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Abstract 

It is important to achieve an efficient home energy management system (HEMS) because of its role in promoting 
energy saving and emission reduction for end-users. Two critical issues in an efficient HEMS are identification of user 
behavior and energy management strategy. However, current HEMS methods usually assume perfect knowledge of 
user behavior or ignore the strong correlations of usage habits with different applications. This can lead to an insuffi-
cient description of behavior and suboptimal management strategy. To address these gaps, this paper proposes non-
intrusive load monitoring (NILM) assisted graph reinforcement learning (GRL) for intelligent HEMS decision making. 
First, a behavior correlation graph incorporating NILM is introduced to represent the energy consumption behavior of 
users and a multi-label classification model is used to monitor the loads. Thus, efficient identification of user behavior 
and description of state transition can be achieved. Second, based on the online updating of the behavior correlation 
graph, a GRL model is proposed to extract information contained in the graph. Thus, reliable strategy under uncer-
tainty of environment and behavior is available. Finally, the experimental results on several datasets verify the effec-
tiveness of the proposed model.

Keywords Behavior correlation graph, Graph reinforcement learning, Home energy management system, Multi-label 
classification, Non-intrusive load monitoring

1 Introduction
The energy crisis is a matter of current concern all over 
the world. The energy consumption of residents and 
business end-users accounts for more than 40% of the 
total, and continues to rise [1]. In this context, improv-
ing energy efficiency on the demand side is particularly 
critical to the sustainable development of both economy 
and society [2, 3]. A home energy management system 
(HEMS) is one of the most important technologies for 
energy saving and emission reduction. It achieves the 

maximum benefit on the demand side by promoting flex-
ible loads to participate in demand response efficiently 
[4].

An efficient HEMS is built on two critical issues, i.e., 
identification of user behavior and energy management 
strategy. Behavior identification provides accurate input 
to the optimization model. Thus, developing a practical 
method which can accurately capture and describe home 
energy usage is critical to behavior identification. Then, 
an HEMS strategy can be developed after grasping user 
behavior. It is desirable that this intelligent strategy can 
not only deal with the uncertainty of exogenous informa-
tion, but also achieve rapid self-adaptation for different 
users.

Existing research either assumes that the usage behav-
ior is known in advance, or additional intrusive devices 
are used to obtain user behavior. However, considering 
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the dynamic changes of the behavior and the heavy 
deployment cost of intrusive devices, these methods 
are not practical [5]. Using non-intrusive load monitor-
ing (NILM) to assist behavior identification is a feasible 
alternative. It does not require additional investment 
and equipment transformation [6]. However, traditional 
NILM methods only disaggregate the load, but cannot 
realize behavior identification. In addition, current NILM 
methods face low disaggregation accuracy and high 
equipment requirement [7–9]. Thus, developing a prac-
tical and accurate online energy behavior identification 
method for HEMS input is still a challenging task.

For energy management strategy, some studies assume 
that behavior is known without specifying the source of 
behavioral information. Thus, these studies fail to effec-
tively consider the dynamic uncertainty of user behavior 
and result in suboptimal management strategy. Reference 
[10] describes user satisfaction according to the time 
difference between strategy decisions and habits. How-
ever, the optimization decision-making process of each 
appliance is independent of each other in this study. This 
may cause unsatisfactory decisions that do not meet the 
expectations of users. Reference [11] considers the inter-
dependence of specific appliances, such as the depend-
ence between washing machines and washer dryers. 
However, this dependence cannot reflect the correlation 
between all electrical appliances. While there is a certain 
correlation between different usage habits of appliances, 
this kind of behavior correlation contains complex and 
unstructured data. Traditional methods, e.g., LSTM or 
classic Q-learning, cannot make full use of such unstruc-
tured data to make effective decisions. Existing methods 
for exploiting behavioral information in NILM are lim-
ited [12]. Reference [13] proposes a graph-based repre-
sentation of the temporal features of appliance activities, 
but it fails to capture the dependencies among electricity 
usage patterns. In [14], label correlation is incorporated 
into behavior recognition, but it relies on the time series 
signal of appliances to capture their correlation. This may 
introduce errors or miss some information.

