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Abstract

Finite element modeling is a precious tool for the investigation of the biomechanics of the musculoskeletal system.
A key element for the development of anatomically accurate, state-of-the art finite element models is medical
imaging. Indeed, the workflow for the generation of a finite element model includes steps which require the
availability of medical images of the subject of interest: segmentation, which is the assignment of each voxel of the
images to a specific material such as bone and cartilage, allowing for a three-dimensional reconstruction of the
anatomy; meshing, which is the creation of the computational mesh necessary for the approximation of the
equations describing the physics of the problem; assignment of the material properties to the various parts of the
model, which can be estimated for example from quantitative computed tomography for the bone tissue and with
other techniques (elastography, T1rho, and T2 mapping from magnetic resonance imaging) for soft tissues. This paper
presents a brief overview of the techniques used for image segmentation, meshing, and assessing the mechanical
properties of biological tissues, with focus on finite element models of the musculoskeletal system. Both consolidated
methods and recent advances such as those based on artificial intelligence are described.
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Key points Background

In the last decades, finite element analysis (FEA) has be-
e Finite element analysis allows predicting quantities come a precious tool for the investigation of the biomech-
not measurable in vivo or in vitro. anics of the musculoskeletal system. In comparison with
e Medical imaging plays a critical role in state-of-the- other methods such as in vivo measurements (e.g, im-
art finite element models. aging, motion analysis) and in vitro testing of cadaveric
e DPatient-specific finite element models are typically specimens, FEA allows for the prediction of quantities
based on computed tomography and magnetic which are not measurable by means of experimental tech-
resonance imaging. niques, such as local stresses and strains, do not require
e Mechanical properties of biological tissues can be large investments such as those necessary for acquiring
estimated by applying finite element analysis to and managing cadaver specimens, complex testing infra-

three-dimensional imaging techniques. structures, or motion analysis laboratories [1, 2].

Medical imaging plays a critical role in the develop-
ment of anatomically realistic, state-of-the-art finite
element models to be used for biomechanical investiga-

: — , tions. Indeed, the workflow for the model development
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1. Segmentation, i.e, the assignment of each pixel/
voxel of the images to a specific material such as
bone, and cartilage;

2. Two-dimensional (2D) or three-dimensional (3D)
reconstruction of the geometry of the various
components of the model, possibly followed by the
application of enhancing filters (e.g, surface
smoothing);

3. Meshing, ie, the creation of the computational
mesh, or grid, necessary for the approximation of
the equations of mechanics [3, 4];

4. Assignment of the material properties to the
various parts of the model (Fig. 1) [1].

The finite element model is then ready to be used for
the simulation of any biomechanical scenario, through
the application of appropriate boundary and loading
conditions.

Although several papers described in detail the indi-
vidual steps of the development of a finite element
model, the available literature does not include a review
paper focusing on the use of medical images for the gen-
eration of an anatomically accurate model, especially
considering recent advances such as artificial intelligence
techniques and state-of-the-art methods for extracting
material properties from the images themselves. This
narrative review therefore aims at analysing the steps of
the workflow for the development of a finite element
model which are based on medical imaging, namely, seg-
mentation, meshing, and patient-specific assessment of
the material properties of the tissues, highlighting recent
improvements and future perspectives.

Segmentation
Segmentation is the process of partitioning an image
into multiple segments that contain pixels with similar
features [5]. In medical imaging, these different segments
are usually related to different tissue classes, for ex-
ample, muscles, fat, or bone tissues. The main goal of
segmentation in the medical domain is to define object
boundaries in images to create 3D reconstructions of the
body segment of interest, which is the first step toward
the generation of a finite element model. Moreover, seg-
mentation can be used for the study of tissue diseases
such as osteoarthritis, for example, by extracting import-
ant geometrical features from the 3D shape and size of
the joint that are useful for studying the pathology [6].
From a technical point of view, segmentation tech-
niques can be divided in methods based on thresholding,
edge detection, snakes, regions, clustering, watershed,
partial differential equations, and artificial neural net-
works (ANN) [7]. Whereas some of these techniques
require the intervention of a human user, others are able
to perform the task of segmentation automatically.
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Threshold-based methods subdivide the images with
respect to pixel intensities; threshold values could be
either manually or automatically selected. In edge- and
snakes-based methods, the aim is detecting directly the
object boundaries in order to segment the regions of
interest. Region-based methods segment the images
starting from a seed (initial pixels), selected either manu-
ally or automatically, that grows step by step forming a
region of interest. Segmentation methods based on clus-
tering techniques aim at dividing the image into clusters
of pixels with similar features. Watershed methods use
the gradient of image (in terms of difference between
pixel values) to determine the boundaries of each region,
which correspond to the pixels having the highest gradi-
ents. Partial differential equations are used mainly to de-
tect edges and boundaries, then employed to build the
actual segments in the image. Finally, ANNs are cur-
rently the golden standard for medical images segmenta-
tion thanks to their state-of-the-art performances in the
detection and identification of regions of interest.

