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Abstract

Background: Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed
at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs).

Methods: After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-
enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey
level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs)
and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff
distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation
coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image
used for the 2D ROI.

Results: The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient
(median 0.85, interquartile range 0.78–0.89) and Hausdorff distance (0.21 mm, 0.14–0.31 mm). Comparing RF values,
MRC ranged 0–752% for 2D and 0–1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D.
An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a
variability between 2D and circular ROIs higher than inter-reader variability.

Conclusions: A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs
can be extracted from both 3D and 2D segmentations of CRC liver metastases.

Keywords: Colorectal neoplasms, Image processing (computer-assisted), Liver neoplasms, Radiomics, Tomography (x-ray,
computed)
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Key points

� Reader contouring variability may impact on
radiomic features of liver metastases from colorectal
cancer (CRC).

� Stable textural features against inter-reader variability
can be extracted from contrast-enhanced computed
tomography images of liver metastases from CRC.

� Two-dimensional contouring seems to be less
affected than three dimensional contouring by
inter-reader variability.

� Two-dimensional contouring may help reduce
variability of readers’ lesion segmentation.

Background
In the current era of targeted therapies, the search for
imaging biomarkers linking the genetic and molecular
characteristics of tumours to the clinical and morpho-
functional phenotype is pivotal to provide oncologic
patients with more tailored treatment options [1, 2]. A
special effort to achieve this goal is being made in colo-
rectal cancer (CRC), one of the most common malignant
tumours worldwide [3]. Since 20% of patients with CRC
already have liver metastases at the time of diagnosis
and up to 50% will develop them within the first 3 years
[4], to improve the detection of molecular alterations
over time and space of these lesions is crucial to opti-
mise the patient’s management [5].
In this context, great expectations were raised by

radiomics, namely the quantitative analysis of medical
imaging for the extraction of high-throughput data with
diagnostic, prognostic and predictive value [6]. Evidence
correlating the textural radiomic features (RFs) extracted
from the computed tomography (CT) scans of CRC liver
metastases with the clinical outcomes of the patients
have accumulated in the last few years. For example, tex-
ture analysis has been used to predict the tumour grade
and overall survival of patients with stage IV CRC before
treatment [7, 8], the response of liver metastases to first-
line chemotherapy [9, 10] and the risk of liver recur-
rence after hepatic resection of CRC lesions [11].
However, the extraction of the RFs is a complex

process with many steps, each of them characterised by
specific issues that could compromise the robustness of
the results [12]. Widely studied sources of uncertainty in
radiomics are the image acquisition and reconstruction
settings and the preprocessing manipulations [13, 14],
but inter-reader variability in lesion segmentation is also
critical, especially considering that the current standard
of reference is manual contouring [15, 16] and that mul-
ticentric trials, involving multiple readers, are recom-
mended to assure adequate statistical power [6, 17].
Depending on how the regions of interest (ROIs) are
encompassed in the segmentation, the subsequent

quantitative analysis can be significantly modified [18].
For liver metastases, this issue is particularly relevant:
given that the tumour type and site are crucial aspects
to consider, a higher inter-reader uncertainty is expected
for lesions with blurred boundaries or low-contrast
interface with the surrounding tissues [16, 19, 20].
Moreover, in terms of reproducibility and predictive
value, controversies still exist regarding the choice of in-
cluding in the segmented ROI the whole lesion or just
its more representative cross-section [21–23].
At present, the role of contouring in RFs reproducibility

has been addressed in several studies [24–27], but to the
best of knowledge, none of them concerned hepatic CRC
metastases. Therefore, the aim of this work is to assess the
influence of inter-reader contouring variability on the tex-
ture analysis of CRC liver metastases, focusing on the role
of three- and two-dimensional segmentation in determin-
ing RFs robustness. Since different approaches can impact
on the results of radiomic studies but also on the time and
resources needed for the data collection and analysis, to
optimise the contouring strategy is essential.

