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The effect of preprocessing filters 
on predictive performance in radiomics
Aydin Demircioğlu*    

Abstract 

Background:  Radiomics is a noninvasive method using machine learning to support personalised medicine. Pre-
processing filters such as wavelet and Laplacian-of-Gaussian filters are commonly used being thought to increase 
predictive performance. However, the use of preprocessing filters increases the number of features by up to an order 
of magnitude and can produce many correlated features. Both substantially increase the dataset complexity, which in 
turn makes modeling with machine learning techniques more challenging, possibly leading to poorer performance. 
We investigated the impact of these filters on predictive performance.

Methods:  Using seven publicly available radiomic datasets, we measured the impact of adding features preproc-
essed with eight different preprocessing filters to the unprocessed features on the predictive performance of radi-
omic models. Modeling was performed using five feature selection methods and five classifiers, while predictive 
performance was measured using area-under-the-curve at receiver operating characteristics analysis (AUC-ROC) with 
nested, stratified 10-fold cross-validation.

Results:  Significant improvements of up to 0.08 in AUC-ROC were observed when all image preprocessing filters 
were applied compared to using only the original features (up to p = 0.024). Decreases of -0.04 and -0.10 were 
observed on some data sets, but these were not statistically significant (p > 0.179). Tuning of the image preprocessing 
filters did not result in decreases in AUC-ROC but further improved results by up to 0.1; however, these improvements 
were not statistically significant (p > 0.086) except for one data set (p = 0.023).

Conclusions:  Preprocessing filters can have a significant impact on the predictive performance and should be used 
in radiomic studies.
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Key points

•	 Modeling using all preprocessed features did not 
reduce the predictive performance compared to the 
original (not preprocessed) set.

•	 Tuning image processing filters during cross-valida-
tion improves the performance slightly.

•	 Using all preprocessed features seemed to be more 
helpful for datasets with larger sample size.

•	 Pairwise Pearson correlations of preprocessed feature 
sets were high (r > 0.49).

Background
Radiomics characterises pathologies in medical images 
using quantitative features to enable better, person-
alised, and noninvasive diagnosis [1]. It exploits on 
machine learning pipelines that can be traced back to 
the 1970s [2], where a large set of quantitative features 
is first extracted from the image data and then used to 
train an appropriate machine learning model. Since 
features are critical for higher predictive performance, 
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their expressiveness is often increased by applying 
preprocessing filters to the image data before feature 
extraction. Examples of such preprocessing filters are 
smoothing filters, which can reduce the image noise, 
exponential filters, which can highlight subtle differ-
ences in the data, and wavelet filters, which take into 
account the spectral dimension of the data [3].

However, the use of preprocessing filters can easily 
increase the number of extracted features from a few 
dozen to several thousand while the number of sam-
ples remains constant. Combined with the small sam-
ple sizes that are often the case in radiological studies, 
this leads to high-dimensional datasets characterised 
by containing more features than samples. Such data-
sets are notoriously complex and produce relatively 
unstable and sometimes spurious results [4]. In addi-
tion, some features may not change significantly due 
to preprocessing, leading to a higher correlation in the 
datasets. Intuitively, adding more features to a problem 
should not decrease predictive performance if the new 
features contribute to the solution. However, if they do 
not contribute to the solution, the model could simply 
disregard the added features; the performance would 
remain the same. Regrettably, this is only true in the-
ory because, in practice, the sample sizes are often very 
small, and the features are noisy. Furthermore, given 
the high dimensionality of the data, features may cor-
relate with the target by chance and, therefore, would 
not be disregarded during training, leading to a degra-
dation in predictive performance.

While several studies have already been conducted to 
understand the  influence of preprocessing filters on the 
variability and  reproducibility of preprocessing filters 
[5–8], their impact on the predictive performance of 
subsequent models has not yet been considered. Con-
sequently, it is unclear whether the added complexity of 
using preprocessing filters significantly increases predic-
tion performance or whether the increased dimensional-
ity negates the intended benefit. In this study, therefore, 
we investigated the extent to which the use of preproc-
essed features affects the prediction performance on sev-
eral datasets.