Detailed technical descriptions of the segmentation
methods described above are widely available elsewhere
[7, 8]. The next paragraphs present a brief overview of
medical image segmentation paying specific attention to
the methods which have been used in the musculoskel-
etal area for the creation of image-based biomechanical
models.

Manual and semiautomatic segmentation

Manual segmentation is a process in which an expert
transcriber identifies different zones on an image and as-
signs them to a specific category. Manual segmentation
is considered the most accurate technique if properly
performed, but it is time-consuming and it is affected by
inter- and intra-user variability [9] (Fig. 2).

Project-specific tools are commonly developed to sup-
port manual segmentation. For example, a group of re-
searchers developed a tool for subject-specific femur
modeling [11]. The graphical user interface allows the
user to interact with the image stack through a 3D scene
and a 2D scene. The main segmentation tools are a
brush which adds single segmentation points, and a
curve tool which uses splines to add a connected se-
quence of segmentation points.

To overcome the limitations of manual segmentation,
some tools to enable a semiautomatic procedure have
been developed. Such tools combine the robustness of
manual segmentation with the speed of automatic seg-
mentation and are therefore widely used. As mentioned
above, semiautomatic methods can be based on thresh-
olding, region growing, edge detection, snakes, etc. In all
these methods, the user must input and set some param-
eters interactively [12]. The supposed advantages of the
semiautomatic approach over manual segmentation was
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Fig. 1 The workflow for the development and use of a finite element model from medical images (for example computed tomography scans):
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demonstrated by Scheys et al. [13], who developed a
pipeline to build subject-specific musculoskeletal models
allowing for a quantitative comparison of the two tech-
niques; a 50% time gain for the semiautomatic method
compared to the manual one was demonstrated.

A research group presented a tool for the semiauto-
matic segmentation of MRI spinal cord images [14], in
which the user had to mark the centreline of the spinal
cord (which acts as seed) on a few slices, which was then
used by an automatic segmentation algorithm to per-
form the segmentation of the cord itself. The cross-

sectional areas calculated by the segmentation were found
to be associated with relevant clinical disability scores.

Another group of researchers used a semiautomatic
approach for segmenting images of the shoulder [15].
The segmentation process exploited an established sys-
tem of placing seed points representing the object of
interest and other points representing the background.
The developed tool was able to perform the segmenta-
tion of the humerus, scapula, and clavicle, and to use
them as reference to create a statistical representation of
the position of the deltoid muscle.
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Fig. 2 Example of segmentation of a knee joint from magnetic resonance imaging scans, manually performed by a human operator,
automatically determined by a state-of-the-art deep learning method or with a novel method employing neural networks and a deformable
model described in [10]. a Definition of the region of interests for femoral cartilage (green) and tibial cartilage (red); b manual segmentation
created by an expert human operator; ¢ automated segmentation obtained with a state-of-the-art deep learning method; d three-dimensional
reconstruction of the automated segmentation; e, f filtered images enhancing the contours necessary for the novel approach; g, h segmented
slice and three-dimensional reconstruction of the segmentation obtained with the novel method. Reprinted with permission from [10]

Stammberger et al. [16] made a comparison between
B-Spline snakes and manual segmentation in the meas-
urement of the thickness of the articular cartilage. The
developed semiautomatic algorithm was able to delineate
the cartilage boundaries with minimal manual interven-
tions. The semiautomatic segmentation showed excellent
intra-observer repeatability in the femoral and tibial car-
tilage volumes (intraclass correlation coefficient 0.989
and 0.965, and mean differences of 1.9% and 3.0% for
repeated segmentations, respectively).

Cartilage segmentation was also the aim of a study by
Liukkonen et al. [17] in which a radial intensity-based
method was applied. The user had to mark a reference
point from the central point of bone and edge points of
the cartilage from a sagittal slice of the knee. Then, an
automatic algorithm calculated intensity profiles of the
pixel to obtain the segmentation.

