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Breast DCE-MRI: lesion classification using
dynamic and morphological features by
means of a multiple classifier system
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Abstract

Background: In breast magnetic resonance imaging (MRI) analysis for lesion detection and classification,
radiologists agree that both morphological and dynamic features are important to differentiate benign from
malignant lesions. We propose a multiple classifier system (MCS) to classify breast lesions on dynamic
contrast-enhanced MRI (DCE-MRI) combining morphological features and dynamic information.

Methods: The proposed MCS combines the results of two classifiers trained with dynamic and morphological
features separately. Twenty-six malignant and 22 benign breast lesions, histologically proven, were analysed.
The lesions were subdivided into two groups: training set (14 benign and 18 malignant) and testing set (8
benign and 8 malignant). Volumes of interest were extracted both manually and automatically. We initially
considered a feature set including 54 morphological features and 98 dynamic features. These were reduced
by means of a selection procedure to delete redundant parameters. The performance of each of the two
classifiers and of the overall MCS was compared with pathological classification.

Results: We obtained an accuracy of 91.7% on the testing set using automatic segmentation and combining
the best classifier for morphological features (decision tree) and for dynamic information (Bayesian classifier).
With implementation of the MCS, an increase in accuracy of 12.5% and of 31.3% was obtained compared
with the accuracy of the Bayesian classifier tested with dynamic features and with that of the decision tree
tested with morphological parameters, respectively.

Conclusions: An MCS can optimise the accuracy for breast lesion classification combining morphological
features and dynamic information.

Keywords: Breast cancer, Dynamic contrast-enhanced MRI, Multiple classifier system, Morphological features,
Decision tree, Dynamic features, Bayesian classifier
Key points

� An MCS combined two classifiers trained with
morphological and dynamic features.

� A decision tree was used for classifying
morphological features.

� A Bayesian classifier was used for classifying
dynamic features.
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� Combining morphologic and dynamic features, 92%
accuracy can be obtained.
Introduction
Breast cancer is the most common cancer among
women in the western world. To date it is the second
leading cause of cancer death in women (after lung
cancer) and is estimated to cause 15% of cancer deaths
[1]. Therefore, screening for early diagnosis of breast
cancer is of great interest.
The currently most widespread screening method is

X-ray mammography [2]. However, this method is not
adequate for young women in the presence of dense
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Table 1 Pathology of lesions included in the training set and in
the testing set

Pathology Training set Testing set

Malignant

Invasive ductal 7 4

Invasive lobular 2 1

Invasive ductal lobular 5 2

Ductal carcinoma in situ 4 1

Subtotal 18 8

Benign

Fibroadenoma 10 5

Ductal hyperplasia 2 1

Fibrocystic dysplasia 1 1

Intraductal papilloma 1 1

Subtotal 14 8

Grand total 32 16
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breasts. Moreover, detection and characterisation of
breast lesions on mammography is difficult because of
the lack of functional information.
Dynamic contrast-enhanced magnetic resonance im-

aging (DCE-MRI) has demonstrated a great potential for
screening high-risk women, staging newly diagnosed
breast cancers, and assessing therapy effects [1], thanks
to the possibility of visualising three-dimensional (3D)
high-resolution dynamic (functional) information, not
available with mammography or with ultrasound. There-
fore DCE-MRI is gaining popularity as an important tool
for breast cancer diagnosis [3].
For breast lesion detection and classification using

DCE-MRI, radiologists agree that both morphological
and dynamic features are important [4–6]. On the one
hand, morphological features aim to quantify lesion
characteristics well assessed in the breast MRI lexicon
[6]: round shape and smooth margin for benign lesions;
irregular shape and margins for malignant lesions. On
the other hand, dynamic information has shown great
potential for quantifying tumour vascularity [6–8]: ma-
lignant lesions usually show early enhancement with
rapid washout, whereas benign lesions typically show a
slow increase followed by persistent enhancement [6].
Recent studies have attempted to take advantage of