Methods
Ethical statement
In this study, only previously published, publicly availa-
ble datasets were used. The corresponding ethical review 
boards have already granted approvals for each dataset. 
Ethical approval for this study was waived by the local 
Ethics Committee (Ethik-Kommission, Medizinische 
Fakultät der Universität Duisburg-Essen, Germany). The 
study was performed following the relevant guidelines 
and regulations.

Datasets
We used seven publicly available datasets (Table  1); 
six were published as the “WORC” database [9], while 
one, the head & neck cancer dataset, was published in 
the seminal paper by Aerts et  al. [10]. Datasets were 
retrieved by using the Python code in the “WORC” 
dataset. Upon inspection, a few scans have been 
removed from the datasets since their slice thicknesses 
were larger than twice the median slice thickness of 
the other scans; in addition, two scans were not read-
able and were removed as well. These problems mainly 
affected the Desmoid and Melanoma datasets, where 8 
and 6 scans were removed, respevtively (Table  1). All 
datasets contained segmentations of the corresponding 
pathology.

Image preprocessing
All scans, including the segmentations, were resampled 
using spline interpolation to a homogenous voxel size 
of 1 mm3. MRI series were intensity normalised before 
processing by centring all values to have a mean of 0 
and a standard deviation of 1. CT series were not nor-
malised since HU values were comparable between 
scans.

Preprocessing filters
Before feature extraction, the following filters were 
applied to the scans: exponential; gradient; Laplacian-of-
Gaussian (LoG); local binary pattern in two- and three-
dimensions; logarithm; square; square-root; and wavelet. 
More details on the parameters can be found in Table 2.

Table 1  Datasets used in the experiments

N denotes the number of samples, with the number of scans removed from the 
original dataset in parenthesis (excluded); for example, there were 203 scans in 
the Desmoid dataset, 8 of which have been removed. In-plane resolution and 
slice thickness are reported as median (range). CT Computed tomography, MRI 
Magnetic resonance imaging. For the datasets, see references [9, 10]

Dataset Modality N (excluded) In-plane 
resolution 
(mm)

Slice thickness 
(m)

CRLM CT 76 (1) 0.7 (0.6–0.9) 5.0 (1.0–8.0)

Desmoid MRI 195 (8) 0.7 (0.2–1.8) 5.0 (1.0–10.0)

GIST CT 244 (2) 0.8 (0.6–1.0) 3.0 (0.6–6.0)

HN CT 134 (1) 1.0 (1.0–1.1) 3.0 (1.5–3.0)

Lipo MRI 113 (2) 0.7 (0.2–1.4) 5.5 (1.0–9.1)

Liver MRI 186 (0) 0.8 (0.6–1.6) 7.7 (1.0–11.0)

Melanoma CT 97 (6) 0.7 (0.5–1.0) 1.2 (0.6–2.0)
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Feature extraction
The width of discretisation bins for feature extraction was 
fixed to 25. The standard feature classes were extracted: 
shape; first order; grey level co-occurrence matrix, 
GLCM; grey level size zone matrix, GLSZM; grey level 
run length matrix, GLRLM; neighboring grey-tone dif-
ference matrix, NGTDM; and grey level dependence 
matrix, GLDM. Altogether, 2016 features were generated 
for each dataset. The complete list of features is provided 
in the Supplemental material. PyRadiomics 3.0.1 [11] was 
used for extraction. Details can be found in the software 
package and the source code.

Feature sets
Different feature sets were created (Fig.  1): The original 
features, extracted from the images with no preprocess-
ing filter applied, formed the baseline. Then, a distinct 
feature set was computed for each preprocessing filter to 
yield a feature set specific to the filter. The original fea-
tures were added to each feature set since the original 
features contained morphological features like volume, 
which are known to have high predictive value. Finally, 
all features were merged to form a single-feature set 
containing all features. Altogether, ten feature sets were 
created.