Automatic segmentation

In automatic segmentation, the thresholds or the bound-
aries of the objects of interest are automatically assigned
by a program without human intervention [18]. These
approaches can allow for a significant reduction of re-
quired time and human resources, at the risk of possibly

imprecise results due to the complex morphology and
anatomy of the musculoskeletal system [19].

Automatic thresholding

The concept of automatic thresholding is to automatic-
ally select one or more optimal grey-level threshold
values to separate objects of interest in an image [11].
One of the best performing methods is the Otsu tech-
nique [20], which outperformed other sophisticated
techniques that used the entropy of the histogram of the
pixel values [21, 22] or minimum error methods [23].
The method was further improved by [11], who ad-
dressed its sensitivity to object size. Indeed, in the ori-
ginal formulation of Otsu thresholding, objects larger
than the background may be classified as background
and vice versa.

Artificial intelligence

In the last years, artificial intelligence (AI) and in par-
ticular deep learning have been widely used in computer
vision tasks, among which for the segmentation of im-
ages, thanks to their state-of-the-art performances which
are currently unmatched by the more traditional image
processing methods (Figs. 2 and 3). The boost in
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performance was facilitated by the development of deep
ANN architectures, especially convolutional neural net-
works (CNNs), and by the availability of the large data-
sets of segmented images.

In the musculoskeletal field, a group of researchers
used a CNN to detect the edge in ultrasound images
[26]. The authors trained the network to recognise if a
pixel is an edge or non-edge pixel using a ground truth
obtained both from a Canny edge detector [27] and
manual annotations by an expert anatomist. The perfor-
mances were evaluated using several metrics and
highlighted very good performances.

U-Net is a convolutional network architecture widely
used for fast and precise segmentation of images. In a
work by Hiasa et al. [28], a Bayesian convolutional net-
work with the U-Net architecture was implemented to
automatically extract muscle segmentation from clinical
CT scans. The authors evaluated the performances on
two datasets using the Dice coefficient (DC) [29] and the
average symmetric surface distance (ASD). The results
show a DC of 0.89 and an ASD of 0.994 mm, which con-
stituted a statistically significant improvement in com-
parison with other state-of-the-art techniques such a
multi-atlas method and another ANN-based approach,
the FCN-8s architecture [30].

Concerning segmentation of MRI images, Liu et al.
combined a deep CNN with a 3D deformable model
with the aim of improving the segmentation accuracy of
cartilage and bone within the knee joint [10] (Fig. 2).
The authors used a SegNet architecture to perform
pixel-wise tissue classification, and they achieved good
performances in terms of accuracy and computational
costs.

Recent advances in deep learning demonstrated the
capabilities of generative models, which could learn
complex distributions in images, in image segmentation
tasks, and in particular for the detection of abnormal-
ities. Among the various solutions based on generative
models, Chen et al. recently showed the potential of
using variational and adversarial auto-encoders to detect
abnormalities in medical images [31].

Meshing

The segmented image is then used to construct an
accurate 3D model of the anatomy and to subdivide it
into smaller domains called elements [32]. This process
is called finite element meshing and is essential for de-
veloping biomechanical models for FEA; indeed, a good-
quality mesh is necessary to obtain accurate results from
the simulations. Besides, the choice of the meshing
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techniques may have a critical impact on the degree of
anatomical and geometrical fidelity of the resulting bio-
mechanical model [33, 34].

Finite element meshes can be classified as either struc-
tured or unstructured depending on the local grid con-
nectivity (Fig. 4). Structured meshes have a regular
pattern of connections between elements. Structured
grids cannot always be used to create high-quality, ana-
tomically realistic meshes, depending on the geometrical
complexity of the domains; in such cases, unstructured
meshes should be preferred. Indeed, although special
techniques to adapt unstructured grids to complex
geometries are available, in some cases, they lack the
necessary flexibility to create suitable meshes in the
near-wall regions. In general, although structured meshes
are traditionally preferred due to their inherent higher ac-
curacy, unstructured meshes consisting of higher order el-
ements can provide acceptable accuracy and convergence
characteristics [35, 36]. Hybrid structured/unstructured
grids able to combine the capability of unstructured mesh-
ing to resolve complex geometries and the high accuracy
of structured meshing in the regions far from the bound-
aries are also being increasingly employed [35, 37].