Methods
Patients
This was an ancillary study conducted on CRC patients
(n = 31) enrolled from 2016 to 2018 in the multicentric
phase II HERACLES trial (NCT03225937), exploring the
efficacy of dual human epidermal growth factor receptor
2 blockade in patients harbouring human epidermal
growth factor receptor 2-amplified metastatic CRC. Clin-
ical inclusion and exclusion criteria of the trial were pre-
viously reported [28, 29]. A further selection was
performed to include only patients with liver metastases.
The study was approved by the Ethics Committee, and
all the patients signed written informed consent to allow
the images of their diagnostic examinations to be used
for scientific purposes at the time of enrolment in the
study.

Reading protocol
Two residents in the radiology department, referred as
R1 for hospital 1 and R2 for hospital 2 (3 and 4 years of
experience, respectively) reviewed the available imaging.
For each patient, only the portal venous phase of an ab-
dominal computed tomography (CT) scan with intraven-
ous injection of iodinated contrast agent was used. This
phase is the most used for radiomics of liver metastases
and provides the best visualisation of the lesions [30].
Every metastasis was individually evaluated if suitable

for the analysis (i.e., to provide adequate textural informa-
tion) by applying the following exclusion criteria [31, 32]:
(a) maximum axial diameter lesser than 10mm; (b)
tumour boundaries not surely identifiable because of arte-
facts or confluent lesions. Any disagreement about the
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selection of specific lesions was resolved through consult-
ation between the two readers.
Both readers measured the largest axial diameter of all

the lesions with a digital calliper. The two readers
contoured the whole lesion volume using a three-
dimensional (3D) region of interest (ROI) and the largest
and most representative area on the axial slice using a
two-dimensional (2D) ROI of the metastases from the
original CT images. For the segmentation task, R1 used
3D Slicer v.4.10.0 (www.slicer.org) and R2 used MIPAV
(Medical Image Processing, Analysis and Visualization,
http://mipav.cit.nih.gov), both of them allowing lesion
contouring by generating polygonal meshes. All the sets
of ROIs were exported as NIfTI binary labelmaps.
Considering the main lesion for each patient, in the

same slice of the 2D ROI, R1 also segmented two circu-
lar ROIs (Fig. 1): the smallest inclusive of the whole
metastasis and the largest one completely inside it. This
additional set of segmentations was intended to assess
the impact of a simplified segmentation protocol on
inter-reader variability.
All segmentations were finally approved by two experi-

enced radiologists with over 20 years of experience.

Extraction of radiomic features
The RFs were extracted from the ROIs using Imaging
Biomarker Explorer (IBEX v. 1.0β) platform, a free open-
source software developed by the MD Anderson Cancer
Center (Houston, USA). For this study, 32 textural RFs
from the grey level co-occurrence matrix (GLCM) and
the grey level run length matrix (GLRLM) were considered
[33]. Also, max 3D diameter, number of voxels, and volume
were extracted from the ROIs. For the calculated RFs, the
consistency with the image biomarker standardisation

initiative (IBSI) standard was verified using an IBSI-
validated in-house developed software [34].
The RF extraction in the study was performed on the

original CT image setting in IBEX a fixed range of 480
grey levels (from -200 to 279 HU) discretised in 32 bins,
with offset = 1 and symmetry = 1. All the directions
allowed by the software were considered. The range was
reasoned on the grey level distribution of the overall me-
tastases, whilst the number of bins was chosen as a com-
promise to limit the noise contribution and the loss of
texture information [35].
No resampling nor other preprocessing were applied

to the CT images.