Feature preprocessing
Before training, all extracted features were normalised 
using column-wise z-scores. No missing values were pre-
sent. Constant features were removed from the datasets.

Feature selection methods
For the selection of relevant features, five often used 
feature selection algorithms were used: analysis of vari-
ance, ANOVA; Bhattacharyya distance; extra trees; least 
absolute shrinkage and selection operator (LASSO); 
and minimum redundancy maximum relevance ensem-
ble, mRMRe. In addition, no feature selection method 
was applied, i.e., the classifiers processed all features. 
The LASSO algorithm had a hyperparameter C, which 
was fixed at 1.0. Because these algorithms except for 
the LASSO are not selecting but scoring each fea-
ture, a choice had to be made on how many of the 

Table 2  Overview of the image filters

Original denotes the set of extracted features without any image processing, 
which also contains of shape features. Parameters denote the chosen extraction 
parameters for the preprocessing filter, if applicable. HHH, HHL etc. denote the 
frequency components of the wavelet filters (H = high, L = low). N denotes the 
number of features that were generated after applying the filter; in parenthesis 
is the sum of the number of original features and the features after applying the 
corresponding filter

Filter Parameters N

Original – 105

Exponential – 91 (196)

Gradient – 91 (196)

Laplacian-of-Gaussian Sigma 1.0, 2.0, 3.0, 4.0, 5.0 mm 455 (560)

Local binary pattern Two-dimensional, three-dimensional 273 (378)

Logarithm – 91 (196)

Square – 91 (196)

Square root – 91 (196)

Wavelet Directions HHH, HHL, HLH, HLL, LHH, 
LHL, LLH, LLL

728 (833)

Fig. 1  Overall pipeline used for training. The image data was preprocessed by each filter to generate the different feature sets. A 10-fold nested, 
stratified cross-validation was applied to train a predictive model
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highest-scoring features should be used for classification. 
This choice was treated as a hyperparameter and was 
chosen among 1, 2, 4, 8, 16, 32, and 64. For the LASSO, 
the absolute values of the selected coefficients were used 
as a proxy for the scores.

Classifiers
The following five algorithms were used: logistic regres-
sion; naive Bayes; neural networks, random forests; and 
support vector machine with a non-linear kernel (radial 
basis function sector vector machine). Apart from naive 
Bayes, which can be considered a baseline, all methods 
have hyperparameters that were tuned during training. 
More details can be found in the Supplemental material.

Training
Models were created following the standard radiom-
ics pipeline (Fig. 1) [12]. The training was performed for 
each combination of the feature selection method, classi-
fier, and corresponding hyperparameters (Table 3) using 
nested 10-fold stratified cross-validation [13]. The data 
was divided into ten equally sized folds and processed 
in rounds. In each round, one fold was left out for test-
ing, while on the other nine folds, an inner stratified 
10-fold cross-validation was performed to determine the 
best-performing (or tuned) model. This model was then 
retrained and evaluated on the left-out fold. All predic-
tions of the outer cross-validation were then pooled to 
obtain a single receiver operating characteristics (ROC) 
curve, i.e., microaveraging was applied.

Evaluation
The evaluation focused on whether the feature sets dif-
fered in their predictive performance as measured by 
area-under-the-curve (AUC) at ROC analysis (AUC-
ROC). Of central interest was the difference between 
three feature sets: The original feature set, the set of all 
features, and the best-performing feature set, as deter-
mined during internal cross-validation. In addition, the 
tradeoff between sample size and the difference in the 
predictive performance of these feature sets was exam-
ined using linear regression to detect if an association 

was present or not. Finally, pairwise Pearson correlations 
were computed to understand how the feature sets were 
correlated.

Software
Python 3.6 was used for all experiments. Feature selec-
tion methods and classifiers were mainly employed from 
scikit-learn 0.24.2 [14].

Statistics
Descriptive statistics were reported as mean ± standard 
deviation. ROC curves were compared using DeLong 
tests. The p values below 0.05 were considered to be sta-
tistically significant. No correction for multiple testing 
was applied due to the small sample sizes and the explor-
ative nature of this study. Statistics were computed using 
Python 3.6 with the scipy module and R 3.4.1 with the 
pROC library.