Unstructured meshing

Unstructured meshes are most commonly composed of
triangular (2D) or tetrahedral (3D) elements. The tech-
niques used to create unstructured meshes can be classified
as Delaunay-based, advancing-front base, and octree-based
methods [35]. Delaunay-based methods generate and refine
the Delaunay triangulation of a set of progressively inserted
vertices inside/on a given surface domain. This technique is
very effective in 2D mesh generation but may not work well
in generating tetrahedral meshes, in which a number of
nearly degenerate elements, commonly known as slivers,
often occur. Advancing front-based methods start from the
boundary of a domain and then insert new points inside it
in order to generate triangles or tetrahedra with acceptable
shapes and desired size. These methods are sensitive to the
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quality of the surfaces describing the boundaries, which
typically consists of triangles in the 3D space; poorly shaped
boundaries often give rise to a low-quality mesh. Octree-
based methods recursively subdivide the domain until some
predefined stopping criteria are reached. Other methods
aimed at increasing the quality of a tetrahedral mesh exist:
topology optimisation which modifies the connectivity
between mesh vertices while keeping vertex positions
unchanged; vertex insertion/deletion inside the mesh;
vertex smoothing, which repositions the coordinates of
the vertices while keeping the connectivity unchanged
[38, 39]; variational methods, which account for the in-
tensity of the underlying image to optimise the position
of nodes [40, 41].

Structured meshing

A structured mesh usually comprises entirely quadrilat-
eral (2D) or hexahedral (3D) elements. The structured
meshing of an object enclosed by a single surface con-
sists of the following steps: (1) a set of points on the sur-
face of the object and a few interior points are obtained;
(2) an implicit function is constructed such that the
function defines the surface of the body; (3) a set of vox-
els for 3D (pixels for 2D) that encompass the entire do-
main for which the implicit function are constructed; (4)
a finite element discretisation is obtained based on the
voxels that are encompassed by the implicit surface. The
selection of the voxel size is a crucial step in this proced-
ure, since it is associated with both the accuracy of the
finite element solution and with the computational re-
sources necessary to solve the finite element problem.

A special case of structures meshing is the voxel-based
finite element meshing method, which directly converts
the segmented images from 3D voxels to eight-node
hexahedral elements. This method is unable to capture
complex domains, which may in turn lead to inaccurate
finite element analysis results near the boundaries, espe-
cially in case of a large voxel size. Voxel-based meshes
are however commonly employed for computational

irregular domain (right). Reprinted with permission from [35]

Fig. 4 Examples of structured mesh on a regular domain (left), structured mesh on an irregular domain (middle) and unstructured mesh on an
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biomechanical investigations, especially for the study of
the biomechanics of trabecular bone, due to the ability
of voxel-based modeling to automatically assign proper-
ties based on greyscale intensities [42, 43].

An alternative approach for the creation of structured
meshes is based on statistical shape modeling and mesh
morphing, in which an existing high-quality mesh is fitted
to a patient-specific anatomy [44]. These techniques allow
for the semiautomatic generation of anatomically realistic
structured meshes in a relatively short time and are thus
gaining popularity for patient-specific modeling [45].

Combining unstructured and structured mesh

Hybrid meshes consisting of both hexahedral and tetrahe-
dral elements can be created by using the marching-cubes
algorithm, which defines elements based on the value (in-
side the domain, outside of it, on the boundary) of the
eight voxels which constitute a cube, the basic shape of a
hybrid mesh [46, 47]. When a voxel corresponding to one
of the eight vertices of the cube is considered to be on the
boundary, a triangular facet is created dividing the cube
into two portions in order to create tetrahedral elements.
In this way, the outer layer of the hybrid mesh is com-
posed of tetrahedral elements, while the internal region of
hexahedral elements. The two layers share the same set of
nodes and are connected seamlessly, thus maintaining fi-
nite element compliance. This method allows the assign-
ment of heterogeneous mechanical properties to different
structures. This meshing technique allows for a good per-
formance in terms of both geometry conformability and
finite element accuracy [38, 43].