Data analysis
All analyses were performed on Microsoft® Office Excel
spreadsheet, except for the calculation of the intraclass
correlation coefficient (ICC) based on a single-reader
two-way random-effects model, which was performed on
R v.3.5.1 (“Psych” package). When required, statistical
significance was established at the p < 0.050 level.
The inter-reader contouring agreement on both 3D

and 2D ROIs was evaluated through two similarity indi-
ces: average Hausdorff distance (HD) and Dice coeffi-
cient (DC), both calculated with “SlicerRT” toolkit [36].
Hausdorff distance measures how far two subsets of a
metric space are from each other, thus indicating the
longest distance between the boundaries of two con-
tours. The average HD was chosen so as to have a better
representation of global contouring discrepancy [37]. In-
stead, the DC quantifies the spatial overlap between two
contours/volumes, ranging from 0 for null overlapping
and 1 for perfect overlapping [38]. The two indices em-
phasise different characteristics: the DC quantifies the

Fig. 1 For each metastasis, the whole lesion volume and the largest axial cross-section were segmented by two readers. a Purple line (reader 1)
versus yellow line (reader 2) contouring. The largest two-dimensional (2D) region of interest (ROI) of the main lesion was confronted with two
circular ROIs, one inside the metastasis and one outside it. b Purple line (reader 1) 2D versus yellow line (smallest circular ROI inclusive of the
whole lesion) versus azure line (largest circular ROI completely inside the lesion)
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discrepancy in voxel labelling, whilst the HD performs
better at detecting deviations (spikes, holes, etc.) which
alter the contour shape but do not substantially modify
the volume [26].
For both DC and HD, calculated over all the segmen-

tations, median value and interquartile range (IQR) were
reported. The Wilcoxon signed-rank test was performed
to evaluate if there was a significant difference between
the indices calculated for 2D and 3D ROIs. Spearman’s
rho correlation coefficient between the values of DC and
HD was also calculated.
To verify if the size of the metastases could influ-

ence the inter-reader agreement, a linear regression
analysis was performed to evaluate the association be-
tween the following parameters: manual largest axial
diameter and max 3D diameter versus DC and HD;
volume/area (cm3/cm2) versus DC and HD. The
strength of correlation was reported following Evans’s
interpretation [39].
The influence of inter-reader variability on the ex-

tracted RFs was assessed considering the relative change
[(RFR1 − RFR2)/RFR1)] both on 3D and 2D ROIs for all
lesions. For each RF, the mean relative change (MRC)
was calculated. The inter-reader MRC in RF values
was also compared with the MRC obtained from R1 2D
ROIs against the circular ROIs, taking R1 values as a
reference.
The ICC of the RFs between the two readers was

calculated to describe how strongly the two datasets
resembled each other and so to guide the selection of
RFs according to robustness [40]. In accordance with the
literature [41], the ICC was interpreted as follows: poor
agreement for ICC ≤ 0.50; moderate agreement for 0.50
< ICC ≤ 0.75; good agreement for 0.75 < ICC ≤ 0.90;
excellent agreement for ICC > 0.90.

Results
Of the original 31 patients of the trial, 14 (45%) were ex-
cluded because they had no liver metastases (n = 6), be-
cause of the presence of imaging artefacts (n = 3) or
because there were only lesions < 10 mm (n = 2) or only
confluent metastases largely occupying the liver paren-
chyma (n = 3). Therefore, 17 patients from 3 different
centres were finally included and, according to the selec-
tion criteria, a total of 70 lesions were considered suit-
able for the analysis by the readers. The demographical
data of the included patients are reported in Table 1,
whilst detailed information about the acquisition and re-
construction parameters of their CT scans are listed in
Table 2.
The largest axial diameter of the selected lesions

ranged from 10 to 80 mm, with a median value of 27
mm (IQR 17–29mm) according to R1 and 26 mm (IQR
16–26mm) according to R2.