To compensate for the above-mentioned shortcomings, 
including the insufficient use of behavior information, 
inefficiency of behavior identification, and inadaptability 
of strategy, NILM-assisted graph reinforcement learning 
(GRL) is proposed for an intelligent HEMS strategy. The 
main contributions of this study can be summarized as 
follows.

(1) A behavior correlation graph is constructed to 
represent the complex behavior correlation. The 
dynamically updated behavior correlation graph 
can effectively represent the dynamic habits of 
users, and directly provide the necessary behav-

ior information for an intelligent decision by the 
HEMS.

(2) A behavior identification method based on multi-
label NILM technology is proposed. NILM is 
regarded as a multi-label classification question, 
which can effectively reduce the model scale. This 
behavior identification method can not only accu-
rately realize the function of load disaggregation, 
but also realize the online update of the user behav-
ior correlation graph. The generated behavioral 
features are combined with electrical features to 
effectively improve the performance of behavior 
identification.

(3) A GRL-based adaptive HEMS is proposed for 
excavating information from the behavior correla-
tion graph and for providing energy management 
strategy. The GRL model can be adjusted based on 
dynamic habits and uncertain exogenous informa-
tion. It continuously adapts to the changes of both 
internal and external factors and makes decisions 
that are compatible with user expectations.

2  HEMS framework
The proposed HEMS framework is shown in Fig. 1. The 
left part of Fig.  1 is the learning process of user behav-
ior, and is based on the multi-label NILM model, namely, 
a multi-label sub-task gated network (ML-SGN). The 
learning process of user behavior comprises four parts: 
construction of the behavior correlation graph, model 
training, appliance disaggregation, and behavior update. 
First, in order to represent the users’ initial behavior, 
a subgraph is extracted from the prior graph based on 
users’ appliance information. Next, after data preproc-
essing such as normalization, the graph and the data are 
provided to the model training proportionally. Finally, 
when the disaggregation results are obtained, the behav-
ior graph is updated and continuously provides the lat-
est behavior information for accurate disaggregation and 
effective energy management.

The right part of Fig.  1 shows the learning process of 
the HEMS strategy according to the updated and learned 
behavior graph. The strategy generates on–off commands 
on the basis of load state and optimization objectives, 
and is a process of exploration. Subsequently, all states, 
actions, and rewards are sent to the replay buffer, which 
provides data for the learner to update strategy.

The practical deployment of the proposed method is 
shown in the middle part of Fig.  1. The ML-SGN model 
uses the aggregated data provided by an outdoor electricity 
meter for load disaggregation and behavior identification. 
The HEMS strategy generates on–off commands based on 
the objective function, load states, and environment states 
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to guide users to manage home energy consumption. Spe-
cifically, the load state refers to the online state of loads, the 
environment state refers to the exogenous information, e.g., 
outdoor temperature and electricity price, and the correla-
tion state refers to the correlation information in the graph.

3  Online behavior monitoring method
3.1  Behavior representation and updating method
In this study, a graph is used to represent users’ usage 
behavior. Essentially, behavior information consists of the 
usage habits of appliances in each period of time and the 
correlations of usage habits of different applications [15]. 
Among them, the usage habits of different periods can be 
expressed by the use probability in each period, and the 
behavior correlation can be expressed by the probability 
that an appliance is used after other appliances. Behavior 
correlation is a kind of complex unstructured data, which is 
represented by graphs in this paper. Generally, graph data 
consists of nodes and weighted edges. It can describe the 
association relationship more intuitively, and is a promising 
way of dealing with complex data relations.

The nodes of the behavior correlation graph repre-
sent the appliances, the edges represent the correlations 
between the appliances, and the weights of the edges 
reflect the strength of the correlations. The weight matrix 
is called the behavior correlation matrix in this study, 
which can be calculated as:

where pi, j represents the probability that appliance ai 
works after appliance aj . Nj is the total number of times 
that appliance aj is on, and Ni, j represents the number of 
times that appliance ai works after aj.