Meshing of musculoskeletal models

Musculoskeletal models meshed with both tetrahedral
elements or hexahedral elements have been described
(Fig. 5). In general, tetrahedral elements are used most
frequently since this element type can conform to the
complex boundaries of anatomical structures; however,
higher-order tetrahedral elements or high mesh density,
resulting in higher computational costs, is often required
to achieve good accuracy. Hexahedral elements are
therefore favoured whenever possible. As mentioned
above, geometrically complex anatomical structures can-
not always be decomposed into an assembly of hexahe-
dral elements, and hybrid meshes are therefore being
increasingly used [38, 43].

Identification of material properties from imaging
The development of a finite element model requires the
assignment of material properties, such as elastic modu-
lus, Poisson ratio, and tensile strength, to each of its ele-
ments. Whereas most published models do not attempt
to replicate in detail the local properties of the tissues
on a patient-specific basis, in several papers information
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about the material properties is directly extracted from
the images and then implemented in an element-wise
fashion in the models. Such an approach has been widely
employed for the simulation of the local properties of bone
based on quantitative CT (QCT) and high-resolution QCT
(HR-QCT) [49, 50], using various techniques to assign the
properties to either nodes or elements [51, 52]. Addition-
ally, other methods based on MR and ultrasound elastogra-
phy [53] as well as special MR techniques such as delayed
gadolinium-enhanced MRI of cartilage (AGEMRIC), T1rho
and T2-mapping [54] have also been used for the creation
of numerical models.

Bone properties from QCT and high-resolution CT

Dual energy x-ray absorptiometry (DXA) is the most
widely used technique for quantitative bone assessment
in clinical practice. Despite this, DXA is not able to as-
sess volumetric bone mineral density (BMD) or bone
geometrical parameters [55], which make it less suitable
for estimating material properties for finite element
modeling. Thus, alternative techniques have been ex-
plored to assess bone properties, such as the use of QCT
and HR-QCT. The typical aim of such models is im-
proving fracture risk prediction by simulating mechan-
ical loads applied to models with image-derived material
properties (strength, stiffness, etc.) [56].

A QCT-based FEA study showed that the mechanical
properties are associated with fracture in all loading con-
ditions [57]. Interestingly, the study showed that the
strength calculated with FEA in the posterolateral loading
in men or the posterior loading in women was more asso-
ciated with incident hip fracture [57]. Similarly, another
study confirmed the association between QCT-based FEA
measures of vertebral strength and incident vertebral frac-
ture, with similar or better ability in fracture prediction
compared to areal BMD [58]. Of note, a FEA study on
standard CT of vertebral cadaveric specimens showed
strong linear correlation between CT/FEA bone strength
and the results of the experimental tests (r = 0.938, p <
0.0001) [59]. Finite element models based on CT have also
been successfully employed for the study of load transfer
in the cranio-maxillofacial skeleton [60].

Since voxel size was shown to impact the accuracy of
FEA results [61], high-resolution imaging has the poten-
tial to markedly improve the quality of the predictions.
HR-QCT have been used to perform 3D measurements
of the peripheral skeleton (typically radius and tibia) to
get information about volumetric BMD, cortical/tra-
becular geometry, and ultimately on bone quality. These
finite element models with material properties derived
from HR-QCT are typically built by directly transform-
ing the voxels into elements [56]. Cadaver studies at dis-
tal radius and tibia showed very high correlation
between FEA-derived parameters of bone strength and
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b

stiffness with loading parameters (with > 0.9) [62, 63].
Clinical studies on patients with forearm fractures
showed that FEA-HR-QCT quantities, such as FEA-
estimated failure load, were poorer at contralateral ra-
dius compared to control subjects without fractures [64].
Finally, studies have shown a good and statistically sig-
nificant correlation between HR-QCT FEA observations
and those measured with QCT at both central sites, sug-
gesting a possible use of peripheral measurement as sur-
rogate for getting information from hip and lumbar
spine [65]. As a matter of fact, it has to be noted that
the use of HR-QCT is still limited in clinical practice
due to reduced availability of devices and the higher
costs compared to DXA. Thus, results from HR-QCT-
derived finite element modes are still considered an ex-
quisite research tool, despite the very promising results
in terms of fracture prediction [56].

MRI/ultrasound elastography

Elastography is an imaging tool able to map tissue stiff-
ness investigating the response of biologic tissues to an
excitation and tracking propagating strain waves (Fig. 6).
Indeed, a low-frequency vibration determines a tissue
deformation that can be assessed and quantified by im-
aging modalities like MR and ultrasound. From mea-
surements of tissue elasticity, it is possible to calculate
values of stiffness reconstructing the mechanical proper-
ties via inversion algorithms [66]. Thus, elastography
might be applied to identify and monitor stiffness
changes of human tissues in different disorders and may
be useful to derive mechanical properties for the con-
struction of finite element models.