Contouring variability
Moving from 3D to 2D ROIs, an increase in DC and a
reduction in HD was observed. Specifically, 3D ROIs
showed a median DC of 0.76 (IQR 0.71–0.82) and a me-
dian HD of 1.15 mm (IQR 0.90–1.41 mm). For 2D ROIs,
the median DC was of 0.85 (IQR 0.78–0.89), and median
HD was of 0.21 mm (IQR 0.14–0.31 mm). According to
Wilcoxon signed-rank test, these differences were sig-
nificant for both DC (p < 0.001) and HD (p < 0.001).
Moreover, a very strong negative correlation was found
between HD and DC for 2D ROIs (rho = -0.85; p <
0.001), but only a weak negative correlation was found
for 3D ones (rho = -0.38; p < 0.001) (Fig. 2). An example
of discrepancy between the two similarity indices is pre-
sented in Fig. 3.
Weak-to-moderate correlations (-0.45 ≤ rho ≤ 0.45)

were found between the two similarity indices and size
parameters for both 3D and 2D ROIs (Table 3).

Impact on texture analysis
As illustrated in Fig. 4, different RFs showed to have dif-
ferent susceptibility to inter-reader variability. In particu-
lar, inter-reader MRC ranged from 0 to 1567% for 3D
ROIs and from 0 to 752 for 2D ROIs. The inter-reader
discrepancy was below 10% for more than 60% of the
RFs extracted from both the sets of ROIs. For 24/32
(75%) RFs, the discrepancies were lower when calculated
from 2D than 3D ROIs. Specifically, this applied to 5/11
(45%) of GLRLM RFs and to 19/21 (90%) of GLCM RFs.
The ICC gave similar results in terms of RF robustness

(Fig. 5). In particular, 11/32 (34%) RFs for 3D ROIs and
17/32 (53%) RFs for 2D ROIs were found to be very ro-
bust (ICC > 0.90). In both cases, the ICC of inter-reader
variability ranged from 0.06 to 0.99.
When combining the results from MRC and ICC ana-

lysis (Table 4), the following RFs were found most stable:
long run emphasis, long run high grey level emphasis,
low grey level run emphasis, run percentage, and short
run emphasis= for GLRLM as well as difference entropy,
dissimilarity, homogeneity 1, homogeneity 2, and inverse
difference normalised for GLCM.
Comparing RF values from R1 2D ROIs with those

from the circular ROIs, a lower discrepancy between R1
and R2 ROIs was observed in most cases (Table 5). In
particular, taking account of the MRC, inter-reader vari-
ability was equal or preponderant for 30/32 (94%) RFs.

Discussion
In this study, the impact of inter-reader contouring vari-
ability on texture analysis of CRC liver metastases was
assessed comparing the 3D and 2D ROIs of 70 lesions
from 17 patients and the respectively extracted RFs.
The segmentation process of liver metastases is a chal-

lenging task due to the site and the vague boundaries of
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the lesions. However, we obtained satisfactory mean DC
values, consistent with similar studies [19, 42, 43]. Also,
as suggested by the weak correlation between the simi-
larity indices and the lesion size, the influence of the lat-
ter on segmentation variability seemed limited.
In general, the inter-reader contouring agreement was

significantly better for 2D ROIs rather than 3D ROIs. As
far as the latter set, considering that HD is more sensi-
tive to ROI shape variation than DC [26], pairs of seg-
mentations with high values for both the similarity
indices were more common. Indeed, in 3D volume seg-
mentation, the more peripheral slices along the z-axis

containing the lesion suffer more for partial volume ef-
fect and the impact of all the sources of variability is
greater [44, 45]. The median values of the two similarity
indices and the correlation found between them for the
2D ROIs corroborated this finding.
The improvement in contouring agreement observed

for 2D ROIs predictably corresponded to a reduction of
inter-reader discrepancy for the majority of the RFs, al-
though as small as the number of RFs robust to inter-
reader variability was similar in the 3D and 2D sets. The
robustness of these RFs was confirmed also by the ICC,
so that there was correspondence between RFs with low

Table 1 Demographical data and number of analysed metastases for each patient enrolled in the study