(1)pi,j = p(ai|aj) =
p(ai, aj)

p(aj)
=

Ni,j

Nj

A priori behavior correlation matrix is used to rep-
resent the habits of mass users, and the corresponding 
graph is the users’ initial behavior correlation graph. 
The prior behavior correlation graph can be derived 
from other sources of data, such as may be publicly 
available or institutionally collected large-scale user 
datasets. In order to avoid the influence of signal noise 
and the overfitting of the priori correlation matrix, p is 
smoothed by threshold τ , as:

Clearly, −A is not a symmetric matrix and the behavior 
correlation graph is directed, as shown in Fig. 2.

The behavior correlation matrix is updated by the 
prior behavior correlation matrix and the posterior 
behavior correlation matrix, as:

where the posterior matrix p refers to the correlation 
matrix calculated based on the online behavior data of 
specific users. This comes from the results of load disag-
gregation. � is the retention ratio of the historical behav-
ior at each iteration.

(2)Ai,j =
1, pi,j ≥ τ

0, pi,j < τ

(3)A(n) = �× A(n−1) + (1− �)×
A+ p

2

Fig. 1 HEMS framework

Fig. 2 Behavior correlation graph
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3.2  NILM‑based behavior identification model
The usage probability of appliances in each period and 
behavior correlation can be obtained by behavior iden-
tification. Different from the traditional NILM, behavior 
identification needs not only to identify the type of the 
appliance, but also to extract the behavior of appliance 
usage.

Early NILM studies do not consider the information 
contained in user habits [16, 17]. In order to make effi-
cient use of behavior correlation information, recent 
research uses multi-label classification technology to 
consider label correlation [18, 19]. However, the tradi-
tional multi-label classification methods are either not 
competent for the analysis of unstructured behavior 
data, or the extracted behavior data cannot be effectively 
used for decision-making in an HEMS. Thus, this study 
improves the single label NILM model sub-task gated 
network (SGN) that is in [7], and proposes a high preci-
sion multi-label behavior identification model ML-SGN.

The structure of ML-SGN is shown in Fig. 3. The net-
work takes the aggregated power sequence and the 
behavior correlation graph as input and outputs the 
online probability of each appliance through a sigmoid 
function. At the same time, from the output load disag-
gregation results, the behavior information of specific 
users is learned and updated to ensure that the dynamic 
behavior can be described accurately.

To make sure that the correlation of appliance behav-
ior can be effectively learned during feature extraction, 
the model provides the behavior information extracted 
by a Graph Convolutional Network (GCN) layer to each 
process of electricity feature extraction. The extraction 
method in the orange dotted frame in Fig. 3 is the feature 
extraction layers in SGN, which consist of one-dimen-
sional convolutional layers and dense layers.

4  Management strategy based on GRL
4.1  Problem formulation of HEMS
In general, residential load is divided into thermostati-
cally controlled loads (TCL), interruptible loads (IL), 
transferable loads (TL), uncontrollable loads (UL), and 
distributed photovoltaic (PV) [20]. TCL mainly includes 
appliances where short-term interruptions have almost 

no impact on the comfort of users, e.g., air conditioners 
and water heaters. IL includes appliances where users 
often have no usage needs but still consume electricity, 
e.g., water dispensers. TL includes washing machines, 
washer dryers, dishwashers, and cookers, whose task can 
be delayed. UL includes lighting, etc., and unknown types 
of appliances also belong to UL. Although the energy 
consumption of these appliances cannot be adjusted, 
their information reveals user behavior and this can help 
manage the energy of other appliances more efficiently.

Thermostatically controlled load (TCL) For air condi-
tioners and water heaters, an equivalent thermodynamic 
model is used to reflect the state transfer process. The 
equivalent thermodynamic model of air conditioners [21] 
and water heaters [22] can be expressed as:

The temperature of air conditioners and water heaters 
should be controlled within specific ranges, as:

For ∀m ∈ MTCL , the closer the indoor or water temper-
ature Tn to the expected temperature Tset , the higher the 
comfort, as:

Interruptible load (IL) For IL, user comfort is related to 
the difference between management strategy and usage 
habits. The greater the difference, the lower the comfort, 
and it can be formulated as:

where m ∈ MIL . The first item of (10) represents the dif-
ference between the decisions on which appliances are 
used in each period of time and the habits of users, and 

(4)
TAC
n+1 =Tn,env + xnPACRAC − (Tn,env+

+xnPACRAC − TAC
n ) exp

−�t

RACCAC

(5)