MR elastography (MRE) has the advantage of provid-
ing a large and deep field of view. To date, MRE has
been tested in some musculoskeletal settings with prom-
ising results. MRE seems to be feasible and reproducible
in differentiating the nucleus and annulus regions of the
intervertebral disc in vivo [67]. Further, MRE has dem-
onstrated to detect mechanical property changes of the
disc, with shear stiffness measurements having shown to
highly correlate with intervertebral disc degeneration
[68]. Preliminary phantom and in vivo studies showed
the feasibility of this technique to assess mechanical and
functional properties of skeletal muscles under passive
(rest) conditions [69] and after activation with dynamic
exercises [70]. This data might be used as a reference in
future studies on muscle disorders in addition to other
quantitative MR imaging biomarkers of muscle structure
and function [71].

Ultrasound elastography is widely available, easy to
perform, cheaper, and faster than MR. Strain elastogra-
phy applies compressive forces and allows assessing tis-
sue stiffness through a qualitative evaluation or ratios
with neighbor tissues. Shear wave elastography, in turn,
provides a quantitative assessment of shear wave propa-
gation in tissues. According to the last clinical indica-
tions for musculoskeletal ultrasound by the European
Society of Musculoskeletal Radiology, ultrasound elasto-
graphy has now for Achilles tendinopathy an evidence
level of B and an indication grade of 3, thereby being
considered the first choice technique for this condition
[72]. Indeed, it is well-known that tendon thickness,
echotexture, and neovascularisation detected by B-mode
and power-Doppler do not completely express the actual
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Fig. 6 A 31-year-old male patient with healthy left Achilles tendon. a B-mode ultrasound image on longitudinal axis shows the normal
thickness and echotexture of the proximal third of the Achilles tendon. b Longitudinal real-time strain sonoelastography shows the
normal appearance of the proximal third of the Achilles tendon as blue, which represents stiff tissue. Subcutaneous fat tissue over the
tendon appears yellow to green indicating soft tissue. ¢ Shear wave elastography shows that the normal tendon is hard (red) and
homogeneous, with the softer tissue over and below the tendon that is easy to distinguish. (d) The box is the region of interest to

status of Achilles tendinopathy [73]. Ultrasound elasto-
graphy has also been advocated as a potential comple-
mentary diagnostic tool to better characterise soft tissue
masses [74, 75], although controversial results have been
published with elastography having still no clear add-
itional role to B-mode currently [76].

dGEMRIC, T1rho, and T2 mapping

MRI is the gold standard technique for the evaluation of
cartilage disease, with fat-suppressed proton density and
T2-weighted sequences being generally used for this
purpose [77]. Nevertheless, standard MRI scans are not
able to early detect cartilage and intervertebral disc ultra-
structure changes. To date, a number of quantitative MR
tools exist to identify biochemical information about car-
tilage health and subtle abnormalities of collagen fiber
architecture, water, and proteoglycan content within the
joint cartilage, including dGEMRIC, T1rho, and T2 map-
ping [78] (Fig. 7). Such quantitative information can be
valuable for the development of finite element models, es-
pecially for multi-physical models which account for the
presence of a fixed charge density, swelling phenomena,
and a complex anisotropy deriving from the microarchi-
tecture of the tissue of interest.

The dGEMRIC requires the intravenous injection of
Gadolinium-based contrast agent that distributes through-
out the cartilage. The contrast agent (positively charged)
is repulsed from the glycosaminoglycans (negatively
charged), thereby its distribution inversely correlates with
glycosaminoglycans content [79]. Thus, T1 relaxation can
be applied to indirectly assess the glycosaminoglycans

content of the cartilage [80]. Nevertheless, the use of non-
contrast functional MR sequences has been preferred over
the last years especially in view of recent findings of Gado-
linium accumulation in human tissues after multiple
contrast-enhanced MR examinations [81].

T1rho allows to assess the interactions of water mole-
cules with proteoglycans/glycosaminoglycans, since pro-
tons dissipate more energy when they are in proximity
of these macromolecules [82]. Hence, proteoglycans/gly-
cosaminoglycans depletion is associated with longer
Tlrho values. This makes Tlrho highly sensitive for
early changes of joint cartilage, as decrease content of
these macromolecules precedes the disruption of colla-
gen and the increase of water content [83]. The main
issue of this sequence is the high specific absorption rate
and the risk of tissue heating due to the power of radio-
frequency waves.