Patient Age at CT (years) Sex Primary cancer site Number of analysed
metastases

Lines of treatment Chemotherapy regimens

1 77 F Rectum 1 2 FOLFOX + bevacizumab
FOLFIRI + cetuximab

2 66 M Colon (left) 5 2 FOLFOX
FOLFIRI + cetuximab

3 62 M Colon (left) 3 4 FOLFIRI + cetuximab
Regorafenib
Trifluridine/tipiracil
Capecitabine

4 59 M Colon (left) 1 2 FOLFOX
FOLFIRI + cetuximab

5 56 M Rectum 1 2 FOLFIRI + cetuximab
Not available

6 40 M Colon (left) 2 2 FOLFOX + panitumumab
FOLFIR I + bevacizumab

7 61 M Colon (left) 4 2 FOLFOX + panitumumab
FOLFIRI + aflibercept

8 56 M Colon (right) 6 2 FOLFOX + panitumumab
FOLFIRI + aflibercept

9 47 M Colon (left) 5 2 FOLFOX + cetuximab
FOLFIRI + bevacizumab

10 32 M Colon (left) 7 3 FOLFOXIRI + bevacizumab
FOLFIRI + aflibercept
Panitumumab

11 66 M Colon (left) 6 2 XELIRI
FOLFOX + bevacizumab

12 63 F Colon (left) 8 2 FOLFOX + panitumumab
FOLFIRI + bevacizumab

13 61 F Colon (left) 1 2 XELOX + bevacizumab
FOLFIRI + cetuximab

14 52 M Rectum 2 2 FOLFOX
FOLFOX + bevacizumab

15 41 M Colon (left) 5 1 FOLFOX + panitumumab

16 59 M Rectum 4 1 FOLFIRI + bevacizumab

17 60 M Colon (left) 9 3 FOLFOX + cetuximab
FOLFIRI + bevacizumab
FOLFIRI

Previous drug regimens are reported in chronological order of administration. All patients had histological-confirmed adenocarcinoma of the colon/rectum with
metastatic liver disease not amenable to salvage surgery. In all cases, the primary tumour was KRAS (Kirsten rat sarcoma) wild-type and HER2 (human epidermal
growth factor 2) positive
F Female, M Male, FOLFIRI Leucovorin + fluorouracil + irinotecan, FOLFOX Leucovorin + fluorouracil + oxaliplatin, FOLFOXIRI Leucovorin + fluorouracil + oxaliplatin
+ irinotecan, XELIRI Capecitabine + irinotecan, XELOX Capecitabine + oxaliplatin
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inter-reader variability and RFs with a good or excellent
ICC.
Analysing the RFs with the greatest instability, it is

reasonable to believe that mathematical issues, like the
high exponents (e.g., power 3 or 4) in the formula of the

“cluster” features, contribute to amplify the differences
in the ROIs. On the other hand, the RFs most influenced
by contouring variability may also be the most sensitive
ones to texture variation, i.e., those with the best capability
to capture the information within the CT images of CRC

Table 2 Acquisition and reconstruction parameters extracted from the header DICOM of the computed tomography scans, patient
by patient

Patient Manufacturer Model Slice thickness (mm) Increment (mm) Pixel size (mm2) kVp Kernel