TWH′
n+1 =[TWH

n,inject + xnPWHRWH](1

− exp
−�t

RWHCWH

)
+ TWH

n exp
−�t

RWHCWH

(6)

TWH
n+1 =

[TWH′
n+1 (V − Vn,demand)+ TWH

n,injectVn,demand]

V

(7)TAC
min ≤ TAC

n ≤ TAC
max

(8)TWH
min ≤ TWH

n ≤ TWH
max

(9)Cm,n = −|Tset − Tn|

(10)Cm,n = −xnpn −

|MUL+MIL+MTL|∑

m′=1

xm′,n−1Am′,mxn

Fig. 3 Structure of ML-SGN
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the second item represents the behavior correlation dif-
ference between the strategy and the previous habit.

Transferable load (TL) The usage comfort of TL can 
also be calculated by the difference between management 
strategy and usage habits according to (10). The work of 
these appliances is expected to be finished within the set 
time. Once the appliance is turned on, it cannot be inter-
rupted until the work is finished. These requirements are 
formulated respectively, as:

where m ∈ MTL.
In this paper, the binary decision vector xm, n is used to 

represent the working condition of appliances. xm, n= 1 
indicates that the appliance is on, otherwise it is off. 
Therefore, a set of decision variables are defined as:

4.2  Design of state
The state variables of TCL, IL, and TL are formulated 
respectively as follows:

where these variables mainly include the working status 
of the appliance itself, user comfort, and corresponding 
usage habit information. The state of temperature com-
fort sTCn  and the completion progress of work sCPn  can be 
calculated as:

In addition to the state of various loads, system state Sn 
also includes the state of the associated load Sn, cor , the 
predicted power of PV PPVn  , the electricity price ρn , and 
the outdoor temperature Tn, env , as:

(11)tm,min ≤ tm,start ≤ tm,max −�tm

(12)
tm. max−�tm∑

n=tm. min

xm.n�t = c ×�tm

(13)
tm,start+�tm∑

n=tm,start

xm.n�t = �tm

(14)X = {xm,n,m /∈ MUL; n = 1, 2, 3 . . . ,N }

(15)STCLn = {sMP
n , xn−1, s

TC
n , sRMn ,Vn,demand}

(16)SILn = {sMP
n , xn−1, s

RM
n , pn}

(17)STLn = {sMP
n , xn−1, s

CP
n , sRMn , pn}

(18)sTCn = Tn − Tset

(19)sCPn =

∑n
n′=tm,min

xm,n�t

c ×�tm

Sn, cor includes the correlation information of the two 
appliances with the largest correlation coefficient in con-
trollable loads and the correlation information of the 
uncontrollable loads, as:

where i ∈ MIL ∪MTL , and j ∈ MUL . All this correlation 
information includes the corresponding appliance’s id, 
correlation coefficient, and on–off state of the previous 
period.

4.3  Design of reward function
The optimization target of the HEMS is to minimize the 
cost of energy consumption with respect to user comfort 
and the constraints of appliance operation. Therefore, the 
reward function includes three parts: the cost of energy 
consumption, user comfort, and the penalty for violating 
the constraints, which is formulated as

where En , Cn , and Fn denote the energy consumption 
cost, comfort, and penalty, respectively. α is the energy 
consumption coefficient, Ro is a positive reward offset, 
and Sc is the feasible region that satisfies the constraints.

The electricity cost can be expressed as:

Comfort Cn includes temperature in accordance with 
(9) and (10). If the mentioned constraints (7)–(8) and 
(11)–(13) are violated, a penalty of −Fn is added to the 
reward function.