T2 mapping results from the evaluation of T2 relax-
ation times of tissues after the acquisition of images of
the same slice using multiple echoes (multi-echo se-
quence) [84, 85]. T2 mapping allows indirectly evaluat-
ing the collagen architecture of the cartilage. Indeed, the
extracellular matrix of healthy cartilage traps the water
molecules, leading to its typical low T2 signal intensity.
When the collagen matrix breaks down, it becomes per-
meable to water with an increase of T2 relaxation times
[86]. Of note, the main cons of T2 mapping are its sus-
ceptibility to the magic angle effect and the fact that
proteoglycans/glycosaminoglycans depletion precedes
the increase of water content related to extracellular
matrix breaking down [87].
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Fig. 7 Magnetic resonance imaging of the sacroiliac joints of a 42-year-old female patient. Oblique axial T1-weighted turbo spin-echo image of
both sacroiliac joints (a); in detail the left sacroiliac joint (c). The corresponding oblique axial T2 maps (b, d) show the ROIs manually drawn on
both sacral and iliac articular side of the joint space of the left sacroiliac joint

Future perspectives and conclusions

The last years have seen the imposing rise of artificial
intelligence and machine learning in many research and
industrial field, including radiology. With the exception
of automatic segmentation, these techniques did not
gain a widespread use among the biomechanical com-
munity yet, in part due a rather conservative mindset
and the mechanical engineering background of many
researchers working in this field, in which computer
science play a minor part. Nevertheless, papers in which
artificial neural networks have been used to improve the
accuracy of finite element models of the musculoskeletal
system are starting to appear and show indeed great
potential [88, 89]. Besides, finite element analysis may
also benefit from the recent advances in artificial
intelligence-based predictive models, which can guide
and enhance the extraction of clinically relevant results
from the numerical simulations by integrating the bio-
mechanical results with predictions based on available
medical knowledge and data. In summary, we believe
that these disruptive technologies will have a major im-
pact in the field of finite element analysis, and research
efforts and funds should be dedicated to a better integra-
tion between FEA, artificial intelligence, and the large
databases of clinical and radiological data which are ne-
cessary for the development of such models.

The paradigm of personalised or precision medicine,
in which decisions and treatments are tailored on the in-
dividual patient with the aim of maximising benefits
while limiting risks, is one of the major new frontiers in

medical research. The paradigm is based on a high-
resolution model of the individual patient, also known as
“digital twin,” which covers anatomy, genetics, response
to drugs, etc. In the musculoskeletal field, a personalised
model needs to take into account biomechanical aspects,
since the success of the treatments is inherently associ-
ated with biomechanical variables such as bone quality,
body weight, and the individual anatomy in general. Per-
sonalised finite element models are therefore a key step
for precision musculoskeletal medicine, and we expect
that their importance will rise in the next future. As dis-
cussed in the previous paragraphs, whereas the current
technologies allow for a satisfactory reconstruction of the
individual anatomy based on medical images and research
efforts are mostly dedicated to reduce the necessary work-
load, obtaining personalised material properties remains
challenging, and further research in this field is warranted.
Personalised loading and boundary conditions, which are
also necessary for patient-specific biomechanical modeling
and have not been discussed in this paper since they are
not related with medical imaging, are also a challenge and
indeed a field of active research.

Another direction of expected developments as regards
the commercialisation of imaging software that allows for
obtaining mechanical information more and more access-
ible and easy to use, also thanks to a closer collaboration
with industrial partners. Implementing the use of these
tools in clinical practice will further facilitate the transi-
tion from conventional to quantitative and personalised
imaging.
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In conclusion, we presented a brief overview of the
techniques used for segmenting medical images, building
a finite element mesh, and assessing the mechanical
properties of biological tissues from imaging data, with
the aim of developing finite element models for the bio-
mechanical simulation of the musculoskeletal system.
Both consolidated methods, many of which have been
used for decades, and recent advances such as those
based on artificial intelligence have been described. We
believe that the recent and forthcoming innovations in
the latter field will have a major impact on numerical
analysis, fostering the use of patient-specific biomechan-
ical modeling in personalised medicine approaches.
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