1 Siemens Sensation 64 3 3 0.8242 × 0.8242 120 B30f

2 Siemens Somatom Definition 3 3 0.7031 × 0.7031 120 B30f

3 Philips Brilliance 64 3 3 0.8730 × 0.8730 100 B

4 Siemens Sensation 64 3 3 0.7812 × 0.7812 120 B30f

5 Siemens Sensation 64 3 3 0.8750 × 0.8750 120 B30f

6 Toshiba Aquilion 3 3 0.7210 × 0.7210 120 FC13

7 Siemens Sensation 64 3 3 0.7852 × 0.7852 120 B30f

8 Siemens Sensation 64 3 3 0.8047 × 0.8047 120 B30f

9 Siemens Somatom Definition 3 3 0.7773 × 0.7773 100 B30f

10 Hitachi Eclos 2.5 2.5 0.7100 × 0.7100 120 32

11 Hitachi Eclos 2.5 2.5 0.8410 × 0.8410 120 32

12 Siemens Somatom Definition 3 2 0.6875 × 0.6875 100 I30f/3

13 GE Optima CT520 Series 2.5 2.5 0.8477 × 0.8477 120 Standard

14 GE LightSpeed Pro 32 0.625 0.625 0.8926 × 0.8926 120 Standard

15 Siemens Somatom Definition 3 2 0.6328 × 0.6328 100 I30f/3

16 Siemens Somatom Definition 3 2 0.7969 × 0.7969 100 I30f/3

17 Siemens Somatom Definition 3 2.5 0.7344 × 0.7344 120 I30f/3

All images had a matrix size of 512 × 512 and were acquired 70–80 s after contrast injection with an automatic exposure control system

Fig. 2 Correlation between Dice coefficient and average Hausdorff distance calculated for the two-dimensional (2D) and three-dimensional
(3D) regions of interest (ROIs) segmented by reader 1 and reader 2. 2D ROIs, Spearman rho = -0.85 (p < 0.001); 3D ROIs, Spearman
rho = -0.38 (p < 0.001)
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liver metastases, and thus conceivably, the RFs with the
best potential predictive value. For example, Simpson
et al. [11] found that “contrast, correlation and homogen-
eity” were associated with hepatic disease-free survival in
patients with CRC liver metastases. In the current analysis,
the first two RFs showed a mild-to-high inter-reader vari-
ability, which is consistent with a greater sensitivity to tex-
ture variation.
These aspects must be considered when choosing the

RFs to create radiomics predictive models since the
“noise” related to inter-reader variability could eclipse
meaningful information in the texture of CRC liver me-
tastases, but the selection of only very robust RFs may
be inadequate to detect differences in the image texture
as well.
The ideal solution to eliminate the interference of

inter-reader variability would be to dispose of semiauto-
matic or, preferably, automatic methods for the segmen-
tation of liver metastases [15, 26]. However, the tools
currently available are not yet reliable enough, as shown
by testing 24 valid state-of-the-art liver tumour segmen-
tation algorithms [43], so that operator input remains in-
dispensable [46].

Interestingly, as shown by the comparison between
standard ROIs and circular ROIs, when one of the
readers drew simple geometric ROIs, less tailored on the
lesion boundaries, the discrepancy in RFs values were
lower or comparable to that relative to the other reader.
This suggests that in the multicentric setting inter-
reader variability may be handled in two ways: involving
a large number of readers, so as to allow the selection of
robust RFs according to individual reproducibility (e.g.,
including RFs with ICC > 0.90 in final models) [47]; or
with a “centralised” approach based on few readers to
minimise variability. In the second case, a simplified seg-
mentation protocol to accelerate the contouring task
could be followed, as it would introduce a variability at
most equivalent to that determined by multiple readers.
However, such analysis was limited to the 2D ROIs

due to the complexity of applying it to the 3D ones, so it
should be verified with larger samples. A viable com-
promise between assessing the lesion in its entirety and
limiting the inter-reader disagreement could be to ex-
clude from the segmentation the most peripheral slices
along the Z-axis of the metastasis. Alternatively, clinical
radiomic-based models could mix RFs extracted from
3D and 2D ROIs on the basis of their dependency on
inter-reader variability, provided that the selection and
extraction of the 2D ROIs may require additional work
unless implementing automatic processes.
These methods are worthy of future investigation, con-

sidering that the main limitation of our study is not be-
ing able to assess how the improvement of RFs stability
against contouring variability impact on the predictive
performance due to cohort size. Indeed, only few pa-
tients were assessed, but each metastasis was singularly
considered, so that the number of lesions analysed was
consistent with similar works. Another limitation is that
the impact of the acquisition/reconstruction settings of
CT scans was not considered. The heterogeneity of scan-
ning equipment and protocols, due to the time span and
referral of patients from different institutions, could have
reduced the congruency of the segmentation, but this ra-
ther strengthens the results about the textural features
found to be stable. Also, two different contouring soft-
wares were used, although eventual differences hence
derived can be considered incorporable in the concept