4.4  Design of GRL model
In order to effectively use the behavior information 
in the behavior correlation graph, an HEMS strategy 
based on GRL is proposed. The designed GRL model 
structure is shown in Fig.  4, where each agent corre-
sponds to one controllable appliance in the home and 
manages its optimal decision. The input of the model 
is the state of each appliance, and the output is the Q 
value of each action. The observation encoder layer 
consists of two dense layers. Since the states of differ-
ent appliances are different, independent dense layers 
are employed to code for different types of appliances. 
The convolutional layer and the Q network are also 
made up of two dense layers, which try to collect the 

(20)Sn = {STCLn , SILn , STLn , Sn,cor,P
PV
n , ρn,Tn,env}

(21)Sn,cor = {S
(1)
n,i,cor, S

(2)
n,i,cor, S

UL
n,j,cor}

(22)rn =

{
Ro + Cn − αEn Sn ∈ Sc

−Fn Sn /∈ Sc

(23)En = ρn

(
M∑

m=1

Pmxm.n − PPV
n

)
�t
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features of appliances and obtain the action value. 
Since the features have been extracted by the encoder, 
the parameters of the convolutional layer and Q net-
work can be shared among different appliances. The 
sharing of parameters ensures the model size will not 
surge with an increase in the number of loads.

To ensure the effective exploration of the action to 
obtain strategy improvement, a random decision is 
performed with probability ε, and the optimal decision 
X̂n of the model is performed with probability 1 − ε. 
The exploration rate decreases �ε after each epoch of 
training until it reaches the lowest value εd . The opti-
mal decision X̂n can be obtained by:

where G( · ) represents the GRL model.
The goal of model training is to minimize the value 

of the loss function. The loss function of the model 
training is formulated as:

where L( · ) denotes the loss function, and G′( · ) is the 
target network. θ and θ′ are the parameters of each net-
work. Sm, n and rm, n represent the observation and 
reward values of the appliance m, respectively. γ denotes 
the discount rate of the reward.

5  Performance evaluation
5.1  Datasets
To provide a fair comparison between the proposed 
behavior identification method and existing methods, 

(24)X̂n = arg maxG(Sn)

(25)L(θ) =

N−1∑

n=1

1

|M|

M∑

m=1

(ym,n − G(Sm,n; θ))

(26)ym,n = rm,n + γ maxG′(Sm,n+1; θ
′)

REDD [23] and REFIT [24] datasets are used in the 
experiments.

The REDD dataset provides energy consumption data 
of six houses. To avoid the influence of insufficient sam-
ples, the data of house 1 and house 3, which is relatively 
sufficient, is selected in this study. To realize a reason-
able comparison, the same preprocessing method in the 
SGN model [7] is used for the REDD dataset. The appli-
ances in house 1 include dishwasher, fridge, microwave, 
and washer dryer, while those in house 3 are electronic 
load, dishwasher, electric furnace, fridge, microwave, and 
washer dryer.

The REFIT dataset provides electric power meas-
urements from 20 households. The first 10 houses are 
experimented with in the official preprocessed version. 
Each house contained energy consumption data of 9 
appliances.

To distinguish the houses in the two datasets, house 1 
and house 3 in REDD are abbreviated as B1 and B3, and 
the first 10 houses in REFIT are denoted by H1–H10, 
respectively.

For energy management strategy, because neither of 
these two datasets contains all types of appliances stud-
ied in this paper, the behavior information is constructed 
by the combination of dataset extraction and behavior 
customization. In order to ensure the authenticity of 
behavior information, energy consumption data with the 
house id of "1240" in the Pecan Street dataset [25] is cho-
sen to extract the behavior. This contains the data of all 
the transferable loads in this study for 6  months. Addi-
tionally, the usage probability of a water dispenser in 
each period is customized based on the habits of most 
users. The lighting and appliances in the bedroom are 
regarded as the uncontrollable loads in this study, while 
it is assumed that water heaters and air conditioners will 
not be turned off without an HEMS. In addition, it is also 
necessary to consider the uncertainties of PV output, 
electricity price, outdoor temperature, and user demand. 
Thus, some disturbances are added according to [20].

5.2  Data preprocess
For the ML-SGN model, the remaining data of REDD and 
REFIT are used to construct a prior behavior correlation 
graph as shown in Fig. 5. The threshold τ for the process 
of construction is set to 0.25. The labels in the dataset 
and their abbreviations are shown in Table 1.