morphological features and dynamic information: dy-
namic and morphological data, generally separately, have
been used both for segmentation of volume of interests
(VOIs) [7–11] and for lesion classification [6–15]. Nie
et al. [4] demonstrated that quantitative analysis of the
morphology and texture features of breast lesions is
feasible. These features could be selected by an artificial
neural network for differential diagnosis between breast
cancer and benign breast lesions. Agner et al. [14]
showed that good performances could be yielded using a
probabilistic boosting tree classifier in conjunction with
textural kinetic features. However, when the dataset
included both textural kinetic and morphologic features,
the performance was lower. Zheng et al. [13, 16] investi-
gated the use of a feature set including dynamic, spatial,
and morphological features with a linear classifier.
To the best of our knowledge, a multiple classifier sys-

tem (MCS) for classification of breast lesions using mor-
phological and dynamic features in DCE-MRI has not yet
been presented, although the idea of combining multiple
classifiers is not new. For example, Keyvanfard et al. [17]
proposed an MCS composed of three classifiers that used
dynamic features to classify breast lesions in DCE-MRI,
but morphological features were not used in their study.
Our aim was to propose an MCS for classifying

breast lesions using both morphological and dynamic
features on DCE-MRI. As classifiers, we used those
best suited for the problem at hand, according to our
previous study [18].
Materials and methods
Patient selection
Forty-eight women (age 51 ± 18 years, mean ± standard
deviation) with pathologically proven benign or malig-
nant lesions were examined retrospectively. All of these
subjects had undergone DCE-MRI at our cancer centre.
Twenty-six lesions were malignant and 22 were benign.
The lesions were subdivided into two groups (Table 1):
training set (14 benign and 18 malignant) and testing set
(8 benign and 8 malignant). All patients provided in-
formed consent for the use of their data for research
purposes. This retrospective study was performed ac-
cording to regulations issued by our local Institutional
Review Board.

Data acquisition
The patients underwent imaging with a 1.5-T scanner
(Magnetom Symphony; Siemens Medical System, Erlangen,
Germany) equipped with a dedicated breast coil with
16 channels. Turbo spin-echo T2-weighted axial images
(TR/TE 4000/56 ms; flip angle 180°; field of view 340 ×
340 mm2; matrix 385 × 385; slice thickness 2 mm; no
interslice gap; 56 slices covering the entire breast vol-
ume) and turbo spin-echo T1-weighted fat-saturated
axial images (TR/TE 564/12 ms; flip angle 90°; field of
view 350 × 350 mm2; matrix 512 × 256; slice thickness
2 mm; no interslice gap; 80 slices covering the entire
breast volume) were acquired for morphological imaging.
T1-weighted fast low-angle shot 3D coronal images were
acquired (TR/TE 9.8/4.76 ms; flip angle 25°; field of view
330 × 247 mm2; matrix 256 × 128; partition thickness
2 mm; no interslice gap; acquisition time 56 s; 80 slices
covering the entire breast volume). One series was ac-
quired before and nine series after intravenous injection of
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0.1 mmol/kg body weight of a positive paramagnetic
contrast material (Gd-DOTA; Dotarem, Guerbet, Roissy
CdG Cedex, France). An automatic injection system
was used (Spectris Solaris EP MR; MEDRAD, Inc,
Indianola, PA, USA) and the injection flow rate was set
to 2 ml/s followed by a flush of 10 ml saline solution at
the same rate.

Manual segmentation
Regions of interest (ROIs) to cover the entire tumour
volume were drawn manually slice by slice, by a radiolo-
gist with 22 years of experience in breast MRI, on T1-
weighted images obtained by subtracting the unenhanced
image from the fifth contrast-enhanced image using the
turbo spin-echo T2-weighted images as a guide. For
each patient, all of the slices including the lesion were
used. The segmentation was performed with OsiriX
v.3.8.1 (Fig. 1a).