Fig. 3 Example of discrepancy between similarity indices (patient
number 7): Dice coefficient was 0.86 (median two-dimensional, 0.85),
whilst average Hausdorff distance was 0.48 mm (median two-
dimensional, 0.21 mm). The regions of interest (blue and red lines)
were approximately overlapping, but the readers differently
interpreted the nature of a hypodense area adjacent to
the metastasis

Table 3 Correlation results (Spearman’s rho coefficients) between similarity indices (Dice coefficient and average Hausdorff distance)
and size parameters of the segmented metastases for both 2D and 3D ROIs

Correlation 2D ROI 3D ROI

DC HD DC HD

ROI manual axial diameter 0.42 (p < 0.001) -0.04 (p = 0.760) 0.45 (p < 0.001) 0.45 (p < 0.001)

ROI maximum 3D diameter 0.37 (p < 0.001) -0.12 (p = 0.382) 0.42 (p < 0.001) 0.41 (p = 0.002)

ROI volume/area 0.30 (p < 0.001) -0.17 (p = 0.209) 0.36 (p < 0.001) 0.30 (p = 0.024)

2D Two dimensional, 3D Three dimensional, DC Dice coefficient, HD Hausdorff distance (average), ROI Region of interest
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Fig. 4 Means of relative changes between the RFs extracted from each lesion (n = 70) contoured by the two readers. The results from two-dimensional
and three-dimensional segmentations were compared. Out of scale values have been truncated. The cluster features showed the greatest instability
between readers. GLNU Grey level non-uniformity, HGLRE High grey level run emphasis, LGLRE Low grey level run emphasis, LRE Long run emphasis, LRHG
LE Long run high grey level emphasis, LRLGLE Long run low grey level emphasis, RLNU Run length non-uniformity, SRE Short run emphasis, SRHGLE Short
run high grey level emphasis, SRLGLE Short run low grey level emphasis

Fig. 5 For all radiomic features, the intraclass correlation coefficients (ICC) of inter-reader variability are plotted and compared between three-dimensional and
two-dimensional segmentations. “Excellent” ICC cutoff is shown as a red line. R1 Reader 1, R2 Reader 2, GLNU Grey level non-uniformity, HGLRE High grey level
run emphasis, LGLRE Low grey level run emphasis, LRE Long run emphasis, LRHGLE Long run high grey level emphasis, LRLGLE Long run low grey level
emphasis, RLNU Run length non-uniformity, SRE Short run emphasis, SRHGLE Short run high grey level emphasis, SRLGLE Short run low grey level emphasis
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of inter-reader variability itself and, in general, it better
replicated a likely situation in multicentric settings. Fi-
nally, the study focused only on the second-order
features.
In conclusion, the current study highlighted the possi-

bility to extract textural RFs robust against contouring
variability from CRC liver metastases. This is essential to

translate radiomics into clinical practice since the cre-
ation of large labelled imaging datasets will necessarily
require the involvement of multiple readers. For the
most stable RFs, both 3D and 2D segmentations were re-
liable, but a 2D approach, which is more pragmatic and
less time-consuming, could mitigate inter-reader con-
touring variability. This may expand the choice of RFs

Table 4 Mean relative changes and intraclass correlation coefficients are reported for all the textural features and both the 2D and
3D ROI sets