Results
A total of 16,570 = (6 × 6 × 10 × 46) + 10 models were 
fitted per dataset, each with 10-fold cross-validation, 
since 6 different feature selection methods (including 
None, which selects all features), 6 different numbers of 
selected features, 10 different feature sets, and 46 differ-
ent classifier hyperparameter configurations were used, 
and the best 10 configurations were retrained for each 
dataset.

Computation times
Compared to the original feature set, computation times, 
measured as the time required for feature selection and 
classification, increased on average by 1.45 times when 
the complete set of image preprocessing filters was 
computed (12.9  versus  18.7h). On the other hand, tun-
ing resulted in an even higher increase in computation 
times (138.3h). Compared to the original feature set, an 
increase of 10.72 times was observed, whereas 7.40 times 
was observed compared to the full set of features.

Predictive performance
The ROC-AUCs ranged from 0.57 to 0.85 for the origi-
nal feature set and 0.53 to 0.82 for all features. Using 
the best performing feature set identified in the cross-
validation resulted in ROC-AUCs between 0.63 and 0.86 
(Table 4). The original set of features performed best for 
CRLM dataset only. Using all features performed best in 
two cases, while filter tuning achieved the highest ROC-
AUCs in four datasets (Fig. 2).

Although in four datasets, the original feature set per-
formed better than using all features, in these cases, the 
difference was not statistically significant, with p values 

Table 3  List of hyperparameters tuned during cross-validation

The remaining hyperparameters were left at their default

Classifier Hyperparameter

Logistic regression C in 2^{-6, -4, -2, 0, 2, 4, 6}

Neural networks Three layers with each 4, 16, or 64 neurons

Random forest Number of estimators 50, 125, or 250

Radial basis function
Sector vector machine

C in 2^{-6, -4, -2, 0, 2, 4, 6}, gamma was set to 
auto
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ranging from 0.179 to 0.393. However, for the remaining 
three data sets where the use of all features performed 
better, the difference was significant. Altogether, the orig-
inal feature set never performed statistically significantly 
better than using all features.

Furthermore, the ROC-AUCs obtained using the best-
performing feature set was never worse than those of 
the original feature set. However, on four datasets, the 

difference was statistically not significant, with p values 
ranging from 0.322 to 1.0. A similar picture arises when 
comparing all features with the best feature set: no drop 
in AUC was observed, and there was a statistically signifi-
cant difference in only one case (melanoma).

Regarding the best performing filter, only the wavelet, 
square root, and exponential filter were best; the other 
filters did not perform better (Table 4).

Fig. 2  Receiver operating characteristic curves for all datasets. Tuned denotes the best-performing preprocessing filter and can differ for each 
dataset. Note that in the case of CRLM dataset, the best preprocessing filter set was the original set; therefore, these curves coincide
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Tradeoff against sample size
The association of the differences in the predictive per-
formance of the three feature sets (original, all, tuned) to 
the sample size was considered for each dataset. How-
ever, no statistically significant increase or decrease was 
observed, with p values ranging from 0.112 to 0.379 
(Fig. 3).

Correlation of features
The mean correlation over all datasets ranged between r 
= 0.49 and r =0.919 (Fig. 4). The local binary pattern and 
exponential filters showed the lowest correlation to the 
other feature sets (mean r = 0.67 for both), while the cor-
relation of the original feature set was the highest (mean 
r = 0.77).