The initial behavior correlation graph for behavior iden-
tification is a subgraph extracted by the a priori graph, 
and the extraction method is to set the related edges of 
appliances that the user does not have to 0. To compare 
with the SGN model more fairly, the processing methods 

Fig. 4 Structure of GRL model
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of SGN in data preprocessing and some parameter selec-
tions are followed. The inputs of ML-SGN are the power 
sequence with length of 512 and the behavior correlation 
graph. The retention ratio � is set to 0.95. The output of 
the model is the on–off state of each appliance at the mid-
point of the sequence. The working power threshold of 
each appliance is set as 15 W. Additionally, the aggregated 
data is normalized by Z-score.method before training 
[26], and the appliances data is normalized by the max–
min method [27]. The model is trained by the Adam algo-
rithm [28], and the loss function can be expressed as:

where om and ôm represent the on–off state of appliance 
m and the predicted working probability, respectively.

For the GRL model, time step �t is equal to 1 h and N is 
24. The behavior correlation graph of GRL and the usage 
probability of each appliance are shown in Figs.  6 and 7, 
respectively. These are calculated from the data in the 
Pecan Street dataset.

Load parameters such as air conditioner and water 
heater are shown in Table  2, while Table  3 shows the 

(27)L′ = −

|M|∑

m=1

(om log ôm + (1− om) log(1− ôm))

parameters of the transferable loads, in accordance with 
[20, 29]. The curves of PV output, temperature, water 
demand and, electricity price used in the simulation are 
plotted in Fig. 8.

Fig. 5 A priori behavior correlation graph of ML-SGN

Table 1 Labels and abbreviations of appliances

Label name Abbreviation Label name Abbreviation Label name Abbreviation

Dishwasher DW Kettle KT Television site TS

Fridge, freezer FG Overhead fan FN Toaster, bread-maker TT

Microwave MW Blender, k mix BD Games console GC

Washer/tumble dryer WD Electric heater HT Vivarium VV

Electronics EL Router RT Pond pump PP

Electric furnace EF Dehumidifier DH Hi-fi HF

Washing machine WM Computer CP Water dispenser WC

Light plug LT Cooker CK Bedroom appliances BR

Fig. 6 Behavior correlation graph of GRL

Fig. 7 Usage probability

Table 2 Parameters of WH and AC

P (kW) R (°C/kW) C ((Kw h)/°C) Tmin/(°C) Tmax/(°C)

AC 1.8 1.8 0.525 23 28

WH 3.6 0.7623 431.701 54 70
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The exploration rate ε is 0.65, �ε is 0.02, εd is 0.02, and the 
discount rate γ is 0.95. These parameters are the optimal 
values selected after multiple experiments and compara-
tive analyses. The injected water temperature is 8  °C. The 
temperature ranges of air conditioner and water heater are 
between 23–28 °C and 54–70 °C, respectively. The volume 
of the water heater tank V is 40 gallons, the average rated 
power of lighting and bedroom appliances are 0.1 kW and 
0.8  kW, respectively. The penalty value Fn is 10, and the 
reward offset Ro is 10.

5.3  Evaluation method for behavior identification
Hamming loss (HL), accuracy (Acc), and F1-Score are used 
to evaluate the ML-SGN model [30]. Hamming loss LHL is 
a classical evaluation method of multi-label classification, 
and is used to reflect the misclassification of the model, and 
can be calculated as:

where NH is the number of samples. The effect of 1( · ) is 
the logical judgement of whether ôn �= on . If it is true, it 
equals 1, otherwise it is 0. LHL is the error rate, and the 
smaller the value, the more accurate the prediction.

(28)LHL =
1

NH

NH∑

n=1

1(ôn �= on)

Acc and F1-Score are commonly used in single-label 
classification. Both values range from 0 to 1, and the 
larger the value, the better the performance.

5.4  Behavior identification result
To demonstrate that the proposed ML-SGN model not 
only outperforms the traditional multi-label classifica-
tion methods, but also has stronger recognition abil-
ity than the original single-label model, it is compared 
with the classical multi-label classification model and 
multi-label k-nearest neighbor algorithm (MLKNN) [31], 
random k-label sets algorithm (RAKEL) [32], and single-
label model SGN. To prove its superior performance, it 
is also compared with the load disaggregation with atten-
tion model (LDWA) [8], which is a more advanced model 
built on SGN using attention technique.

Figure  9 shows the behavior correlation graph of the 
12 households obtained when the experiments are per-
formed on the latest data. The thicker edges in the graph 
represent the greater weights. The experimental results 
of the proposed behavior identification model on the 12 
houses are shown in Table 4, where the best performance 
of each result is highlighted in bold.