2D ROI 3D ROI

Relative change ICC Relative change ICC

GLRLM GLNU 16% 0.34 21% 0.20

HGLRE 7% 0.95 8% 0.69

LRE 5% 0.99 4% 0.99

LRHGLE 8% 0.98 7% 0.99

LRLGLE 8% 0.99 9% 0.96

LGLRE 7% 0.93 9% 0.46

RLNU 6% 0.99 5% 0.99

Run percentage 2% 0.99 2% 0.99

SRE 3% 0.98 2% 0.99

SRHGLE 7% 0.96 9% 0.83

SRLGLE 10% 0.73 9% 0.61

GLCM AutoCorrelation 7% 0.70 7% 0.74

Cluster prominence 418% 0.06 641% 0.08

ClusterShade 752% 0.13 1567% 0.06

Cluster tendency 100% 0.20 116% 0.20

Contrast 13% 0.95 22% 0.89

Correlation 30% 0.49 57% 0.35

Difference entropy 3% 0.96 6% 0.90

Dissimilarity 5% 0.97 9% 0.93

Energy 23% 0.77 25% 0.64

Entropy 10% 0.76 11% 0.66

Homogeneity 1% 0.98 2% 0.96

Homogeneity2 2% 0.98 3% 0.95

InformationMeasureCorrel1 65% 0.62 136% 0.48

InformationMeasureCorrel2 22% 0.49 46% 0.35

InverseDifferMomentNormal 0% 0.95 0% 0.89

InverseDifferNormal 0% 0.97 0% 0.94

InverseVariance 1% 0.96 2% 0.88

MaxProbability 19% 0.82 21% 0.74

SumAverage 3% 0.73 3% 0.76

SumEntropy 12% 0.45 14% 0.34

SumVariance 6% 0.80 6% 0.84

Bold text is used for features found robust against inter-reader variability (ICC > 0.90 and mean relative change < 10%)
2D Two dimensional, 3D Three dimensional, GLCM Grey level co-occurrence matrix, GLNU Grey level non-uniformity, GLRLM Grey level run length matrix, HGLRE
High grey level run emphasis, ICC Intraclass correlation coefficient, LGLRE Low grey level run emphasis, LRE Long run emphasis, LRHGLE Long run high grey level
emphasis, LRLGLE Long run low grey level emphasis, RLNU Run length non-uniformity, SRE Short run emphasis, SRHGLE Short run high grey level emphasis, SRLGLE
Short run low grey level emphasis.
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Table 5 Comparison of the radiomic features obtained using manual 2D ROIs by R1 versus R2 and, for R1, using manual versus
circular 2D ROIs

For the main lesion of each patient, the RFs from R1 2D ROIs were compared to R2 2D ROIs and to the circular 2D ROIs (extROIs and intROIs). Mean relative
discrepancy taking R1 values as reference is reported. Inter-reader variability was preponderant for nearly all RFs. As expected, RFs from extROIs and intROIs had a
divergent behaviour in respect of R1 2D ROIs, whose characteristics were intermediate. The colour code refers to the absolute value of discrepancy
2D Two-dimensional, extROI Smallest circular segmentation including the whole lesion, GLCM Grey level co-occurrence matrix, GLNU Grey level non-uniformity,
GLRLM Grey level run length matrix, HGLRE High grey level run emphasis, intROI Largest circular segmentation completely inside the lesion, LGLRE Low grey level
run emphasis, LRE Long run emphasis, LRHGLE Long run high grey level emphasis, LRLGLE Long run low grey level emphasis, R1 Reader 1, R2 Reader 2, RFs
Radiomic features, RLNU Run length non-uniformity, ROIs Region of interest, SRE Short run emphasis, SRHGLE Short run high grey level emphasis, SRLGLE Short run
low grey level emphasis
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suitable for building clinical models, but further studies
evaluating the relationship between segmentation strat-
egy and outcome predictivity are warranted, so as to op-
timise the extraction of meaningful information from
the CT texture of CRC liver metastases.
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