Fig. 3  Tradeoffs against sample size. Graphical display of the association of the difference in area-under-the-curve at receiver operating 
characteristics between the three feature sets and the sample size. Each point corresponds to one of the datasets. a Tradeoff between the original 
set and all features. b Tradeoff between the original set the best-performing feature set. c Tradeoff of all features and the best-performing feature set

Fig. 4  Mean correlation between feature sets. In each cell, the mean pairwise Pearson correlation coefficient (r) between features of the 
corresponding two feature sets is displayed



Page 8 of 10Demircioğlu ﻿European Radiology Experimental            (2022) 6:40 

Discussion
Image preprocessing filters are commonly used in radi-
omic studies because they are thought to increase overall 
prediction performance. However, preprocessing filters 
are not integral to the standard radiomics pipeline. While 
some studies did not use preprocessing filters [15–17], 
other studies use them, generating datasets with several 
thousand features [18–20]. In the absence of a direct 
comparison, it is unclear whether the use of such filters 
can increase predictive performance, as adding more fea-
tures to the dataset while maintaining the same sample 
size increases the dimensionality of the dataset, making 
the training very complex. To understand whether pre-
processed features increase the predictive performance, 
we compared different feature sets using seven publicly 
available datasets.

Our results showed differences in AUC-ROC when 
the original set of features or the full set of preprocessed 
features was used. The difference was highly dependent 
on the dataset used, and in the majority of cases, a better 
AUC-ROC was obtained with the original set of features. 
However, from a statistical point of view, these differ-
ences were not significant. On the other hand, the dif-
ferences were always statistically significant in the three 
data sets where the use of all features increased perfor-
mance. Thus, using all features instead of the original fea-
ture set does not seem to result into a loss of predictive 
performance, and it is advisable to use all features in radi-
omic studies.

Tuning the feature set during cross-validation 
improved the predictive performance slightly further, and 
no drop in AUC-ROC was seen compared to the original 
set of features. This was not surprising since the original 
set and the set of all features were part of the tuning, and 
indeed, these sets were performing best on three data-
sets. However, when the best-performing model is com-
pared to the model trained on all features, the differences 
were not statistically significant except for the melanoma 
dataset. Therefore, it is reasonable to tune the feature 
set during cross-validation to obtain the highest AUC-
ROCs, if computational power is of no concern.

Considering the tradeoff between sample size and 
improvement in AUC-ROC, it seems that when only a 
few samples are available, the performance of the original 
feature set is slightly better, even though, as observed, not 
necessarily statistically so. On the other hand, when more 
samples are available, the modeling can better deal with 
the higher dimensionality of the full set of features.

The correlation analysis between the different feature 
sets showed that they are quite strongly correlated and 
have a pairwise Pearson correlation coefficient of about 
0.70. In other words, each feature from one set is corre-
lated with a feature from the other set with an average 

correlation of r = 0.70. However, this should be taken 
with caution because the correlation only accounts for a 
linear association, whereas machine learning models can 
utilise nonlinear associations. Therefore, the high cor-
relation does not directly reveal the performance of the 
feature set.

Overall, our study shows that the increased dimension-
ality that results from the application of preprocessing fil-
ters does not significantly affect predictive performance. 
While one could argue that this is not surprising since 
feature selection methods can potentially remove those 
features that are not helpful and thus reduce the increas-
ing dimensionality to a manageable level, it is known that 
feature selection is generally unstable at high dimensions 
[21, 22]. However, we have shown that the features com-
ing from the preprocessing filters are quite highly cor-
related with the original set and with each other. This 
correlation may be the reason why, despite unstable fea-
ture selection methods, increased dimensionality does 
not entail a loss in predictive performance.