The experimental results show that the performance 
of the SGN, LDWA and ML-SGN models is significantly 
better than that of MLKNN and RAKEL. Moreover, 
except for B3 of REDD and H10 of REFIT, the experi-
mental results of other houses indicate that the improved 
ML-SGN model achieves better results in terms of ham-
ming loss, accuracy and F1-score. The average recog-
nition accuracy of ML-SGN reaches 93.2%. From the 
experimental results of B3 and H10, it can be inferred 
that considering the behavior correlation of appliances 
does not always improve the recognition accuracy or 
may even deteriorate performance. This is because of the 
overfitting of correlation features caused by few appli-
ances in these two houses.

5.5  Results evaluation of GRL
This section presents numerical simulation results to 
evaluate the performance of the NILM-based HEMS. 
Users’ energy consumption is simulated considering 
uncertainties of environment and usage behavior. The 
convergence of average Q value and constraints viola-
tions in training are shown in Fig.  10. As seen, each 
agent can converge to the maximum Q value after train-
ing. At the beginning of the training, the average Q value 
of the agent is negative because it is easy to violate the 
constraints (7)–(8) and (11)–(13). After continuous 
exploration, the agent gradually learns how to produce 
more proper actions, and the average Q value gradually 
increases from negative to positive. Finally, it converges 

Table 3 Parameters of transferable loads

Pm (kW) tm, min tm, max Δtm (h) c

WM 1 7:00 19:00 2 1–2

WD 0.8 8:00 21:00 1

DW 0.4 7:00 23:59 1

CK 2.4 6:00 23:00 1

Fig. 8 Predicted data
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to the maximum Q value, while the violation of con-
straints also gradually disappears and user comfort is 
ensured.

After the model converges, the optimal management 
strategy of appliances can be carried out. To evaluate 
the proposed method’s performance on user comfort, it 
is applied with double deep q learning (DDQN) [33] to 
an HEMS with varying energy coefficients. The comfort 
can be calculated by (9), (10) and (22). For a more intui-
tive analysis of comfort level, the electricity cost En is set 
to 0. Figure 11 shows the comfort results. It can be con-
cluded that the proposed method outperforms DDQN 
on user comfort across all energy coefficients, and user 

comfort declines with increasing energy coefficient, indi-
cating that users can trade off comfort for lower energy 
consumption.

Similarly, the energy consumptions of the proposed 
method and DDQN under different energy coefficients 
are compared, as shown in Fig.  12. It can be inferred 
that the two methods have comparable energy con-
sumption under different energy coefficients. Com-
pared with the case without HEMS, the daily cost of 
applying the proposed method is significantly reduced, 
by 15.9%, 18.3%, and 18.7%, respectively. Additionally, 
the larger the energy coefficient, the smaller the daily 
cost. The effect of α is to balance energy saving and 

Fig. 9 Final behavior correlation graph

Table 4 The result of behavior identification

Model Method B1 B3 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

MLKNN HL 0.024 0.093 0.139 0.059 0.118 0.109 0.174 0.158 0.085 0.131 0.049 0.151

Acc 0.976 0.906 0.861 0.941 0.882 0.891 0.826 0.842 0.915 0.869 0.951 0.849

F1-Score 0.825 0.805 0.467 0.568 0.588 0.604 0.415 0.528 0.589 0.527 0.72 0.693

RAKEL HL 0.02 0.069 0.142 0.06 0.119 0.11 0.171 0.143 0.081 0.129 0.062 0.144

Acc 0.98 0.931 0.858 0.94 0.881 0.89 0.829 0.857 0.919 0.871 0.938 0.855

F1-Score 0.84 0.857 0.181 0.54 0.576 0.591 0.4 0.506 0.586 0.502 0.601 0.653

SGN HL 0.011 0.032 0.078 0.043 0.081 0.075 0.13 0.135 0.05 0.107 0.025 0.131
Acc 0.989 0.97 0.922 0.957 0.919 0.925 0.87 0.865 0.95 0.893 0.975 0.869
F1-Score 0.918 0.939 0.698 0.69 0.718 0.72 0.511 0.558 0.765 0.64 0.861 0.728

