADS diagnoses by cut-off selection

By arbitrary setting the cutoff to PI-RADS category 3 (i.e., categories below 3 are considered a negative response, categories above 2 correspond to a positive 
response), we obtain Table 2, showing a sensitivity of 0.95 (95%) and a specificity of 0.50 (50%). It follows that the information ratio of the scenario is about 0.195, 
while for the same data Cohen κ equals 0.403

Target biopsy

Positive Negative

Magnetic resonance imag-
ing

Positive (PI-RADS cat-
egory ≥ 3)

380 300 Positive 
predictive value 
55.8% (380/680)

Negative (PI-RADS cat-
egory ≤ 2)

20 300 Negative predic-
tive value 93.7% 
(300/320)

Sensitivity 95% (380/400) Specificity 50% (300/600)

Cohen κ 0.403

Information ratio 0.195

Fig. 2  Receiver operating characteristic (ROC) and global information ratio (GIR) analyses of data reported in Table 1. The blue points in the figures 
denotes the 6 possible cutoffs, i.e., all the category below the ith one, where i ∈ [0, 5] are considered negative diagnoses. a The ROC analysis 
plots the cutoff points in the (1—SP) × SE space, and it connects them by using the ROC curve. The area under this curve is a cutoff-independent 
measure of the effectiveness of the diagnostic approach: the higher the area, the better the approach. The ROC area under the curve (AUC) ranges 
in the [0, 1] interval. The figure represents the ROC curve and its AUC as a black line and a dark gray region, respectively. In the depicted scenario, 
the AUC is about 0.793. b The GIR analysis of the same data depicts the cutoff points in the (1—SP) × IR space. The point themselves are connected 
by the information ratio curve (IRC) which is represented as a black line. As the ROC AUC, the IRC AUC (the dark gray region in the figure) is a 
measure of the effectiveness of the diagnostic approach, but, since it is computed by using IR, it is prevalence-independent. Unfortunately, it does 
not range in the interval [0, 1], and to normalize it, it must be divided by the IRC AUC of the best theoretical diagnostic approach, i.e., those whose 
sensitivity is always 1: the limit information curve (LIC). The LIC AUC (the light and dark gray regions in the figure) always equals 2− π

2
/6 [4]; thus, 

the ratio between IRC and LIC AUCs, i.e., the global information ratio (GIR), equals IRC AUC divided by 2− π
2
/6 . In the scenario depicted by panel b, 

IRC AUC and GIR are about 0.116 and 0.326, respectively
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always equals 2− π
2
/6 ≈ 0.355 [4], GIR can be com-

puted as follows:

Advantages of the IT‑based model for diagnostic accuracy
IR and GIR are guaranteed to be global, normalized, and 
prevalence-independent measures for diagnostic accu-
racy. The prevalence-independency is a certain advantage 
with respect to the standard Cohen κ and ROC analysis. 
Another issue related to the ROC analysis is the arbitrary 
choice of the optimal cutoff, which, even if reasonable (as 
in the case of the Youden index [16]), is not supported by 
any motivation related to the aim of any diagnostic pro-
cess, which is to extract as much information as possible 
from the test. The GIR analysis is the only one to offer 
such a criterion, based on the maximization of the infor-
mation flow between the patient and the clinician, which 
is the scope of any good diagnostic system.

An information measure of inter‑reader agreement
As already noticed above, the agreement channel 
X ⇐⇒ Y  relates the outcomes of two diagnostic tests 
or readers. Hence, the mutual information over this 
channel, i.e., MI(X ,Y ) , can be used as a correlation index 
between the outcomes of the two readers, i.e., X and Y  . 
Since MI(X ,Y ) ≤ min{H(X),H(Y )} [3, 5]  where H(X) 
and H(Y ) are the entropy associated with the variables 
X and Y , respectively, we can normalize MI(X ,Y ) in the 
interval [0, 1] by dividing it by its maximum value, i.e., 
min{H(X),H(Y )} . This leads to the information agree-
ment (IA):

whose value ranges in the interval [0, 1] . As pointed out 
in [5],  IA provides an exact and coherent measure of 
the stochastic distance between PXY  and PXPY  ., that is 
the joint distribution and the product of the marginals. 
One might argue that such a determination is measured 
at a less formally rigorous and precise extent when using 
Cohen κ [17]. However, IA can be thought of as a (nor-
malized) measure of the degree of dependence between 
two readers when making a diagnosis. The greater the 
IA value, the higher the inter-reader agreement, i.e., the 
inter-dependence of the readers. Of note, the measure 
can be used in both the dichotomous and multi-valued 
scale ratings [5], while it does not currently apply to con-
tinuous variables.