Automatic segmentation
The automatic segmentation algorithm included three
steps. The first involves a breast mask extraction by
means of an automatic intensity threshold estimation
(Otsu thresholding) on the parametric map obtained,
considering the sum of intensity differences (SOD)
calculated voxel by voxel. This parameter describes the
dynamic information of the whole curve and reflects the
history of contrast agent enhancement with time:

SODp ¼ Prep þ
XT

i¼1

Postp ið Þ−Postp i−1ð Þ�� ��

where SODp is the SOD for the p voxel, Prep is the pre-
contrast intensity, Postp(i) is ith post-contrast scan and
T is the total number of scans.
The second step included hole-filling and leakage

removal by means of morphological operators: closing is
required to fill the holes on the boundaries of breast
mask; filling is required to fill the holes within the
breasts; and erosion is required to reduce the dilation
obtained by the closing operation [19, 20].
Fig. 1 Example of ROI manual segmentation (a) and ROI automatic segme
lower quadrant of the right breast
The third step included the extraction of suspicious
ROIs. The dynamic features of each voxel were analysed.
A voxel was assigned to a suspicious ROI if it satisfies
two conditions: the maximum of its normalised time-
intensity curve should be greater than 0.3, and the max-
imum signal intensity should be reached before the end
of the scan time. The first condition assures that the
voxels within the ROI have a significant contrast agent
uptake (thus excluding slow enhancement curves) and
the second condition is required for the time-intensity
pattern with plateau or wash-out [19, 20]. The choice of
the 0.3 threshold was based on the findings by Torricelli
et al. [21]. In their study, lesions with an enhancement
lower than 50% above the baseline were considered non-
tumoral. They also noticed that lowering the threshold
to 40% improved the accuracy of diagnosis. We pro-
posed a threshold of 30% in order to reduce the number
of false negatives. All procedures were implemented in
Matlab R2008a using Image toolbox (Fig. 1b).

Morphological and dynamic features
According to our previous studies [18–20], we considered
a feature set including 54 morphological features and 98
dynamic features. The main categories of morphological
features included both two-dimensional (2D) and 3D
parameters. The 2D morphological features were: mean,
standard deviation, maximum and minimum value of
areas; perimeters; complexity; radial length; and spicula-
tion. These were obtained slice by slice and then median
values were calculated. The 3D features were circularity,
compactness, smoothness, roughness, sphericity, eccentri-
city, volume, rectangularity, solidity, convexity, curvature,
and edge [4, 5, 7]. These were obtained on the entire
segmented 3D volume. For dynamic features the main
categories included area, maximum intensity ratio, relative
enhancement, relative enhancement slope, basal signal,
perfusion index, SOD, wash-in, wash-out, and time to
peak [3, 7, 11, 13].
The number of morphological and dynamic features

was reduced by a feature selection procedure to remove
uninformative and unimportant morphological features.
ntation (b) for the same multifocal confluent lesion at the external
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To keep the loss of information to a minimum we tested
the correlation-based feature selection method and the
consistency feature selection method with several
searches: the forward search, the backward search, the
bidirectional search, the greedy search, and feature rank-
ing methods. The morphological features obtained by
the selection procedure were area, eccentricity, compact-
ness, and perimeter. The dynamic features retained by
the selection procedure were the sum of intensity differ-
ence, basal signal, and relative enhancement slope.
Table 2 presents the mathematical formula for both
morphological and dynamic features retained by the
selection procedure which were used to train and test
the classifiers.
The classifiers were trained with the morphological

and dynamic features extracted by both manual and
automatic segmentation to assess whether the automatic
procedure could affect the MCS performance.

VOI classification
The proposed MCS combines the results of two classi-
fiers trained separately with dynamic and morphological
features, respectively (Fig. 2). In particular, the weighted
sum of probability of malignancy and the probability of
benignancy of the two chosen classifiers as proposed by
De Santo et al. [22] were considered.
The choice of the proposed classifier was based on a

previous study [18], where a decision tree (collaborative
filtering = 0.25; unpruned = true) and a Bayesian classi-
fier (Kernel estimator = false) gave us the best results
when trained on morphological and dynamic features,
respectively. We estimated the classifier parameters
using the training data and the subset of features obtained
by feature selection methods varying classifier parameter
values and evaluating the accuracy. A 10-fold cross-
validation procedure was chosen to train the classifiers.
Then, in order to combine the results of the two

classifiers, each suspicious voxel within the VOI was first
classified as benign or malignant based on dynamic
Table 2 Performance on the testing set obtained by the single clas