LDWA HL 0.011 0.030 0.072 0.041 0.078 0.077 0.117 0.133 0.052 0.101 0.021 0.131
Acc 0.989 0.97 0.930 0.959 0.922 0.923 0.881 0.865 0.948 0.901 0.975 0.869
F1-Score 0.918 0.939 0.733 0.706 0.733 0.723 0.537 0.563 0.769 0.653 0.876 0.728

ML‑SGN 
(proposed)

HL 0.011 0.033 0.065 0.041 0.072 0.073 0.102 0.124 0.048 0.097 0.02 0.131

Acc 0.989 0.967 0.935 0.959 0.928 0.927 0.898 0.876 0.952 0.903 0.98 0.869
F1-Score 0.92 0.937 0.781 0.72 0.752 0.719 0.574 0.584 0.777 0.684 0.886 0.726
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comfort, and greater energy coefficient means that 
users are more concerned about saving energy than 
comfort. Therefore, the energy coefficient can be set 
according to users’ usage preference. From the afore-
mentioned experimental results, it can be concluded 
that the proposed method balances comfort and energy 
consumption better under uncertainty.

The total energy consumption of all loads in three 
different scenarios is compared when α is set to 0.5, as 
shown in Fig.  13. The three scenarios are: using the 
proposed HEMS method, using the DDQN-based 
HEMS method, and without HEMS. The time-of-use 
price for the day is also shown in the figure. As shown 
in Fig.  13a, when the HEMS method proposed in this 
work is deployed, the loads consume more energy when 
the price is low, and reduce the demand when the price 
is high. Specifically, the transferable loads avoid working 

Fig. 10 Training process of GRL

Fig. 11 Comfort comparison

Fig. 12 Electricity cost comparison

Fig. 13 Energy consumption of all loads obtained by different 
methods
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at peak times, and their energy demand is postponed to 
the period of moderate electricity price between 10:00 
and 16:00. Thermostatically controlled loads are not only 
expected to reduce the energy cost, but also to ensure 
that the temperature is kept within the comfort range. 
The variation curves of the indoor temperature and water 
temperature of the water heater are shown in Fig.  14. 
It can be concluded that under the influence of various 
uncertain factors, the temperature can be maintained 
within the set range, and the energy consumption dur-
ing peak times can also be effectively controlled. In con-
trast, in the case without HEMS, as shown in Fig.  13c, 
most transferable loads work at peak times, which results 
in higher cost. In addition, the proposed method also 
ensures the rationality of the management. Comparing 
with Fig. 13b, it can be seen that after applying the pro-
posed method, the clothes dryer always works after the 
washing machine, and the dishwasher generally works 
after the cooker. This validates that the proposed method 
combined with behavior correlation can better deal with 
energy management than the method without incorpo-
rating correlations.

6  Conclusion
In this study, a novel method for residential electricity 
behavior identification and energy management based on 
graph representation learning is presented. The proposed 
method constructs and updates a graph that captures 
users’ electricity usage habits, and leverages an improved 
multi-label NILM method to identify their behavior. 
Moreover, the method proposes an HEMS strategy 
based on GRL, one which addresses the anomaly man-
agement problem arising from ignoring appliance cor-
relation in conventional methods. The proposed method 
can adapt to users’ changing behavior by online updat-
ing of the graph, and assist them in continuous energy 
management.

The proposed method is evaluated through simulations 
which demonstrate its superior performance in behavior 
identification and HEMS. The proposed method has two 
main advantages over existing ones. First, it achieves a 

high average recognition accuracy of 93.2% in the experi-
ments, demonstrating its effectiveness in behavior iden-
tification. Second, it reduces the average electricity cost 
for users by 18.3%, while maintaining a high level of user 
comfort and satisfaction, and making management deci-
sions that match user preferences. Therefore, the method 
balances user comfort and energy cost better than other 
methods.

In future work, we will continue to tackle the overfit-
ting caused by the ‘few shot’ learning problem to further 
improve the generalization performance of behavior 
identification. At the same time, it is of great significance 
to migrate the proposed method to software and hard-
ware systems.
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Fig. 14 Variation of temperature
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