GIR =
AUC

IRC

2− π
2
/6

IA(X ,Y ) =
MI(X ,Y )

min{H(X),H(Y )}

Advantages of the IT‑based model for inter‑reader 
agreement
IA overcomes some of the well-known Cohen κ flaws 
[18–20]. This is partially testified by the three artificial 
inter-reader agreements presented in Table 3.

Tables 3, 4, and 5 compare three pairs of readers on the 
bases of 20,000 diagnoses. Since the readers considered 
in Table  3 agree 73.4% of the time, while 99.4% of the 
diagnoses coincide in Table 4, the latter scenario seems to 
deserve an agreement value greater than that presented 
in Table 3. However, both the tables have the very same 
Cohen κ, i.e., 0.5. IA better fits common sense in this 
case because Tables  3 and 4 IAs equal 0.311 and 0.638, 
respectively.

Tables 4 and 5 are almost identical: they differ for less 
than 1% of the diagnoses. Because of this similarity, one 
may expect that their agreement values are almost the 
same. Still, their Cohen κ is quite different: 0.5 for Table 4 
and 0.24 for Table 5. On the contrary, their IAs are 0.638 
and 0.580, respectively. Once more, IA offers a more con-
vincing agreement measure with respect to Cohen κ.

Conclusions
IT is a rigorous mathematical tool widely used in elec-
tronic telecommunication systems. We presented some 
IT-inspired diagnostic accuracy and inter-reader agree-
ment measures. While the underlying conceptual frame-
work of these measures may be harder to be understood 
compared to currently used statistical indexes, it brings 

Table 3  Agreement matrices leading to paradoxical values for 
Cohen κ

Reader 1

Positive Negative

Reader 2 Positive 7,210 5,200

Negative 120 7,470

Cohen κ 0.5

Information agree-
ment

0.311

Table 4  Agreement matrices leading to paradoxical values for 
Cohen κ

Reader 1

Positive Negative

Reader 2 Positive 19,818 116

Negative 5 61

Cohen κ 0.5

Information agree-
ment

0.638
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some appealing advantages in the presentation and inter-
pretation of radiological research, such as ( i ) providing 
summary measures of accuracy not depending on the 
prevalence of disease, and ( ii ) assessing diagnostic accu-
racy and inter-reader agreement without potential pit-
falls of conventional analysis.

On this basis, we suggest that the above-presented 
information-based indexes of diagnostic accuracy could 
complement conventional ones by objectively showing 
how much information on the patient status is truly cap-
tured by a diagnostic tool, given a definite set of SE and 
SP. This knowledge could be useful to assess whether any 
refined diagnostic strategy using that tool or new ones 
truly translates into a gain in information on the disease 
or compare the amount of information provided by dif-
ferent tools. This is potentially relevant in some settings 
such as testing artificial intelligence-based tools, which 
are supposed to extract additional information from 
medical images. Additional information could be quanti-
fied more precisely compared to conventional qualitative 
images or when comparing various algorithms.

Concerning agreement analysis, the index we proposed 
could be used as an alternative to Cohen κ as it is not 
affected by the abovementioned biases related to unbal-
anced data distribution in source 2 × 2 tables.

However, some points should be faced before informa-
tion measures can be fully appreciated and used. First of all, 
easy-to-use software tools for evaluating them are missing. 
We are currently working on an online platform designed 
to obtain the accuracy or agreement information measures 
by entering data directly from a database and hope this can 
be readily available. Second, reference values for IR, GIR, 
and IA are not yet defined, thus making it difficult to estab-
lish which values can be qualified as “high or low accuracy” 

or rather can express different levels of agreement (e.g., 
low, moderate, substantial, excellent), and in turn, limiting 
potential concrete applications. Furthermore, the rules for 
comparing different GIR values have not been established. 
Those limitations suggest that some additional mathemati-
cal work is needed to refine information indexes. Finally, 
a direct comparison of those measures with conventional 
ones in real study cohorts will be indispensable to under-
stand how much informative and impacting the informa-
tion indexes are compared to conventional ones, in the 
light of the potential advantages we described and make 
radiologists familiar with new indexes.
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