Feature Formula

Morphological Area, Ak nkdxdy where nk is number o

Perimeter length, Pk bk where bk is number of bo

Compactness in 3D, COMP S2

V3D
where S is the surface and

where vsize is the voxel size, s
of voxels in the ROI

Eccentricity, ECC
ffiffiffiffiffiffiffiffiffi
a2−b2

p
a where a is the major

Dynamic Basal signal, BS Signal intensity before contra

Relative enhancement, RE(ti)
SI tið Þ−BS

BS where ti is the ith tem

Sum of local differences, SOD SODp ¼ Prep þ
XT

i¼1

Postp ið Þ−��

ROI region of interest
information. The whole VOI was then classified as malig-
nant if the number of malignant voxels (nm) within the
VOI was higher than benign voxels (nb) within the same
VOI.
The probability of malignant lesions (Dm) and the

probability of benign lesions (Db) were calculated as
follows:

Dm ¼ nm=N

Db ¼ nb=N

where N is the total number of voxels in the lesion.
Morphological features were instead calculated for

the whole VOI and used to classify the lesion into
malignant and benign. In this case, the probability of
malignancy and the probability of benignancy were
Mm and Mb, respectively.
Finally, the VOI was classified as malignant if αDm

+ βMm > αDb + βMb, where α and β were multiplicative
coefficients (α + β = 1) which must be suitably chosen in
order to maximise the accuracy (Fig. 2).
We estimated α and β coefficients using the test set

lesions group, the subset of features retained by feature
selection methods, and the optimised classifiers obtained
by training data set analysis and evaluating the accuracy
of the MCS. A leave-one-out cross-validation procedure
was chosen as suggested by Torricelli et al. [21].
Machine learning analysis was performed using Weka

open source software (http://www.cs.waikato.ac.nz/ml/
weka/).

Statistical analysis
Sensitivity, specificity, positive and negative predictive
values, and accuracy were reported for each of the two
classifiers and for the MCS in the case of both the
manual and the automatic segmentation procedure. The
McNemar test was used to assess differences between
manual and automatic segmentation. Calculations were
sifier

f voxels in the kth slice of the ROI, dx and dy represent size of voxels

undary voxels in the kth slice of the ROI

V is the volume, defined as follows: s ¼
X

x

X

y

X

z

bROI x; y; zð Þvsizesliceth
liceth is the slice thickness; and V = nROIdxdydz where nROI is total number

axle shaft and b is the lower one

st injection

poral instant

Postp i−1ð Þ��

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


Fig. 2 Illustration of the MCS as the combination of a classifier tested with morphological features and a classifier tested with dynamic
information. Dm probability of malignant lesions, Db probability of benign lesions, Mm probability of malignity, Mb probability of benignity, α and
β multiplicative coefficients (α + β = 1)
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performed using the Statistic Toolbox of Matlab R2008a.
Values of p lower than < 0.05 was considered significant.
Results
Table 2 presents the morphological and dynamic fea-
tures retained by the feature selection procedure and
that were used to train the individual classifier. Table 3
presents the results obtained on the testing set by each
of the two classifiers using dynamic or morphological
features, both for manual and automatic segmentation.
We observed a significant difference between the perfor-
mances of classifiers when manual or automatic segmen-
tation was performed.
As far as the choice of optimal values for α and β is

concerned, we report in Fig. 3 the percentage of cor-
rectly classified lesions versus α. The best compromise
among sensitivity (92.3%), specificity (90.9%), positive
predictive value (92.3%), negative predictive value (90.9%),
and overall accuracy (91.7%) resulted in α = 0.75 with only
two false negatives and two false positives. With MCS
implementation, an increase in accuracy of 12.5% and of
31.3% was obtained when comparing the Bayesian classi-
fier using dynamic features with the decision tree using
morphological features, respectively.
Discussion
The aim of this study was to propose an MCS to
classify breast lesions on DCE-MRI. The proposed
MCS combines the results of two classifiers trained
Table 3 Performance obtained by the proposed methods on the te