The focus of our study was the impact of the preproc-
essing filters on the predictive performance, which was 
not systematically studied in previous studies. Most of 
them were conducted to assess the impact of preproc-
essing filters on the variability and reproducibility of the 
extracted features. For example, Rinaldi et al. [5] studied 
the impact of scanner vendor and voltage on the fea-
tures extracted from computed tomography (CT) scans 
in patients with non-small-cell lung cancer (NSCLC). 
They showed that wavelet features have lower stability 
than LoG features. Using CT scans from patients with 
NSCLC, Fave et  al. [6] analysed how far applying pre-
processing filters changes the volume-dependency of 
features and their univariate correlation with overall sur-
vival. Their results showed that preprocessing filters have 
a large impact on both. Um et  al. [7] studied the effect 
of preprocessing filters, namely rescaling, bias field cor-
rection, histogram standardisation, and isotropic resam-
pling, on the scanner dependency of features extracted 
from magnetic resonance imaging (MRI) of patients with 
gliomas. They concluded that histogram standardisation 
has the largest impact. In the same spirit, Moradmand 
et al. [8] showed that bias correction and denoising have 
a large and different effect on the reproducibility of fea-
tures preprocessed with image filters like wavelet and 
LoG. These effects were not in the focus of our study, 
although they are key for clinical application, since pre-
processing filters can potentially reduce noise, harmonise 
feature values coming from different scanners [23], and 
reduce interobserver variability [24]. In other words, they 
can have a large effect on the both, reproducibility and 
generalizability.
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In our study, we used PyRadiomics for feature extrac-
tion and preprocessing. Strictly speaking, our results, 
therefore, only apply to this software package. Since 
other radiomics software packages may use different def-
initions of the preprocessing filters, it is unclear whether 
our observations also apply to these software packages. 
The Image Biomarker Standardization Initiative has 
recently started a project to arrive at a standardised defi-
nition of preprocessing filters to achieve more reproduc-
ibility [25].

For the radiomics pipeline we used in this study, we 
had to make several decisions that could potentially have 
an impact on the results and on the reproducibility of the 
models. One is data quantization; in this case, we decided 
to use a fixed bin width of 25, which is the default and 
recommended method in PyRadiomics [11]; however, the 
Image Biomarker Standardization Initiative recommends 
a fixed number of bins [26]. Ideally, this decision should 
be considered a hyperparameter and be determined for 
each dataset individually. However, since a different 
quantization affects all feature sets equally, we expect 
our statements for other quantization to be valid as well. 
Therefore, we repeated the experiments with fixed bin 
numbers of 100 and observed that the conclusions of our 
study still hold (the results can be found in the Supple-
mental material). Another parameter of the radiomics 
pipeline that might affect the results is the normalisa-
tion of the data; here, we have chosen to normalise only 
the MRI data, but not the CT data, since CT scans are 
comparable to each other in terms of the intensity values. 
However, it has been shown that normalisation can be 
useful even in this case. For example, Schwier et al. [27] 
demonstrated that normalising apparent diffusion coeffi-
cient data leads to a higher reproducibility of the features. 
There are further decisions that can highly affect the pre-
dictive performance of the models, including the valida-
tion scheme, choice of feature methods, and classifiers. 
Thus, for a given dataset, it is reasonable to optimise all 
these choices to obtain a most predictive and reproduc-
ible model; for example, a decorrelation step might be 
employed to further counteract the negative effects of 
high dimensionality of the datasets.

Ultimately, the clinical usefulness of radiomics can only 
be judged using external datasets. Since such datasets with 
high sample numbers coming from multiple centres are 
still missing largely, we employed nested cross-validation. 
Therefore, our results can be seen as preliminary. In addi-
tion, not using explicit validation data might give rise to a 
positive bias, even though nested cross-validation should 
give a relatively unbiased estimation, if the external data 
follows the same distribution [13]. Comparing our AUC-
ROCs to those of Starmans et  al. [28], it is striking that 
using the original set of features on four datasets (Desmoid, 

GIST, Lipo, Liver), the performance is slightly below the 
95% CI reported there. For using all features, only in one 
case (Liver) was the performance lower, while no differ-
ence could be seen when using the best feature set. This 
confirms that using too few features indeed might hurt the 
predictive performance of the models. Nonetheless, one 
must keep in mind that our pipeline was different from 
that of Starmans et al. [28]. For example, in our study, all 
scans were homogeneously resampled since it was shown 
that this might increase predictive performance [29]. In 
addition, they only used a slice-based approach to extract 
texture features which could also affect the results, as our 
study shows. They also use preprocessed features but only 
extract 534 features. In addition, their validation scheme is 
different from ours.

In conclusion, preprocessing filters can have a large influ-
ence in radiomic studies. Our results demonstrate that even 
though they increase the dimensionality of the dataset, they 
can improve the predictive performance of the models.
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