Classifier Segmentation Sensitivity (%) Speci

Bayesian classifier using
dynamic features

Manual 92.3 (24/26) 81.8 (

Automatic 88.5 (23/26) 68.2 (

Decision tree classifier using
morphological features

Manual 92.3 (24/26) 77.3 (

Automatic 76.9 (20/26) 40.9 (

PPV positive predictive value, NPV negative predictive value
aMcNemar test
and tested using dynamic and morphological features
separately.
It is well known that training machine learning

classifiers with a large number of features can lead to
classifier overfitting, reducing the generalisation cap-
abilities of the classifiers and slowing down the train-
ing process. As a consequence, a selection procedure
was performed. The features retained by the selection
procedure (area, eccentricity, compactness, and perim-
eter as morphological features; and SOD, basal signal,
and relative enhancement slope as dynamic features)
were used to assess the performance of the single
classifier and of the MCS.
In our previous studies [18, 20] we analysed the

performance of several classifiers (multilayer perceptron,
support vector machine, Bayes classifier decision tree),
in conjunction with dynamic and morphological fea-
tures, separately using a ROI manual selection slice by
slice. In this study we compared the results of accuracy to
differentiate benign from malignant lesions using both
manual and automatic segmentation procedures. We
found a significant difference between the performances
of classifiers when manual or automatic segmentation was
used. Therefore, an automatic VOI segmentation proced-
ure could affect the overall performance. However, our re-
sults proved that, although a single classifier trained
separately with dynamic and morphological features
achieves a low overall accuracy, the MCS could optimise
the correct classification rate: dynamic features with the
decision tree gave 60% accuracy, morphological features
sting set

ficity (%) PPV (%) NPV (%) Accuracy (%) p valuea

18/22) 85.7 (24/28) 90.0 (18/20) 87.5 0.04

15/22) 76.7 (23/30) 83.3 (15/18) 79.2

17/22) 82.8 (24/29) 89.5 (17/19) 85.4 0.02

9/22) 60.6 (20/33) 60.0 (9/15) 60.4



Fig. 3 Percentage of correctly classified lesions by the proposed MCS versus the coefficient α
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with the Bayes classifier gave 80% accuracy, and the MCS
gave 91.7% accuracy. Overall accuracy of the MCS is com-
parable with the accuracy of each of the two classifiers
when a manual segmentation procedure was performed.
These results are interesting because ROI manual selec-
tion performed slice by slice is time consuming and oper-
ator dependent.
The findings of this study are in line with recent litera-

ture [23, 24]. In fact, Wedegärtner et al. [23] reported a
sensitivity of 83% using morphological features (irregular
lesion contour) and an area under the receiver operating
characteristic curve of 0.9 for 62 breast lesions without
automatic classification. Tzacheva et al. [15] reported a
sensitivity of 90%, a specificity of 91%, and an accuracy
of 91% using morphological features and a multilayer
perceptron classifier on 14 breast lesions. However, these
authors did not use an automatic segmentation step.
Zheng et al. [16] reported a sensitivity of 95% using a
combination of temporal, spatial, and morphological
attributes and a linear classifier for 31 subjects, but even
in this study the segmentation step was not completely
automatic. Thus, the novelty of our study is the use of a
completely automatic MCS.
Further investigation is required for an optimal choice

of α and β because the specific value could affect the
overall accuracy of the system (see Fig. 3). It is worth
noting that there is an interval of values (0.7, 0.8) in
which high performance can be obtained.
An important limitation of this study is that the clas-

sifier was trained and tested only with a small number
of subjects. As a consequence, our preliminary results
need to be confirmed on a larger number of patients.
Moreover, manual segmentation could be done by mul-
tiple readers to assess inter-observer variability. Finally,
a combination of morphological, dynamic, and also tex-
ture features could be performed.
In conclusion, we proposed an MCS to classify

breast lesions on DCE-MRI combining the results of
two classifiers tested with morphological features and
dynamic information separately. The MCS could optimise
the correct classification rate, reaching an accuracy
of 91.7%.
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